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Stochastic Simulation

In economics we use simulation because we can not experiment on
live subjects, a business, or the economy without injury.

In other fields they can create an experiment

@ Health sciences they feed (or treat) lots of lab rats on different
chemicals to see the results.

@ Animal science researchers feed multiple pens of steers, chickens,
cows, etc. on different rations.

@ Engineers run a motor under different controlled situations
(temp, RPMs, lubricants, fuel mixes).

@ Vets treat different pens of animals with different meds.

@ Agronomists set up randomized block treatments for a particular
seed variety with different fertilizer levels.
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Probability Distributions

Parametric and Non-Parametric Distributions

@ Parametric Dist. have known and well defined parameters that
force their shapes to known patterns.

Normal Distribution - Mean and Standard Deviation.

Uniform - Minimum and Maximum

Bernoulli - Probability of true

Beta - Alpha, Beta, Minimum, Maximum

@ Non-Parametric Distributions do not have pre-set shapes based
on known parameters.
e The parameters are estimated each time to make the shape of
the distribution fit the data.
e Empirical — Actual Observations and their Probabilities.
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Typical Problem for Risk Analysis

@ We have a stochastic variable that needs to be included in a

business model. For example:
o Price forecast has residuals we could not explain and they are

the stochastic component we need to simulate.
e Crop yield is forecasted by trend but it has residuals that are

stochastic; risk caused by weather.

@ Model will be solved (sampled) many times using alternative
draws of random values for prices and yields.

@ We have the data and a forecast model, next we need to
estimate parameters to define the stochastic variables.
o NOTE: Parameters is the generic name for values that
determine the location and shape of the distribution.

4/33

Aleks Maisashvili (Texas A&M University) Agribusiness Analysis and Forecasting



-
Steps for Simulating Random Variables

@ First step: be certain that the variable that you will directly
scholastically draw is suitable

@ Every stochastic draw you will make for a variable will be
independent of every other draw, even for the same variable in
different time periods.

@ The properties of the variable must be consistent with this
simulation process.

@ In short, we need all draws for an individual variable to be
independently, identically distributed (i.i.d.).

@ We must therefore be certain that the variables we directly
simulate have

e Constant mean
e Constant, finite variance
e No autocorrelation
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Steps for Simulating Random Variables

@ For parametric distributions, we must make an assumption on a
probability distribution for the random variables (e.g., Normal or
Beta or Uniform...).

e Estimate/fit the parameters values to define the assumed
distribution.

@ Parameters for parametric distributions we will be using are:
Normal ( Mean, Std Deviation )

Beta ( Alpha, Beta, Min, Max )

Uniform ( Min, Max )

Bernoulli (probability of true)
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Steps for Parameter Estimation

© Again, be sure that you have removed any trend, cycle or
structural pattern. Be sure that you have a constant mean and
variance. i.i.d.!

@ Estimate parameters for several assumed distributions using
historical data.

© Simulate the data under different distributions.

© Pick the best distribution based on.

Mean, Standard Deviation - use validation tests.
Minimum and Maximum.

Shape of the CDF vs. historical series.

Penalty function =CDFDEV() to quantify differences.
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Parameter Estimator in Simetar

Use Theta Icon in Simetar
@ Estimate parameters for 17 parametric distributions.
@ Select MLE or MOM for parameter estimation.
@ The tool provides ready-made cells simulating your variable
under the various distributions.
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Labels in .
W Hestcel add _Igem 8:p>0 14
Gamma  a; a>0, 0x<e= 1.75291
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-Logist i -==<pi<es, Dx<=s 947!
[™ Statistics & Parameter Tests Log-Logistu Hee=, 0= 1.947158
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Aleks Maisashvili (Texas A&M University) Agribusiness Analysis and Forecasting 8/33



Uniform Distribution

@ Random variable where every interval has an equal probability of
being observed (drawn).

if X' is Uniform(0, 1) then P(0.1 < x < 0.2) = P(0.5 < x < 0.6)

@ Simulating Uniform in Simetar enter parameters as:
o =UNIFORM(Minimum , Maximum)
o =UNIFORM(0,1) which is the same as =UNIFORM() (this is
standard uniform, or uniform standard deviate (USD))
o =UNIFORM( 10,25), etc.
@ A standard uniform RV is used to simulate all distributions. For
example a normal distribution:
e =norm(mean, standard deviation, U), where U is distributed
standard uniform.
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Standard Uniform Distribution

@ CDF of the Standard Uniform Distribution.
1

0 1

@ PDF of Standard Uniform Distribution.
1

Min Max
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Basic Simulation Definitions

@ Stochastic Simulation Model - means the model has at least one
random variable.

@ Monte Carlo simulation model - same as a stochastic simulation
model.

@ Two ways to sample or simulate random values:

@ Monte Carlo sampling - draw random values for the variables
purely at random.

@ Latin Hyper Cube sampling - draw random values using a
systematic approach so we are certain that we sample ALL
regions of the probability distribution.

@ Monte Carlo sampling requires larger number of iterations to
insure that model samples all regions of the probability
distribution.
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MC vs. LHC Sampling

e For a standard uniform random variable (uniform over the unit
interval), the CDF is a 45-degree straight line.

@ MC empirical CDF deviates from the 45-degree line.

@ LHC empirical CDF is right on top of the population CDF.
@ This is with 500 iterations.

@ Simetar default is LHC.
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When to Use the Normal Distribution

@ Use the Normal distribution if you have lots of observations and
have tested for normality.

@ BUT watch for infeasible values from a Normal distribution

(negative yields and prices).
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How to Test for Normality

Simetar provides an easy to use procedure for testing Normality that includes:
@ S-W (Shapiro-Wilk)

A-D (Anderson-Darling)

CvM (Cramer-Von Mises)

K-S (Kolmogorov-Smirnov)

Chi-Squared

|
% E[I] z‘. ﬁlmmnp:ekeguf_smn nstnphgh.l . [M] ||,,:; {’2,‘3 @ F(A’} 9 “ A GRKS Distribution T He

b Simple Regression % Stochastic Dominance <8¢ View Formulas e Ab
Simulate Expected Summary Matrix  Hypothesis Til’ll! Forecast Empirical Univariate  Graphs

Value | Statistics | [l Comelation Matrix Ol stochasticEffideny || operations  Tests  Series Distribution Parameters - B General Settings ) Q1
Simulation Statistics Compare Results Operations Graphs Additional

Test for Normality of Distribution for SOYBEAN

Confidence Level 95.00%

Procedure  Test Value p-Value

s-wW 0.932020794 0.151105044 Fail to Reject the Ho that the Distribution is Normally Distributed*
A-D 0.572620313 0.119703423 Fail to Reject the Ho that the Distribution is Normally Distributed*
CvM 0.098783019 0.108520615 Fail to Reject the Ho that the Distribution is Normally Distributed*
K-8 0.173747256 NA Consult Critical Value Table

Chi-Sqared  12.52380952 0.862032304 Fail to Reject the Ho that the Distribution is Normally Distributed*
*Based on approximate p-vaiues
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Truncated Normal

@ General formula for the Truncated Normal
=TNORM(Mean, Std Dev, [Min], [Max],[USD])

@ Truncated Downside only
=TNORM(10, 3, 5)

@ Truncated Upside only
=TNORM(10, 3, , 15)

@ Truncated Both ends
=TNORM(10, 3, 5, 15)

@ Truncated both ends with a USD in general form
=TNORM(10, 3, 5, 15, [USD])
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Bernoulli Distribution

PDF for Bernoulli B(0.75) CDF for Bernoulli B(0.75)
10—
.25
25 | .75
0 1 X 0 1 X

PDF and CDF for a Bernoulli Distribution.

@ Parameter is p or the probability that the random variable is 1.0

or TRUE.
@ Simulate Bernoulli as:
=Bernoulli(p)

=Bernoulli(0.25)
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Bernoulli Distribution Application

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E |
Conditional Probability Distribution Example of Rain
P(rain) in June 0.2
Quantity of Rain IF it rains
Min 2
Max 5
Use a Uniform distribution to simulate the amount of the rainfall
Rainfall If it rained 3.728058 =UNIFORM(B16,B17)
Did it Rain? 1 =BERNOULLI(B14)

This is the value we want to simualt

If It Rained the Amount  3.728058 =B21*B19

How we could use the stochastic rainfall value in a simulation model
Assume a yield function for cotton that was Y =400 + 15*Rainfall in June

Simulated Yield is 455.9209 =400+15*B23
Press F9 several times to see the impact of random rainfall on yield
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Bernoulli Distribution Application

A B C D E F G
Simulate Machinery Repair Costs

Assume a 5% chance of a repair

Repairs are $10,000, $20,000 or $30,000

Bernoulli parameter 0.05

Repairs costs range are: 10000 20000 30000

If Repair is needed what is the stochastic repiar cost? 30000 =DEMPIRICAL(B36:D36)
Repair? 1 =BERNOULLI(B35)

Simualted Repair Cost 30000 =B38*E37

You must hit F9 about 22 times to get a vlue for simulated repair greater than zero.

Think about it there is only a 5% chance of a reapir or 1 in 20 chance.
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Beta Distribution

@ Beta is a continuous probability distribution.

@ It is parametrized by two positive shape parameters, denoted by «
and 5.

@ These two parameters define the shape of the distribution.

@ Simulate Beta distribution using the function:
=beta.inv(USD, alpha, beta, minimum, maximum)
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Recap: Parametric vs. Non-Parametric
Distributions

@ Parametric Distributions

e Fixed form, shape dependent on parameters.
e Uniform, Normal, Beta, and Bernoulli.

@ Non-Parametric Distributions

o Not a fixed form that is parameter dependent.
e Discrete Empirical, Empirical.
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(Continuous) Empirical Distribution

An empirical distribution is defined totally by the observed data for the variable.
There is no assumed distributional shape.

Steps to simulate an empirical distribution.
@ Sort the historical values from lowest to highest.

@ Assign a cumulative probability to the sorted deviates (usually assume equal
probability for each value). Cumulative probabilities go from 0.0 to 1.0.

© Assume the distribution is continuous, so interpolate between the observed
points.

@ Use the Inverse Transform formula to simulate the distribution. This
requires simulation of a standard uniform RV to use in the interpolation.

In Simetar: =EMPIRICAL(x1, X2, X3, ...)
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CDF for an Empirical Distribution

Cumulative Distribution Function

F(x) 1.0

0.07"
min max x
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Inverse Transform for Simulating an Empirical
Distribution

F(X) 1.0
Start with a
random USD
U(0,1) = 0.45

Interpolate the Y
axis using the
USD value

0.0 L : -
Y]_ YZ Y3 l Y4 Y5 Y6 Y7

Stochastic ?i Derived by linear interpolation
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Using the Empirical Distribution

@ Empirical distribution should be used if
e Random variable is continuous over its range.
e You have fewer than 15 observations for the variable, and/or.
e You cannot easily estimate parameters for a parametric dist.

@ Suppose we have only 10 observed yields:
e Yield can be any positive value, not discrete values.
e We don't have enough observations to test for normality or
other parametric distributions.
e We know the 10 random values were observed with a probability
of 1/10, or one observation each year.
e So F(x) goes from 0.0 to 1.0 in equal increments.
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EMP Distribution

Advantages of EMP Distribution
@ It lets the data define the shape of the distribution.
@ Does not risk assuming an incorrect parametric distribution.

@ The larger the number of observations in the sample, the closer EMP
will approximate the “true” distribution.

Disadvantages of EMP Distribution

@ Small samples will, to some unknown extent, misrepresent the true
shape of the population distribution.

@ It has finite min and max values; quite possibly missing the tails of
the actual underlying population distribution.

@ May overfit the data.
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Empirical Dist. vs. True Population Dist.
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Simulate Yield Two Ways: Normal and Empirical

Normal 5707.51 =NORM(N15,N16)

Empirical 6123.53 =EMP(C5:C15)
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Parameter Estimation with Theta

Select MLE or MOM
Parameter Estimation ~ stribution el
;ﬁ Maximum Likelihood Estimates (MLEs) Pa) a :3‘:{: :m;.:.:: ; :,.:fm

. SASL _||3& DistributicParameter Test Empirical ' Univariale || Graphs || o - eral Settings € Clase
Beta o0, AsxsB 0.464544 Graphs Additional

Select Data Ranges 8;8>0 0.75791
[ Il Double Expr; -==cpicom, -emcx<em 12
& DatainColymns ¢ Datain Rows ;00 §
Exponentia; -==<g<==, <x<== 2
= ',i-if'é; add Delete 8;p>0 114
Gamma a; a>0, 0Sx<e== 1.75291
8;p>0 7.644433
Inverse Gipt; p>0, Osx<e== 134
a;0>0 0.27
Logistic  jt; -==<pi<==, -==<x<== 12.56371
Indude: ;050 5.593188
¥ MLEs - Maximum Likelihood Estimates Log-log p;-==<pises, -so<x<e= 8.968149
I~ MOMs - Method of Moment Estimates 0:0%0 7.253337
Log-Logist i} -==<pi<==, 0sx<== 1.947158
[™ Statistics &Parameter Tests 5: 050 10.36335
[™ Stochastic Variables Lognorma pi; -==<pi<==, 0<x<== 2.283671
;050 0.84777
Normal  p;-es<p<es, -sacy<es 134
o;0>0 9.656086
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Comparing distributions

o CDFDEV is a Simetar function to compare the CDFs of two
data samples

o CDFDEV calculates the integral between two distributions with
a penalty for the two distributions being different.

/ T (A — Fa(x))? + w(x)dx

o0
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Comparing distributions
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Calculating CDFDEV

@ Create simulated samples from candidate distributions

@ Use CDFDEV to compare those simulated samples to the historical data

sample: =CDFDEV/(historical_sample, simulated_values)
@ Select the distribution that has the lowest CDFDEV value.

Random Variables (MLE) |

IDistribution Random Va
}Beta (MLE) 2 0697062}
|Double Exponential (ML 2.1953671;
}Exponential (MLE) 1.861 8588}
}Gamma (MLE) 21173946/

|
}Inverse Gaussian (MLE 2.1360436

2.1454888|

}Loglshc (MLE)

lLog-Log (MLE) 2.0783888)|
{Log-Logistic (MLE) ~ 2.1389988|
ILognormal (MLE) 2.1076268)
INormal (MLE) 21367503
PPareto (MLE) 1.8124891,
{Uniform (MLE) 2.0971311|
\Weibull (MLE) 21500771
}Bmomial (MLE) 2}
}Geometric (MLE) 2
|Poisson (MLE) 2]
EMP 2l

Distribution CDFDEV

Beta (MLE) 0.0178771
Double Exponential (MLE) 0.3655717
Exponential (MLE) 2.7087809
Gamma (MLE) 0.067896
Inverse Gaussian (MLE)  0.1142559
Logistic (MLE) 0.1606926
Log-Log (MLE) 0.4418301
Log-Logistic (MLE) 0.3453194
Lognormal (MLE) 0.100735
Normal (MLE) 0.0497376
Pareto (MLE) 79.214829
Uniform (MLE) 0.0324191
Weibull (MLE) 0.0811444
Binomial (MLE) 0.9668741
Geometric (MLE) 59.505363
Poisson (MLE) 6.3777462
EMP 0.0003111
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What is the Next Step?

After choosing a distribution:

@ It's a good idea to validate that the characteristics of the
simulated data match those of the original historical data.

@ Use statistical tests to check that the means and variances are
not significantly different from one another.

@ Check if the minimum and maximum values are realistic.

@ Can also visually check the shape of the CDF and PDF.
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Statistical Tests for Validation

Student t test
@ H,: Historical Mean = Simulated Mean.
@ H,: Historical Mean # Simulated Mean.

F test
@ H,: Historical Variance = Simulated Variance

@ H,: Historical Variance # Simulated Variance.
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Validation Tests in Simetar

¢ Compare Two Series: Historical Data vs. Simulated Values
— 15t Data Series is history

Hypothesis Testing for Data 8
- Z”d Data Serles |S simulated Choose Test Type: Overall Confidence
. . Compare Means | Test Pe \GEIE
° Slmetar Icon is Testhmnng.:jxaej!ﬂusg;:sdg:me\anm | | 95%
Qutput Range:
1st Data Series: §Hs3
Ho:l.l: [ sneetuisasisasz = =
H'l:"l: and Data Series: ™ Indude Statistics
. [ smpatarsass:sess08 B oK
HyPOthESIS (% Datain Columns "~ Data in Rows
Tests o _
¥ Labels in First Cell of Each Series Help ‘
Distribution Comparison of Normal Corn price & Corn price
Confidence Level 95.0000%
Test Value Critical ValP-Value
2 Sample t Test 0.00 269 0.999 Fail to Reject the Ho that the Means are Equal
F Test 1.00 1.90 0437 Fail to Reject the Ho that the Vanances are Equal
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