Agribusiness Analysis and Forecasting

Stochastic Simulation

Aleks Maisashvili

Texas A&M University

Stochastic Simulation

In economics we use simulation because we can not experiment on live subjects, a business, or the economy without injury.

In other fields they can create an experiment

- Health sciences they feed (or treat) lots of lab rats on different chemicals to see the results.
- Animal science researchers feed multiple pens of steers, chickens, cows, etc. on different rations.
- Engineers run a motor under different controlled situations (temp, RPMs, lubricants, fuel mixes).
- Vets treat different pens of animals with different meds.
- Agronomists set up randomized block treatments for a particular seed variety with different fertilizer levels.

Probability Distributions

Parametric and Non-Parametric Distributions

- Parametric Dist. have known and well defined parameters that force their shapes to known patterns.
 - Normal Distribution Mean and Standard Deviation.
 - Uniform Minimum and Maximum
 - Bernoulli Probability of true
 - Beta Alpha, Beta, Minimum, Maximum
- Non-Parametric Distributions do not have pre-set shapes based on known parameters.
 - The parameters are estimated each time to make the shape of the distribution fit the data.
 - Empirical Actual Observations and their Probabilities.

Typical Problem for Risk Analysis

- We have a stochastic variable that needs to be included in a business model. For example:
 - Price forecast has residuals we could not explain and they are the stochastic component we need to simulate.
 - Crop yield is forecasted by trend but it has residuals that are stochastic; risk caused by weather.
- Model will be solved (sampled) many times using alternative draws of random values for prices and yields.
- We have the data and a forecast model next we need to estimate parameters to define the stochastic variables.
 - NOTE: Parameters is the generic name for values that determine the location and shape of the distribution.

Steps for Simulating Random Variables

- First step: be certain that the variable that you will directly scholastically draw is suitable
- Every stochastic draw you will make will for a variable will be independent of every other draw, even for the same variable in different time periods.
- The properties of the variable must be consistent with this simulation process
- In short, we need all draws for an individual variable to be independently, identically distributed (i.i.d.).
- We must therefore be certain that the variables we directly simulate have
 - Constant mean
 - Constant, finite variance
 - No autocorrelation

Steps for Simulating Random Variables

- For parametric distributions, we must make an assumption on a probability distribution for the random variables (e.g., Normal or Beta or Uniform...).
- Estimate/fit the parameters values to define the assumed distribution.
- Parameters for parametric distributions we will be using are:
 - Normal (Mean, Std Deviation)
 - Beta (Alpha, Beta, Min, Max)
 - Uniform (Min, Max)
 - Bernoulli (probability of true)

Steps for Parameter Estimation

- Again, be sure that you have removed any trend, cycle or structural pattern. Be sure that you have a constant mean and variance. i.i.d.!
- Estimate parameters for several assumed distributions using historical data.
- Simulate the data under different distributions.
- Pick the best distribution based on.
 - Mean, Standard Deviation use validation tests.
 - Minimum and Maximum.
 - Shape of the CDF vs. historical series.
 - Penalty function =CDFDEV() to quantify differences.

Parameter Estimator in Simetar

Use Theta Icon in Simetar

- Estimate parameters for up to 17 parametric distributions.
- Select MLE for parameter estimation.

• The tool provides ready-made cells simulating your variable under the various distributions.

Uniform Distribution

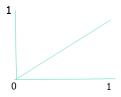
 Random variable where every interval has an equal probability of being observed (drawn).

if X is Uniform(0, 1) then
$$P(0.1 < x < 0.2) = P(0.5 < x < 0.6)$$

- Simulating Uniform in Simetar enter parameters as:
 - =UNIFORM(Minimum, Maximum)
 - =UNIFORM(0,1) which is the same as =UNIFORM() (this is standard uniform)
 - =UNIFORM(10,25), etc.
- A standard uniform RV is used to simulate all distributions. For example a normal distribution:
 - =norm(mean, standard deviation, U), where U is distributed standard uniform.

Standard Uniform Distribution

• CDF of the Standard Uniform Distribution.



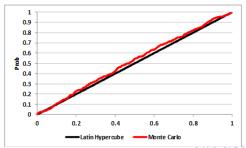
• PDF of Standard Uniform Distribution.

Basic Simulation Definitions

- Stochastic Simulation Model means the model has at least one random variable.
- Monte Carlo simulation model same as a stochastic simulation model.
- Two ways to sample or simulate random values:
 - Monte Carlo sampling draw random values for the variables purely at random.
 - Latin Hyper Cube sampling draw random values using a systematic approach so we are certain that we sample ALL regions of the probability distribution.
- Monte Carlo sampling requires larger number of iterations to insure that model samples all regions of the probability distribution.

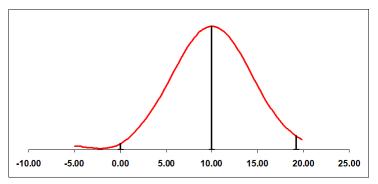
MC vs. LHC Sampling

- For a standard uniform random variable (uniform over the unit interval), the CDF is a 45-degree straight line.
- MC empirical CDF deviates from the 45-degree line.
- LHC empirical CDF is right on top of the population CDF.
- This is with 500 iterations.
- Simetar default is LHC.



When to Use the Normal Distribution

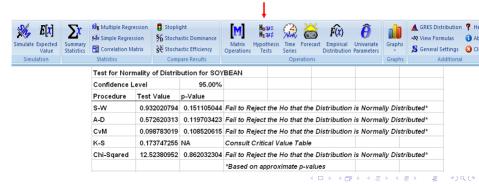
- Use the Normal distribution if you have lots of observations and have tested for normality.
- BUT watch for infeasible values from a Normal distribution (negative yields and prices).



How to Test for Normality

Simetar provides an easy to use procedure for testing Normality that includes:

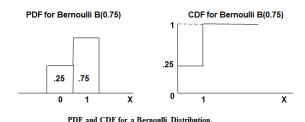
- S-W (Shapiro-Wilk)
- A-D (Anderson-Darling)
- CvM (Cramer-Von Mises)
- K-S (Kolmogorov-Smirnov)
- Chi-Squared



Truncated Normal

- General formula for the Truncated Normal
 =TNORM(Mean, Std Dev, [Min], [Max],[USD])
- Truncated Downside only =TNORM(10, 3, 5)
- Truncated Upside only=TNORM(10, 3, , 15)
- Truncated Both ends=TNORM(10, 3, 5, 15)
- Truncated both ends with a USD in general form =TNORM(10, 3, 5, 15, [USD])

Bernoulli Distribution



- Parameter is p or the probability that the random variable is 1.0 or TRUE.
- Simulate Bernoulli as:
 - =Bernoulli(p)
 - =Bernoulli(0.25)

Bernoulli Distribution Application

	А	В	С	D	Е				
13	Conditional Probability Distribution Example of Rain								
14	P(rain) in June	0.2							
15	Quantity of Rain IF it rains								
16	Min	2							
17	Max	5							
18	Use a Uniform distribution to simulate the amount of the rainfall								
19	Rainfall If it rained	3.728058	=UNIFORM	Л(B16,B17)					
20									
21	Did it Rain?	1	=BERNOU	LLI(B14)					
22	This is the value we want to simualt								
23	If It Rained the Amount	3.728058	=B21*B19						
24	How we could use the stochastic rainfall value in a simulation model								
25	Assume a yield function f	or cotton t	hat was Y =	400 + 15*F	Rainfall in J	une			
26									
27	Simulated Yield is	455.9209	=400+15*E	323					
28	Press F9 several times to see the impact of random rainfall on yield								

Bernoulli Distribution Application

	А	В	С	D	Е	F	G	
32	Simulate Machinery Repa							
33	Assume a 5% chance of a repair							
34	Repairs are \$10,000, \$20,0	000						
35	Bernoulli parameter	0.05						
36	Repairs costs range are:	10000	20000	30000				
37	If Repair is needed what i	30000	=DEMPIRICAL(B36:D36)					
38	Repair?	1	=BERNOULLI(B35)					
39								
40	Simualted Repair Cost	30000	=B38*E37					
41	You must hit F9 about 22 times to get a vlue for simulated repair greater than zero							
42	Think about it there is only a 5% chance of a reapir or 1 in 20 chance.							

Beta Distribution

- Beta is a continuous probability distribution.
- It is parametrized by two positive **shape parameters**, denoted by α and β .
- These two parameters define the shape of the distribution.
- Simulate Beta distribution using the function:
 =beta.inv(USD, alpha, beta, minimum, maximum)

