Agribusiness Analysis and Forecasting Autoregressive Process, Part II

Aleks Maisashvili

Texas A&M University

Aleks Maisashvili (Texas A&M University) Agribusiness Analysis and Forecasting

Outline:

- Review stationarity and no. of lags.
- Discuss model estimation.
- Demonstrate how to estimate Time Series (AR) models with *Simetar*.
- Interpretation of model results.
- How to forecast the results for an AR model.

Time Series Model Estimation - Stationarity

- Plot the data to see the characteristics of the series you are analyzing.
- Use the Dickey-Fuller test to determine the minimum number of differences (possible zero) needed to render the data stationary (DF function in Simetar)
- Specify the number of lags in the AR model
 - Sample autocorrelations (AUTOCORR in Simetar)
 - Partial autocorrelations (PAUTOCORR)
 - Schwarz Information Criterion (ARLAG)

- Once you have determined the number of differences and lags in the AR model...
- Use OLS for estimation
- For a series requiring one difference and three lags, estimate

$$D_{1,t} = \beta_0 + \beta_1 D_{1,t-1} + \beta_2 D_{1,t-2} + \beta_3 D_{1,t-3}$$

• Use this equation to forecast the $D_{1,t+i}$ which implies forecasts for Y_{t+i} .

< 日 > < 同 > < 三 > < 三 > <

Time Series Model Estimation in Simetar

- An alternative to estimating the OLS regression model and having to forecast the model by hand we let Simetar do the work
- Simetar time series function is driven by a menu

Time Series Analysis Engine							
Output Range: \$H\$7							
Data Series:							
Labels in First Cell							
Data in Columns O Data in Rows							
Number of Lags: 1							
Number of Differences: 0							
Forecast Periods: 1							
Error Correction							
Constant is Zero							
Calculate Residuals							
Graph Historical & Projected							
Graph Impulse Response Function							
OK <u>Cancel</u> <u>H</u> elp							

- Top line contains the fitted OLS coefficients.
- S.E. of Coef. can be used to calculate *t* ratios to infer which lags are significant.
- Can explore restricting out lags (variables).
- The SIC updates as restrictions are imposed, and can therefore be used to infer the appropriateness of restrictions

AR Series Analysis Results for 2 Lags & 1 Difference,										
	Constant	SalesL1	SalesL2							
Sales	3.393	0.476	-0.107							
S.E. of Coefficients										
Sales	30.764	0.144	0.143							
Restriction Matrix										
Sales	1	1	1							
Differences	1									
Characteristic	Dickey-Fu	Aug. Dick	Schwarz	S.D. Resi	MAPE	AIC	SIC			
Sales	-4.471	-4.271	5.529	212.955	8.86	10.84	10.95345			

Forecasting a Time Series Model

- If the original series is stationary and has *T* observations of data we estimate the model as an AR(0 differences, 1 lag)
- Forecast the first period ahead as:

$$\hat{Y}_{T+1} = \alpha + \beta Y_T$$

• Forecast the second period ahead as:

$$\hat{Y}_{T+2} = \alpha + \beta \hat{Y}_{T+1}$$

- Repeat for additional periods.
- This <u>ONLY</u> works if Y is stationary and the AR model reflects zero differences.

Forecasting a D_1 Times Series Model

- What if Y was non-stationary, and D_{1,t} was stationary? Also, assume a single lag is appropriate for the AR model. How do you forecast?
- Let *T* represent the last historical observation.
- Steps for the one-period-ahead forecast: Recall that $D_{1,T} = Y_T - Y_{T-1}$.
- So the AR model projection is:

$$\hat{D}_{1,T+1} = \alpha + \beta D_{1,T}$$

• Next add the forecasted $\hat{D}_{1,T+1}$ to Y_T to forecast \hat{Y}_{T+1} as follows:

$$\hat{Y}_{T+1} = Y_T + \hat{D}_{1,T+1}$$

.

く 何 ト く ヨ ト く ヨ ト

Forecasting a D_1 Time Series Model

• Two-period-ahead forecast is:

$$\hat{D}_{1,T+2} = \alpha + \beta \hat{D}_{1,T+1}$$

$$\hat{Y}_{T+2} = \hat{Y}_{T+1} + \hat{D}_{1,T+2}$$

- Repeat the process for period 3 and so on.
- This is recursive dynamic forecasting

<日

<</p>

For Forecast Model $D_{1,t} = 4.019 + 0.42859 D_{1,T-1}$

Year	History and Forecast Ŷ _{T±i}	Change \hat{Y} or $D_{1,T}$	Forecast D_{1T+i}	Forecast $\hat{\underline{Y}}_{\underline{I+i}}$
T-1	1387			
Т	1289	-98.0	-37.925 = 4.019 + 0.428*(-98)	1251.1 = 1289 + (-37.925)
T+1	1251.1	-37.9	-12.224 = 4.019 + 0.428*(-37.9)	1238.91 = 1251.11 + (+12.22)
T+2	1238.91	-12.19	-1.198 = 4.019 + 0.428*(-12.19)	1237.71=1238.91 + (-1.198)
T+3	1237.71			

3

(日)

Time Series Model Forecast-Note that this Model Restricted Out the Second Lag

AR Series An	alysis Res	ults for 2 L	<u>_ags & 1 D</u>	<u>ifference</u>		
	Constant	SalesL1	SalesL2			
Sales	3.028	0.430	0.000			
S.E. of Coeffic	cients					
Sales	30.621	0.129	0.000			
Restriction Ma	atrix					
Sales	1	1	0			
Differences	1					
Characteristic	Dickey-Fu	Aug. Dick	Schwarz	S.D. Resi	MAPE	AIC
Sales	-4.471	-4.271	5.529	214.1866	9.06	10.81
Forecast	lm pulse	Auto-	t-Statistic	Partial	t-Statistic	
	Response	Correlatio	(AutoCorr	AutoCorre	(Part.Auto	Period
1,249.849	1.000	0.427042	3.108914	0.427042	3.108914	1
1,236.027	0.431	0.096647	0.602284	-0.10484	-0.76322	2
1,233.106	0.186	0.073858	0.457153	0.09031	0.657466	3
1,234.877	0.080	0.109992	0.678136	0.062501	0.455016	4
1,238.667	0.034	0.033193	0.202893	-0.05185	-0.37748	5

<日

<</p>

- The *Impulse Response Function* shows the impact of a unit shock (in Simetar) in Y (or D_1) on the projected values of over time.
- The rate at which the shock dies out depends on the amount of persistence in the series (which should be reflected in a properly specified model)

Simulation of a Time Series Model

Stochastic recursive dynamic forecasts for an AR model. Recall that the estimation was via OLS, and there exists an error component.

To make the recursive dynamic projections stochastic, add a stochastic error (or *innovation*) to the projection:

$$D_{1,T+1} = \alpha + \beta D_{1,T} + \epsilon_{T+1}$$

where (for now), assume ϵ is normally distributed with a mean of zero and a standard deviation estimated from the OLS residuals

Vector Autoregressive (VAR) Models

- VAR models are time series models where two or more variables are thought to be correlated and together they explain more than each variable by itself.
- For example forecasting
 - Sales and Advertising
 - Money supply and interest rate
 - Supply and Price
 - Corn price and soybean price

An example of advertising and sales

 $DA_{T+i} = \alpha + \beta_1 DA_{1,T-1} + \beta_2 DA_{1,T-2} + \gamma_1 DS_{1,T-1} + \gamma_2 DS_{1,T-2}$ $DS_{T+i} = \alpha + \beta_1 DS_{1,T-1} + \beta_2 DS_{1,T-2} + \gamma_1 DA_{1,T-1} + \gamma_2 DA_{1,T-2}$

where

- A is advertising and S is sales
- DA is the difference for A and
- *DS* is the difference for *S*

In this model we fit A and S at the same time and A is affected by its lag differences and the lagged differences for S. The same is true for S affected by its own lags and those of A.

ヘロト 人間 ト イヨト イヨト

VAR Model Estimation

- Advertising and sales VAR model.
- Highlight two columns B and C
- Specify number of lags (applies to both series)
- Specify number differences (applies to both series)

Time Series Analysis Engine						
Qutput Range: \$M\$7 _						
Data Series: VAR1\$8\$9:\$C\$63						
Data in Columns Data in Rows						
Number of Lags: 2						
Number of Differences: 1						
Forecast Periods: 5						
Error Correction						
Constant is Zero						
Calculate Residuals						
Graph Historical & Projected						
Graph Impulse Response Function						
OK <u>C</u> ancel <u>H</u> elp						

Aleks Maisashvili (Texas A&M University)

Agribusiness Analysis and Forecasting

VAR Model Estimation

Advertising and sales VAR model

VAR Series A	Analysis Results	for 6 Lags	& 1 Differen	nce,									
	Constant	Adv.L1	Adv.L2	Adv.L3	Adv.L4	Adv.L5	Adv.L6	SalesL1	SalesL2	SalesL3	SalesL4	SalesL5	SalesL6
Adv.	-5.049	-0.269	-0.499	-0.294	0.059	-0.252	-0.040	0.530	-0.074	0.205	0.089	0.263	-0.02
Sales	-1.614	0.003	-0.350	-0.343	-0.168	-0.555	-0.268	0.417	0.055	0.166	0.108	0.267	0.08
S.E. of Coeff	icients												
Adv.	27.243	0.189	0.192	0.205	0.197	0.182	0.186	0.153	0.175	0.171	0.175	0.173	0.16
Sales	32.920	0.228	0.232	0.248	0.238	0.220	0.225	0.185	0.212	0.207	0.211	0.210	0.19
Restriction M	latrix												
Adv.	1	1	1	1	1	1	1	1	1	1	1	1	
Sales	1	1	1	1	1	1	1	1	1	1	1	1	
Differences	1												
Characterist	Dickey-Fuller T	Aug. Dicke	LRT	LRT Critic	S.D. Resi	MAPE					v		
Sales	-6.744	-7.435	5.476	5.892	158.03	15.11	1			Historica	al & Pred	icted	
	-4.471	-4.271			190.96	7.54	1						
Forecast		Impulse Re	esponse				4 000						
Adv.	Sales	Adv.	Sales	Period			3,500						
523.275	1,256.382	1.000	1.000	1	1		3,500	1	M				
517.318	1,256.811	-0.268	0.419	2			3,000	-					
529.415	1,304.185	-0.425	-0.119	3			2,500				\wedge	4	
547.782	1,352.748	-0.231	-0.349	4			2 000		· V		~	V	
544.850	1.391.891	0.229	-0.054	5			2,000		\wedge	Long		-	
561.290	1.434.949	-0.190	-0.026	6			1,500		/ V		A 10	^	
586.582	1.471.055	-0.312	-0.381	7			1,000			\vee	~	1	$\sim \sim$
606.375	1,498,413	-0.077	-0.225	8			500	~			\sim	~	\sim
609.176	1 511 007	0.166	0.189	9			0			· · · ·			
612 212	1 519 553	-0.018	0.091	10			, v						

イロト イポト イヨト イヨト