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Simetar© 2008
Simulation & Econometrics To Analyze Risk

1.0 What is Simetar?

Simetar© 2008 is a simulation language written for risk analysts to provide a transparent method
for analyzing data, simulating the effects of risk, and presenting results in the user friendly
environment of Microsoft® Excel'. Any Excel spreadsheet model can be made stochastic and
simulated using Simetar functions. Simetar, an acronym for Simulation for Excel to Analyze
Risk is an Excel add-in. Simetar requires little additional memory and operates efficiently on
most PCs running Excel XP, Excel 2000, Excel 2003, and Excel 2007. Instructions for installing
Simetar are provided in Section 1.1.

Simetar consists of Menu Driven and User Defined Functions for Excel. A common principle in
Simetar, is that all functions are dynamic; so if changes are made to the original data most all
parameters, hypothesis tests, regression models, and risk ranking strategies are automatically
updated. This feature of having Excel dynamically recalculate parameters offers significant
efficiencies during the development, validation, verification, and application of stochastic
simulation models.

The more than 230 functions in Simetar can be categorized into six groups: (a) simulating
random variables, (b) parameter estimation and statistical analyses, (¢) graphical analysis, (d)
ranking risky alternatives, (e) data manipulation and analysis, (f) multiple regression, and (g)
probabilistic forecasting. Simetar can be used to perform all of the steps for developing,
simulating, and applying a stochastic model in Excel, namely: estimate parameters for random
variables, simulate stochastic variables, test the validity of the random variables, present the
results graphically, and rank risky alternatives.

The next section describes the procedure for installing Simetar. After installing Simetar open the
demonstration program to see learn how to apply the major functions in Simetar. More than 100
demonstration programs will be installed on your computer at Start > Programs > Simetar >
Demos. Refer to these demonstration programs as you read the User’s Manual to learn how the
functions are applied in working simulation and forecasting models.

1.1 Installing Simetar

The first step in installation is to set the macro security level for Excel to low. (If you currently
have Simetar installed be sure to uninstall Simetar and delete the C:\Program Files\Simetar
folder.) After setting macro security to Low, close Excel and insert the Simetar CD in your
computer’s CD drive. (If you are installing from a file downloaded from the Simetar website,
copy the file to your computer’s hard drive and proceed with the installation.) From the
Windows Explorer, double click on the Simetar.exe file name and the Setup Wizard will open to

1 . Simetar© is copyrighted by the authors. Microsoft, Excel, and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.



Figure 1. Click the Next box to proceed with the installation. The License Agreement is
provided in the second screen of the Wizard (Figure 2). Read the License Agreement and click
on the I Agree box to proceed with installation.

i Simetar 2008 Setup =1olx] =loix
End-User License Agreement ~—
Welcome to the Simetar 2008 Setup Fleass read the following licerse agresment carefully '\__\.-
Wizard
The Setup Wizard will irstall Simetar 2008 on your R .
computer, Click Mext to continue o Cancel to exit the
Sebup Wizard.
e | e | | | coen |
| Inbaxt | Carvcel
Figure 1. Install Simetar. Figure 2. License Agreement.

Enter the License Code provided on your CD or with the Download Instructions (Figure 3). If
you did not uninstall Simetar, a screen will appear that allows you uninstall using our unistaller.
In the next screen select the “Typical” installation. Figure 4 is provided so you can change your
mind as to the type of installation.

i§ Simetar 2008 Setup =lolx] ¥§ Simetar 2008 Setup =1l x|
Choose Setup Type < . . é ‘9
Choose the sstup typs tht bast sults vour nesds ‘__\' Ready to install Simetar 2008 .
Typical Click Install to begin the installation. Click Back to review or change any of your

Installs the most common program festures. Recommendad for most instailation settings. Click Cancel to exit the wizard.

USers,

Custom

Allows users o choose which program features will be installed and where
ey will be Installed. Recommendad for advanced users.

Complete

All program festures will be installed. Requires the most disk space.

gk | e Back Irstall Carval
Figure 3. Type of Installation. Figure 4. Final Chance to Change
Your Installation Type.

Enter your license code in Figure 5, make sure all letters are caps and the dashes are included.
The installation will take 2-3 minutes as the files are transferred and the appropriate files are
updated so Simetar can operate in the Microsoft environment. The program will be stored in
C:\Program Files\Simetar 2008. The last screen (Figure 6) indicates that Simetar has finished
installing properly. Open Excel and you will see the Simetar toolbar in Excel 2003. For Excel
2007 you must click Add-Ins and then click on the word Simetar to see the Toolbar presented
below. To test Simetar type the following command in cell Al =NORMY() press Enter and then
press F9. You will see random draws of a standard normal random variable.

The installation procedure will place the word “Simetar” on the toolbar and add the Simetar icon



toolbar below:

x =I5
License Key T
Plagse enter your licanse key ?:{.') Completed the Simetar 2008 Setup

Wizard

Click. the Finish buthon to exit e Sebup Wizard

License Key:
I
[ B [ Mt | cacel | [ Fren ]
Figure 5. Enter Your License Code. Figure 6. Final Installation Screen.
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2.0 Simulating Random Variables

Simulating a stochastic model in Excel is accomplished by generating random values for each of
the random variables, letting Excel update the model’s equations, and saving the results of key
output variables (KOVs) for statistical analysis and presentation. Repeating this process a large
number of times (iterations or trials) causes the model to be simulated for a wide range of
possible combinations of the random variables. The resulting array of 100 or more simulated
values for a KOV defines an empirical probability distribution for each of the output variables.
Probability distributions for the output variables are analyzed to gain a better understanding of
the risk for the system being modeled. An example of simulation with Simetar is provided in
example program Simulation Demo.xls.

2.1 Probability Distributions in Simetar

Simetar includes functions for generating pseudo-random numbers from more than 50
probability distributions plus six distributions included in Excel. An alphabetical list of
probability distributions simulated by Simetar is provided in page 4. A detailed description of
each Simetar function for simulating random numbers is provided in Section 3. See the
Probability Distributions Demo.xls workbook for examples of how the functions are used in
Excel. Access the Simetar demonstration programs from the Start menu:

Start > Programs > Simetar > Demos



Distribution Function Name and Parameters for each Probability Distribution in Simetar

Bernoulli=BERNOULLIDIST(ProbabilityofTrueOutcome)
Binomial =BINOMINV(n,Prob,[USD])

Bootstrap =BOOTSTRAPPER(ListofPossibleOutcomes,RecalculationOff)
Cauchy =CAUCHY (Median,Sigma,[USD])
Cosine =COSINV(Center,Radius,[USD],MaxIterations,Precision)

Correlated SND =CSND(RangeCorrelationMatrix, [ISNDs])

Correlated USD =CUSD(RangeCorrelationMatrix,[ISNDs],[MatrixRow],[RankCorr])
Discrete Empirical =DEMPIRICAL(Values,[USD],[Probabilities of Values])

Double Exponential =DEXPONINV(Mu,Sigma,[USD])

Dirichlet =DIRICHINV/(Alphas,[USD],[MatrixRow])

Empirical =EMP(Values,Probabilities,[USD],[NormTails])

Empirical =EMPIRICAL (Values,Probabilities,[USD],[NormTails])

Exponential =EXPONINV(Beta,[USD])

Extreme value  =EXTVALINV(Mu,Sigma,[USD])

Geometric =GEOMINV(Prob,[USD])

GRK =GRK(MinValue,MidPoint,MaxValue,[USD])

GRKS =GRKS(MinValue,MidPoint,MaxValue,[USD],[LowerSD],[UpperSD])

Hoteling TSq  =HOTELLTINV(P,Degrees_Freedom,[UniformRandonNumber])
Hypergeometric =HYPERGEOMINV(n,N1,S1,[USD])

Inverse Gaussian =INVGAUS(Mu,Sigma,[USD],[Maxlterations],[Precision])

Kernal Density = =KDEINV(DataRange,BandWidth,KernelEstimator,[USD],[Maxlter],[Prec])

Logistic =LOGISTICINV(Mu,Sigma,[USD])

Log-Log =LOGLOGINV(Mu,Sigma,[USD])

Log-Logistic =LOGLOGISTICINV(Alpha,Beta,[UUSD])

Modified 2 Piece Normal=MTPNORM(MinValue,MidPoint,MaxValue,[USD],[LowSD],[UpSD])
Multinomial =MULTINOMINV(NumTrials,Probs,[USDs])

Multivariate Empirical =MVEMPIRICAL(RandomValuesDataMatrix,[SND],[MatrixRow])

Multivariate Log Normal =MVLOGNORM(MeanVector,CovMatrix,[SNDs],[MatrixRow],[Moments])
Multivariate Normal =MVNORM(MeansVector,CovarianceMatrix,[SNDs],[MatrixRow])

Multivariate Students t =MVTINV(Student t,CovarianceMatrix,[DegreesFreefom],[SNDs],[MatrixRow])
Negative Binomial=NEGBINOMINV(k,Prob,[USD])

Normal =NORM(Mean,StandardDeviation,[USD])

Pareto =PARETO(Alpha,Beta,[UniformRandonNumber])
PERT =PERTINV(A,B,C,[USD])

Power Normal =PNORM(Mean,StandardDeviation,P,[USD])
Poisson =POISSONINV(Lambda,[USD])

Random Sorting =RANDSORT(InputRangeLocation,[RecalculationOff],[DataHorizontal])
RandomWalk =RANDWALK(Mean,StandDev,USD, Distribution, InitialVal,Coefficient)
Semicircle =SEMICIRCDIST(X,Center,Radius,[Cumulative or Density])

Truncated Empirical =TEMPIRICAL(RandomValues,Probabilities,MinVal,MaxVal,[USD])
Truncated Gamma =TGAMMAINV(Alpha,Beta,AbsoluteMin,AbsoluteMax,[USD])
Truncated Normal =TNORM(Mean,StanDev,[Min],[Max],[USD],[StackTails])
Truncated Wiebull =TWEIBINV(Alpha,Beta,[Min],[Max],[USD])

2 Piece Normal =TPNORM(Mean,StandardDeviation1,StandardDevviation2,[USD])
Triangle =TRIANGLE(A,B,C,[USD])

Uniform =UNIFORM(LowerValue,UpperValue,[USD])

Uncorrelated SNDs =USND(CorrelationMatrixRange,CorrelatedNormalDeviatesRange)
Uncorrelated USDs =UUSD(CorrelationMatrixRange,CorrelatedUniformDeviatesRange)

Weibull =WEIBINV(Alpha,Beta,[USD])
Wilk's Lambda  =WILKSLINV/(P,FirstDegrees of Freedom,SecondDegrees of Freedom)
Wishart =WISHINV(CovarianceMatrix,Degrees of Freedom)

Native Excel probability distributions can be simulated in Simetar

Beta =BETAINV(Uniform(),Alpha,Beta,Minimum,Maximum)
Chi-Squared =CHIINV(Uniform(),Degrees of Freedom)

Gamma =GAMMAINV(Uniform(),Alpha,Beta)

Log Normal =LOGINV(Uniform(),Mean,StandardDeviation)
Students t =TINV(Uniform(),Degrres of Freedom)

F =FINV(Uniform(),Degrees of Freedom1, Degrees of Freedom?2)




Simetar allows the user to specify the type of sampling procedure
and the random number generator to use in generating random
values. Three different random number generators are available:
Mercene Twister, the Multiplicative Random Number Generator, or
Excel’s native generator. Two different random number sampling

Default User Settings for Sin il

Simulation Settings:
Random MNumber Seed:

Mumber of Iterations:
Murmnber of Scenarios:
Sampling Method:

Random MNumber
Generator:

Latin Hypercube

31517
100
1

Mersenne Twister

procedures are available : Latin hypercube and Monte Carlo. These

random number generators are pseudo random and thus are suitable

for conducting scenario and sensitivity analyses. The user can select
the random number generator and the sampling method by selecting . ioeous settings:

the General Settings Options 5 icon and choosing the desired Zero Approimaton; | LOOOE-IS.
options in the Default User Settings menu (Figure 7).

Tterative Calculation Settings:

Precision: 0.0001

2000

Maxirmurm [terations:

Ok I Cancel | Help |

2.2 Simulation Engine in Simetar Figure 7. Setup Menu

for User’s Settinaos.

Simulation Engine ll

Location of Cutput Variable Mames:
¥ To The Left [~ Above
Select Qutput Variables for Analysis:

=| Add Output |

The dialog box in Figure 8 for simulating a
stochastic Excel simulation model is accessed by the
B4 icon on the Simetar toolbar. Options specified
in the dialog box are saved by selecting the Save or
SIMULATE buttons.

Random Mumber Seed: 31517

[ Pone
Mumber of Iterations: 100

Mumber of Scenarios: 1

List of Output Variables
[Sirmulation.xls JSheet114B35
[Simulation.<lsJSheet113B.$6
[Simulation. s Jheet 114847

[ Estimate Sensitivity Elasticiies

[ Conduct Sersitivity Analysis

l_ Incorporate Schver

The user must specify one or more Output Variables
(KOVs) for the statistical analysis of simulated
results. The summary statistics and each simulated
value (in iteration order) for each KOV are saved in
the SimData worksheet. An output KOV can be any

Worksheet Samplng Type:
® Stochastic

Save |

Help |

Delete Selected | Clear Al Output Variables  Expected Value

COutput Workshest:

I SimData

Group Output By:

@ Variable
¢ Scenario SIMULATE |

cell in the spreadsheet. KOVs can be cells that
contain random variables, intermediate calculations,
and final answers.

Figure 8. Simulation Dialog Box for Simetar.

Add variables to the List of Output Variables box by clicking in the Select Output Variables for
Analysis window, highlighting the spreadsheet cell or cells to include, and clicking the Add
Output box. Indicate where the variable’s label is located, as in the cell To The Left, in the cell
Above, or None. Several hundred output variables can be handled by Simetar. The sample menu
in Figure 8 shows that the variables in BS, B6, and B7 are the output variables and their labels
are To The Left. To delete an output variable or several variables, highlight the variables in the
dialog box and click the Delete Selected button. Clicking on the Clear All Output Variables
button will delete all of the output variables listed in the dialog box. Clicking on an output
variable in the List of Output Variables box causes Excel to highlight the particular variable in
the workbook. Simetar updates the location of KOVs in the Output Variable table if the
spreadsheet is modified by adding rows or columns. Information in the Simulation Engine must
be re-entered each time the workbook is opened.

After specifying the output variable(s) click the SIMULATE button and Simetar will simulate the
workbook and save the simulated values for the output variables in the SimData worksheet or in
the worksheet specified by the user. The statistics for each output variable are provided in rows
3-7 of SimData and the simulated values for each variable, by iteration, start in row 9 (Figure 9).
After the 100 or more simulated values there are 10 rows of pre-programmed equations to
calculate the probability of the output variable being less than a specified target. Type in a target
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A | B | ¢ | D ]

1
value in a row labeled “x; - value” and the probability of the 2 variable . Sheat1154 Sheet! 156 Sheet 155
. . . ean .
KOV being less than or equal to the value will appear in the next |4 swev  a027181 2002188 551451
13 —v.)” : | & |CV 3025081 1835086 37.21177
row labeled “Prob (X<—?<1). Eor example, there is a 38.0 6 hin > 4343530 100 413 360 1173
percent chance that receipts will be less than $1,300 (see column | 7 Max 189.65196 188.1456 2871.389
. | 8 |lteration |Price PraductionReceipts
D of Figure 9). 9| 1) 10.08475 1887316 2004.159

=

2 B.584123 1811181 1297217
3 10,6525 139.8253 1489495

[}

The simulated variables in the SimData worksheet always S : :
13 99 46835541 19642068 9105577

appear in the order they were added to the List of Output 14| 100 a8s908 1956557 1739.199
Variables (Figures 8 and 9). The rows of simulated values for Figure 9. Example of Stochastic
the output variables correspond to the actual iterations as they Results in the SimData

were simulated, i.e., the iteration order is maintained across

output variables in SimData. The simulated values of each iteration for all output variables are
provided so the user can analyze the results using Simetar functions, (for hypothesis tests, charts
for presenting simulation results, and ranking risky alternatives.

2.3 Specifying Options in the Simulation Engine

Simetar Simulation Results far 100 Iterations ® 2005,

2.3.1 Variable Names. The user must specify the A [ B I c | D
name for a KOV before it is added to the List of 4 Labels KOVs

. . . 5 |Price 8.46 =NORM(10,3)
Output Variables box (Figure 8). The variable name | ¢ 5 qucion 10150 =UNIFORM(100,200)
will appear with the stochastic results in the SimData | 7 |Receipts 858.79 =B5'B6
worksheet (Figure 9). There are three options for Figure 10. Labels for Key Output Variables
specifying the variable names. The first option is to in Cells to the Left.

use the text in the cell to the left of the KOV. The

second option is to use the text in the cell above the KOV and the third option is to not specify a
name for the KOV. The variable name can be a concatenation of the text in the cells to the left
and above the KOV cell (Figure 10). The user must specify the location of the label before
adding the variable to the List of Output Variables table.

2.3.2 Random Number Seed. The user may specify the Random Number Seed, in place of the
default seed, 31517, to insure the same starting point for the pseudo random number generator
from one run to the next (Figure 8). The default seed can be changed permanently in the Default
User Settings menu (Figure 7).

2.3.3 Number of Iterations. The Number of Iterations to simulate the spreadsheet model can be
set by the user (Figure 8). The default number of iterations can be changed in the Default Users
Settings menu (Figure 7).

2.3.4 Output Worksheet. Output results for a simulation are stored in the SimData worksheet
of the current (or a new) workbook using the specified Output Location (Figure 8).

2.3.5 Scenarios. The Number of Scenarios defaults to 1 in the menu box (Figure 8). If your
model uses the =SCENARIO( ) function to simulate multiple scenarios, enter the number of
scenarios. See Section 7.0 to learn more about the Scenario feature.

2.3.6 Conduct Sensitivity Elasticities Analysis. This option causes Simetar to simulate the
spreadsheet model once for the base situation and once for each variable listed in the Sensitivity
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Variable Input window (Figure 11). The elasticity is defined as the percentage change of the
KOV to a one percent change in an exogenous variable. The larger the elasticity, the greater the
sensitivity of the KOV to the exogenous variable. See Section 9.0 to learn more about this
option.

x
Location of Cutput Varizble Names: _ Location of Sensitivity Test Variable Names:
¥ To The Left [~ Above [ None Bemetain (urlbar Seeel 3517 ¥ To The Left [~ Above ™ more
Select OUtpLE Variables for Analysis: Number of [terations: 100 Select Sensitivity Test Variables for Analysis:
W Add OutDutl MNurnber of Scenarios: 1 IW Add OutDLJtl

List of Output Varizbles List of Sensitivity Test Variables

[ Estimate Sensitivity Elasticities

I~ | Comduct Sersitivity Analysis

[ Incorporate Solver

Worksheet Sampling Type: Save |
(® Stochastic

Delete Selected | Clear Al Qutput Varisbles | " Expected Value Cancel I Delete Selected Clear All Test Yariables |
Output Worksheet: Group Qutput By: Percentage Change in Test I 5 g
Variables:
® Varizble
I SimData  Seerario STMULATE | Help |

Figure 11. Simulation Menu Expanded to Estimate Sensitivity
Elasticities for Variables in B6 — B8.

2.3.7 Conduct Sensitivity Analysis. Any Excel spreadsheet model can be simulated using the
sensitivity analysis option. Numerous KOVs can be tested for percentage changes in one
exogenous variable. Three percentage change levels, say, +5%, £10%, and £20%, can be
specified by the user. See Section 5.0 to learn more about this option. Simetar also performs
sensitivities by selecting the Conduct Sensitivity Analysis option. (See Section 8.0 for details on
simulating sensitivity analyses.)

2.3.8 Incorporate Solver. Simetar can stochastically simulate a simultaneous equation or linear
programming model by selecting Incorporate Solver. (See Section 10.0 for details on simulating
with an optimizer.)

2.3.9 Expected Value. Once stochastic variables have been incorporated into an Excel
simulation model, all of the values (cells) update every time the sheet calculates or F9 is pressed.
This feature in Excel is very useful for testing if stochastic variables are working correctly and if
they have been linked to the proper equations in the model. However, it is also very useful to
have the stochastic values fixed at their means for equation verification. Clicking the Expected
Value EF icon sets all random variables to their means and un-clicking the icon causes Excel to
calculate values for the stochastic variables. During simulation Simetar overrides the Expected
Value button’s setting and simulates stochastic values for all of the random variables.

2.4 User Defined Settings

The user may specify his/her preferred settings for the type of random number generator,
sampling method, number of iterations, number of scenarios, random number seed, precision for
MLE parameter estimation, and the maximum number of iterations for MLE and other iterative
solution functions. The user defined settings are specified in the dialog box associated with the
S icon (Figure 7).

3.0 Probability Distributions Simulated in Simetar



Simetar is capable of simulating univariate and multivariate random numbers from more than 50
probability distributions. Each probability distribution is described in detail in this section.
Univariate probability distributions are treated first followed by multivariate probability
distributions. Examples of how to simulate univariate the probability distributions are provided
in Probability Distributions Demo.xls. Section numbers in the text are used to organize and
identify the distributions in the demonstration workbook.

3.1. Uniform Probability Distribution

Uniformly distributed random numbers are the basis for all random numbers and are simulated
by Simetar using the =UNIFORM)() function. The function can be programmed three different
ways:

= UNIFORM (Min, Max, [CUSD or USD])
= UNIFORM (B8, B9)
= UNIFORM ()

where: Min is the minimum value for the distribution or a cell reference,
Max is the maximum value for the distribution or a cell reference, and
CUSD is an optional input value reserved for a correlated USD (or uniform standard
deviate) required for correlating non-normal distributions. See Section 3.9.2 for
simulating CUSDs.

The =UNIFORM( ) function defaults to a uniform standard deviate (USD) distributed between
0 and 1 if it is programmed as =UNIFORM( ). This form of the function is an essential input in
the other Simetar random number generators, particularly for simulating the native Excel
probability distribution functions. Three examples of the UNIFORM function are provided
below and in 3.1.1 of Probability Distribution Demo.xls.

A | B | C [ D | E | F | G |
| 8 |3.1 Generate Random Numbers Using the Uniform Distribution
| 9 |Minimum 10.0
| 10 |Maximum 20.0
| 11 |Unifrom Standard Deviate U(0,1) 0.924 Random No. Formula
| 12 | Specific Formula using actual numbers Uniform (10,20} 14.906 =UNIFORM(10,20)
| 13 |General Formula using cell references Uniform 16.371 =UNIFORM(C9,C10)
| 14 |General Formula using cell references and USD  Uniform w/ USD 19.241 =UNIFORM(C9,C10,C11)

3.2 Normal Related Probability Distributions

3.2.1 Normal. A normally distributed random number is simulated using the =NORM( )
function. The =NORM( ) function defaults to a standard normal deviate (SND) generator when
no parameters are provided, as =NORM( ). A SND is a normally distributed random variable
with a mean of zero and standard deviation of one. The function is programmed using one of the
following forms of the command:

= NORM (Mean, Std Dev, [USD])
= NORM (B35, B36, D13)

= NORM (B35, B36)

= NORM ()



where:

Mean is the mean of the distribution (or a cell reference, as B35),

Std Dev is the standard deviation of the distribution (or a cell reference as B36), and
USD is an optional uniform standard deviate. When a USD is not provided, Simetar
generates its own uniform standard deviate. This optional variable is included so
Simetar can simulate multivariate normal distributions.

3.2.2 Truncated Normal. A truncated normal distribution uses the
function is programmed as follows:

A | B | G | D | E | F G
| 17 |3.2.1 Generate Random Numbers Using the Normal Distribution
| 18 |Mean 10.000
| 19 |Std. Deviation 3.000
| 20 |Uniform Standard Deivate (USD) 0.057 Random No. Formula
| 21 |Specific Formula using actual numbers Normal 10.641 =norm(10,3)
| 22 |General Formula using cell references Normal 12.377 =norm(C18,C19)
23 |General Formula specifying the USD Normal 5271|=norm(C18,C19,C20)

=TNORMY() function. The

where:

= TNORM (Mean, Std Dev, [Min], [Max], [USD])
= TNORM (B47, B48, B49, B50, D13)

Mean is the mean for the distribution entered as a number or stored in a cell as B47,
Std Dev is the standard deviation for the distribution as B48,

Min is the absolute minimum value as B49 and is optional,

Max is the absolute maximum value as B50 and is optional, and

USD is the optional uniform standard deviate generated by =UNIFORM( ).

To simulate a truncated normal with a truncated minimum, use the function as:

= TNORM (Mean, Std Dev, Min, , [USD])

To simulate a truncated normal distribution with a truncated maximum, use the function as:

= TNORM (Mean, Std Dev, , Max, [USD])

A | B | c | D | E_ | F_ | G |

| 37 | Truncated Normal -- Truncate the Minimum only

| 38 |Mean 10.000

| 39 | Std Deviation 3.000

| 40 |Minimum 5.000 Random No.
| 41 |General Formula using cell references Tnorm Min

|42 |

| 43 | Truncated Normal -- Truncate the Maximum only

| 44 |Mean 10.000

| 45 | Std Deviation 3.000

| 46 |Maximum 12.500 Random No.
| 47 |General Formula using cell references Tnorm Max

Formula
8.197 =Tnorm(C38,C39,C40)

Formula
11.615 =Tnorm(C44,C45,,C46)
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3.2.3 Two-Piece Normal. The two-piece normal distribution combines half of the densities for
two normal distributions with the same mean and possibly different standard deviations. The
distribution is simulated as:

=TPNORM(Mean, SD Lower, SD Upper, [USD]

where: Mean is the middle value for the distribution,
SD Lower is the standard deviation for distribution less than the Mean,
SD Upper is the standard deviation for distribution greater than the Mean, and
USD is an optional uniform standard deviate.

3.2.4 Modified Two-Piece Normal. The two piece normal distribution is fully defined by
specifying the minimum, middle point, the maximum and the standard deviations for the two
sides. The =MTPNORM( ) is specified as:

=MTPNORM(Min, Mid, Max, [USD], [Lower SD], [Upper SD])

where: Min is the minimum value for the random variable on the number scale (default -1),
Mid is the middle value for the random variable (default 0),
Max is the maximum value for the random variable on the number scale (default 1),
USD is an optional uniform standard deviate,
Lower SD is the number of standard deviations in the lower tail (default of 2 means the
minimum value is two standard deviations below the middle value), and
Upper SD is the number of standard deviations in the upper tail (default of 2 means the
maximum value is two standard deviations above the middle value).

3.2.5 Student’s-t (Excel’s). The student’s t-distribution is native to Excel but can be simulated
using Simetar by providing a USD generated by =UNIFORM(). The probability distribution is
simulated as:

=TINV (USD, Degrees of Freedom)

where: USD is a uniform standard deviate generated by =UNIFORM( ), and
Degrees of Freedom is self explanatory.

A | B | c | D | E | F |
| B8 |3.2.5 Generate Random Numbers Using the Student's t (Excel) Distribution
| 69 |Uniform Standard Deviate 0.213
| 70 |df Degrees of Freedom 30.000 Random Nos. Formulas
| 71 |Student's t-distribution with cell references Student's t 1.272 =TINV{C89,C70)

3.2.6 F (Excel’s). The F distribution, an Excel function, is simulated as:
=FINV (USD, Degrees of Freedom1, Degrees of Freedom 2)

where: USD is a uniform standard deviate generated by =UNIFORM( ), and
Degrees of Freedom 1 and 2 are self explanatory.
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3.2.7 Chi-Squared (Excel’s). The chi-squared distribution, an Excel function, is simulated as:
=CHIINV (USD, Mean)

where: USD is a uniform standard deviate generated by =UNIFORM (), and
Mean is the average for the distribution.

3.2.8 Log Normal (Excel’s). The log normal distribution, an Excel function, is used to simulate
quantities like a normal distribution. The distribution is simulated as:

=LOGINV (USD, Mean, Std Dev)

where: USD is a uniform standard deviate generated by =UNIFORM (),
Mean is the average, and
Std Dev is the standard deviation for the distribution.

The simulated values from =LOGINV( ) are in “natural log” form so take the anti-log of the
stochastic values using the Excel function =LN().

3.2.9 Power Normal. The power normal distribution is simulated in Simetar using the
=PNORM( ) function as:

=PNORM(Mean, Sigma, Exp P, [USD])

where: Mean is a real number and indicates the central tendency parameter for the distribution,
Sigma is a number greater than zero that represents the variance for the distribution,
Exp P is a value greater than zero, the exponent parameter for the distribution, and
USD is an optional uniform standard deviate.

3.2.10 Inverse Gaussian. The inverse Gaussian distribution is simulated using an iterative
solution procedure. The =INVGAUS( ) function is programmed as:

=INVGAUS (Mu, Sigma, [USD], [Max lIter], [Precision])

where: Mu is a positive real number representing the first parameter of the distribution,
Sigma is a number greater than zero that indicates the shape parameter for the
distribution,
USD is an optional uniform standard deviate,
Max Iter is an optional maximum iterations used to find the stochastic value, and
Precision is an optional term to specify the precision of the answer.



12
3.3 Continuous Probability Distributions

3.3.1 Gamma (Excel’s). The gamma distribution, an Excel function, can be used to simulate the
length of time to complete a task. The distribution is specified as:

=GAMMAINV (USD, Alpha, Beta)

where: USD is a uniform standard deviate generated by =UNIFORM (),
Alpha is the first parameter for the gamma distribution, and
Beta is the second parameter for the gamma distribution.

3.3.2 Truncated Gamma. The gamma distribution can be truncated at the lower or upper end
with the =TGAMMAINV( ) function. The function is used as:

=TGAMMAINV (Alpha, Beta, [Min], [Max], [USD])

where: Alpha is the first parameter for the gamma distribution and must be greater than zero,
Beta is the second parameter for the gamma distribution and must be greater than zero,
Min is the optional value for the absolute minimum (0 < min < max),
Max is the optional value for the absolute maximum (min < max < o), and
USD is an optional uniform standard deviate.

3.3.3 Exponential. The exponential distribution can be used to simulate times between
independent events that occur at a constant rate, such as arrivals at a service center. The
distribution is simulated as:

= EXPONINV (Beta, [USD])

where: Beta is the only parameter for the exponential distribution, and
USD is an optional uniform standard deviate.

3.3.4 Double Exponential. The double exponential distribution can be used to simulate times
between independent events that occur at a constant rate, such as arrivals at a service center. The
distribution is simulated as:

= DEXPONINV (Beta, [USD])

where: Beta is the only parameter for the double exponential distribution, and
USD is an optional uniform standard deviate generated by =UNIFORM( ).

3.3.5 Weibull. The Weibull distribution is often used to simulate reliability or lifetimes for
machinery. The distribution is simulated as:

= WEIBINV (Alpha, Beta, [USD])

where: Alpha is the first parameter for the Weibull distribution and must be greater than zero,
Beta, the second parameter for the Weibull distribution, must be greater than zero, and
USD is an optional uniform standard deviate generated by =UNIFORM( ).
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3.3.6 Truncated Weibull. The Weibull distribution can be simulated with a finite minimum
and/or maximum as:

=TWEIBINV (Alpha, Beta, [Min], [Max], [USD])

where: Alpha is the first parameter of the Weibull distribution and must be greater than zero,
Beta is the second parameter of the Weibull distribution and must be greater than zero,
Min is the absolute minimum (0 < min < max),
Max is the absolute maximum (min < max < o), and
USD is an optional uniform standard deviate.

3.3.7 Cauchy. The Cauchy distribution is a symmetrical distribution about its parameter theta
(@). If median and sigma parameters are not provided the function defaults to a

=CAUCHY(0,1) random variable. The distribution can be simulated in Simetar as:
=CAUCHY ([Median], [Sigma], [USD])

where: Median is an optional value for the mid point of the distribution,
Sigma is an optional term to indicate the shape of the distribution, and
USD is an optional uniform standard deviate.

3.3.8 Logistic. A logistic distribution can be simulated using the =LOGISTICINV() function as:
=LOGISTICINV(Mu, Sigma, [USD])

where: Mu is the first parameter for the logistic distribution and it must be a real value,
Sigma is the second parameter for the distribution and must be greater than zero, and
USD is an optional uniform standard deviate.

3.3.9 Log-Log. The log-log distribution is simulated as:
=LOGLOGINV (Mu, Sigma, [USD])

where: Mu is any real value indicating the position of the distribution on the number scale,
Sigma is a value greater than zero indicating the scale parameter, and
USD is an optional uniform standard deviate.

3.3.10 Log-Logistic. The log-logistic distribution is simulated as:
=LOGLOGISTICINV (Alpha, Beta, [USD])

where: Alpha is a value greater than zero which represents the shape parameter,

Beta is the scale parameter and must be greater than zero, and
USD is an optional uniform standard deviate.
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3.3.11 Extreme Value. An extreme value distribution can be simulated as:

where:

=EXTVALINV (Mu, Sigma, [USD])

Mu is the real value indicating the location parameter for the extreme value distribution.
Sigma any value greater than zero indicating the scale parameter of the distribution, and
USD is an optional uniform standard deviate generated by =UNIFORM( ).

3.3.12 Pareto. A Pareto distribution can be simulated using the =PARETO() function as:

where:

=PARETO(Alpha, Beta, [USD])

Alpha is the first parameter for a Pareto distribution and it must be greater than zero,
Beta is the second parameter for the distribution and it must be greater than zero, and
USD is an optional uniform standard deviate.

3.4 Finite-Range Continuous Probability Distributions

3.4.1 Triangle. The triangle distribution is defined by the minimum, mode, and maximum. The
distribution can be simulated as:

where:

=TRIANGLE (Min, Mode, Max, [USD])
=TRIANGLE (A95, A96, A97)

Min is the minimum for the distribution,
Mode is the mode for the distribution,

Max is the maximum for the distribution, and
USD is an optional uniform standard deviate.

A | B | G | D | E | F | G |
1205|3.4.1 Generate Random Numbers Using the Traingle Distribution
1206 | Minimum 12.000
1207 | Mode 18.000
1208 |Maximum 27.000
1209|Uniform Standard Deviate 0.925 Random Nos. Formulas
1210/ Triangle Distribution Triangle 23.134 =triangle(C206,C207,C208)
1211|Genearalized triangle Triangle 23 823 =triangle(C206,C207,C208,.C208)

3.4.2 Beta (Excel’s). The beta distribution, an Excel function, can be used to simulate the
proportion of defective items in a shipment or time to complete a task. The distribution is
simulated as:

where:

=BETAINV (USD, Alpha, Beta, [Min], [Max])
=BETAINV (UNIFORM (), Alpha, Beta)

USD is a uniform standard deviate generated by =UNIFORM (),

Alpha is the first parameter for the distribution,

Beta is the second parameter for a beta,

Min is an optional value for truncating the minimum of the distribution, and
Max is an optional value for truncating the maximum of the distribution.
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3.4.3 PERT Distribution. A PERT distribution can be simulated by Simetar using the
=PERTINV() function as:

where:

=PERTINV(Min, Middle, Max, [USD])

Min is a lower bound parameter,

Middle is a middle parameter with min < middle < max,
Max is an upper bound parameter, and

USD is an optional uniform standard deviate.

3.4.4 Cosine. The cosine distribution is simulated by Simetar using an iterative solution
procedure. The =COSINV( ) function is programmed as:

where:

=COSINV(Center, Radius, [USD], [Max Iter], [Precision])

Center is a real number that represents the first parameter for a cosine distribution,
Radius is a positive value that represents the second parameter,

USD is an optional uniform standard deviate,

Max Iter is the maximum number of iterations used to find the stochastic value, and
Precision is an optional term to specify the precision of the answer.

3.4.5 Semicircle. The semicircle distribution is simulated as:

where:

=SEMICIRCINV(Center, Radius, [USD], Max Iter, Precision)

Center is a real number that indicates the first parameter of the distribution,

Radius is the second parameter for the distribution and must be greater than zero,

USD is an optional uniform standard deviate,

Max Iter is the maximum number of iterations to find the value (max > 0), and

Precision is a positive value to specify how precise the optimum answer should be. If an
optimum answer is not found within the precision level in the maximum number of
iterations, #VALUEI] error is returned.

3.5 Analogs to Finite Range Probability Distributions

3.5.1 GRK. The GRK distribution is an empirical substitute for the triangle distribution and is
similar to a two piece normal distribution. The GRK distribution simulates values less than the
minimum about two percent of the time. Values greater than the maximum are observed about
two percent of the time. A GRK distribution can be simulated as:

where:

= GRK (Min, Middle, Max, [USD])
= GRK (A95, A96, A97)

Min is the value for the minimum,

Middle is the value for the mid point of the distribution,
Max is the value (or cell) for the maximum, and

USD is an optional uniform standard deviate.
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3.5.2 GRKS. The GRKS distribution is a continuous probability distribution for sampling from
a minimum data population. Given a minimum, middle value and a maximum to describe the
population the =GRKS( ') function is a continuous distribution substitute for the triangle
distribution. The LSD and USD parameters indicate the number of standard deviations below
and above the middle value that the distribution can extend. An LSD of 2 implies the minimum
is at approximately the 2" percentile and a LSD of 3 implies sampling with a minimum at
approximately the 0.5 percentile. Program =GRKS( ) as follows:

=GRKS (Min, Middle, Max, [USD], [LSD], [USD])
=GRKS (C250, C251, C252, C253, C259, C260)

Min is the value for the minimum,

Middle is the value for the mid point of the distribution,

Max is the value (or cell) for the maximum,

USD is an optional uniform standard deviate,

LSD optional number of standard deviations below the middle, as D97, and
USD optional upper number of standard deviations above the maximum, as D98.

where:

A | B | G | D | E | F | G |
1248/3.5.1 Generate Random Numbers Using the GRK Distributions
|248|Parameters for the GRK Distribution
1250| Minimum 3.000
1251 |Mode 5.000
1252 | Maximum 16.000
1253 |Uniform Standard Deviate 0.853 Random Nos. Formulas
1254 | Specific Formula using actual numbers GRK 3.197 =grk(3,5,16,UNIFORM())
1255|General Formula using cell references GRK 8.200 =grk(C250,C251,C252)
256|General Formula with a USD specified GRK 10.857 =grk(C250,C251,C252,C253)

=]
n
=~

3.5.2 Generate Random Mumbers Using the GRKS Distributions
General formula without bounds GRKS
Lower no. of standard deviations 3.000 GRKS Min
Upper no. of standard deviations 4 000 GRKS Max
GRKS Min&Max

4.564 =grks(3,5,16,UNIFORN())
4.748 =grks(3,5,16, UNIFORM(),C 259)

7.889 =grks(C250,C251,C252,C253, ,C260)
7.889 =grks(C250,C251,C252,C253,C259,C260)

=]
n
[ss]

na
o
©

[}
[=7]
=

=]
[s7]

3.6 Discrete Probability Distributions

3.6.1 Bernoulli. A Bernoulli distribution can be used to simulate the occurrence of an event,
such as a machine failure during a given time period. Simulate a Bernoulli distribution as:

= BERNOULLI (P)
= BERNOULLI (A10)

where: P is the probability (0 <P < 1), of the variable or condition being true (or 1).

A | B | c [ b | E_ | F |

265|3.6.1 Generate Random Numbers Using the Bernoulli Distribution

1266| Parameter for the Bernoulli Distribution

267 | Probability of a success or a 1 0.450 Random Nos. Formulas

268| Specific Formula using actual numbers Bernoulli 0.000 =bernoulli(0.45)
1269| General Formula using cell references Bernoulli 1.000 =bernoulli{C267)

3.6.2 Binomial. The binomial distribution is a discrete distribution for simulating the number of
successes in N independent Bernoulli trials each having a probability P of success. Other
applications are to simulate the number of units demanded in a given time period. Simulate the

binomial distribution as:
=BINOMINV (N, P, [USD])
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where: N is the number of trials,
P is the probability of a positive success, and
USD is an optional uniform standard deviate.

3.6.3 Negative Binomial. The negative binomial distribution simulates the number of failures
before the Nth success in a sequence of independent Bernoulli trials each having a probability P
of success. Simulate the negative binomial distribution as:

=NEGBINOMINV (N, P, [USD])

where: N is a positive integer representing the number of failures before the next success,
P is the probability of success, and
USD is an optional uniform standard deviate.

3.6.4 Multinomial. The multinomial probability distribution returns either an array of values or
a scalar, depending upon how it is used. If the probabilities (Probs) are entered as an array the
function returns an array, but if Probs is a scalar it returns a scalar. An example of the
multinomial distribution in Step 3.6.4 of Probability Distributions Demo.xls demonstrates how
the function can be used both ways.

=MULTINOMINV(No. Trials, Probs, [USD])

where: No. Trials is the sample size (integer greater than zero) used in the distribution,
Probs is a vector of cell probabilities associated with each cell’s random variable.
Individual values are between zero and one and must sum to one. If a single value is
entered for Probs the function returns a binomial random variable.
USD is an optional univariate standard deviation.

3.6.5 Poisson. The Poisson distribution simulates the number of events that occur in an interval
of time, such as arrivals at a service point. The distribution can also be used to simulate random
quantities demanded during an interval of time. Simulate the Poisson distribution as:

=POISSONINV (L, [USD])

where: L, the only parameter for a Poisson, must be positive and is generally an integer, and
USD is an optional uniform standard deviate.

3.6.6 Geometric. The geometric distribution simulates the number of failures before the first
success in a sequence of independent Bernoulli trials each with a P probability. Also this
distribution can simulate the number of items demanded in a given period. The geometric
distribution is simulated as:

=GEOMINV (P, [USD])

where: P is the probability of each independent Bernoulli trial, and
USD is an optional uniform standard deviate.
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3.6.7 Hypergeometric. The Hypergeometric distribution is used to simulate the number of units
that are acceptable in a sample of size K taken from a population of size N when it is known that
M of the units in the population are acceptable. This is a sample without replacement problem
made famous by the urn with N balls, m of which are green, (N-M are red), and a sample of K
balls are drawn. The Hypergeometric function returns the number of red balls in the sample of
K. Simulate the Hypergeometric distribution as:

=HYPERGEOMINV (N, M, K, [USD])

where: N is the population size,
M is the number of units in the population with the desired characteristic,
K is the sample size, and
USD is an optional uniform standard deviate

3.7 Sample Based Probability Distributions

3.7.1 Empirical. An empirical distribution can be simulated by Simetar using the
=EMPIRICAL( ) or the =EMP() function. The function assumes a continuous distribution so it
interpolates between the specified points on the distribution (S;) using the cumulative
distribution probabilities (F(S;)). The most direct form of the function is =EMPIRICALC(S;) or
=EMP(S;) which causes Simetar to calculate the F(S;) and USD values for the distribution. The
function is programmed as follows:

= EMPIRICAL(S;, F(Sy), [USD], [Normal Tails])
= EMP(B75:B89, A75:A89, D13)

where: S; represents an array of N sorted random values including the min and max,
F(S;) cumulative probabilities for the S; values, including the end points of zero and one,
USD is an optional uniform standard deviate generated by =UNIFORM(), and
Normal tails is an optional term to extend the tails of the distribution beyond the end of
the data (enter a 1) or to truncate the distribution with the default value of 0.

Note: 1=1 to n for the S; and F(S;) parameters denotes that these are ranges and not individual
values.

A \ B \ c | D | E \ F \ G |
|321]3.7.1 Generate Random Numbers Using the Empirical Distribution
|322| Parameters for an Empirical Distribution
1323
1324|P(x) Price
1325 0 1.5020
1326 0.038462 1.5031
1327 0.115385 1.9440
1328 0.192308 2.0112
1329 0.269231 2.0743
1330 0.346154 2.2647
1331 0.423077 2.2847 Uniform Std Deviate
1332 0.500000 23649 0.834
1333 0.576923 2.3749
1334 0.653846 2.4551 Random Nos. Formulas
1335 0.730769 25052 Four Forms of the Empirical Distribution using a Common USD
1336 0.807692 2 5453 Empirical 1 2 604 =empirical(B325:8339,A325:A339,D332)
1337 | 0.884615 27156 Empirical 2 2.604 =emp(B325:B339,A325:A339,D332)
|338| 0.961538 3.2467 Empirical 3 2.604 =emp(B325:B339,,D332)
339 1 3.2468 EMP Norm Tail 2.604 =emp(B325:B339,A325:A339,D332,1)
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3.7.2 Truncated Empirical. A truncated empirical distribution is the same as an empirical
distribution but with a defined minimum and maximum. The distribution is simulated as:

=TEMPIRICAL((S;, F(S), Min, Max, [USD])

where: S; represents an array of N sorted random values including the min and max,
F(Si) cumulative probabilities for the S; values, including the end points of zero and one,
USD is an optional uniform standard deviate generated by =UNIFORM(),
Min is the minimum for the distribution, and
Max is the maximum for the distribution.

3.7.3 Discrete Empirical. When it is not appropriate to interpolate between the S; points on the
empirical distribution, then the data are said to be distributed discrete empirical. This
distribution is applicable if the data can only take on set values. Each value is assumed to have
an equal chance of being selected. The function is programmed in Simetar as follows:

=DEMPIRICAL (S;, [USD])
=DEMPIRICAL (B75:B89, D13)

where: S; represents an array of n random values; the values do not have to be sorted, and
USD is an optional uniform standard deviate.

A | B | C | D | E | F | G |
347(3.7.3 Generate Random Numbers Using the Discrete Empirical Distribution
38| Sorted Values for a Discrete Random Variable

1348 1

1350 5 s 0.3009

351 a Random Nos. Formulas

1352 g Discrete Emp 9000 =DEMPIRICAL(A349:A353)

353 1 Discrete Emp 5.000 =DEMPIRICAL (A349:A353.C350)

3.7.4 Kernel Density Estimated Random Variable. The =KDEINV( ) function uses Parzen
type kernel density estimators to evaluate a smoothed value that represents a point on a
cumulative distribution function (CDF). Eleven alternative kernel density estimators can be used
to smooth an empirical distribution and simulate random values in Simetar. A graphical
representation of the kernel density smoothed function can be developed using the smoothing
option in the CDF chart tool (see Section 6.2 for the CDF chart function). The kernel density
estimated random variable function is simulated as:

=KDEINV(Data Range,[BW], [KE], [USD], [Max Iter], [Precision])

where: Data range is the location for data series for the empirical distribution to simulate,
BW is an optional bandwidth to use in estimating the influence of each data point on the
CDF estimation,
KE is an optional term to specify the kernel estimation type used to estimate the CDF.
The KE types are: Gaussian (0 or 1), Uniform (2), Casinus (3), Triangle (4), Triweight
(5), Epanechnikow (6), Quartic (7), Cauchy (8), Double Exponential (9), Histogram
(10), and Parzen (11),
USD is an optional uniform standard deviate,
Max Iter is the maximum number of iterations to use to find the result, and
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Precision is an optional term to specify how precise the final solution should be. If an
optimal answer is not found #VALUE! will appear in the cell.

A [ B [ ¢ [ D | E [ F ] E |
1353 3.7.4 Generate Random Numbers Using the Kernel Density Estimator Distribution

354|Unsorted Data Range

1365 1.500|Bandwidth 0.1163 =BANDWIDTH(A355:A367)
1356 1.940(Kemel Estimator 0/"0" indicated Gaussian
1367 2.540(UsSD 0.0148

1358 2.360|Max Iterations 1000

1368 2.280|Precision 0.00001

1360 2.370

1361 2.070 Random Nes. Formulas
1362 2.500 Kernel Density E 1.398670281 =KDEINV(A355:A367,C355,C356,C357,C358,C359)
1363 2.260

1364 3.240

1365 2.710

1366 2.450

367 2.507

3.7.5 Discrete Uniform. A discrete uniform random variable can take on only certain values,
each with an equal probability. For example, a fair die can take on one of six values (1, 2, 3, 4,
5, 6) with an equal probability. To simulate a discrete uniform random variable use the
=RANDSORT( ) function. For example, if the random values to define a distribution are 1, 2, 3,
4,5, 6, and are stored in cells A1:A6, simulate a random value, by typing the following
command in a cell:

=RANDSORT(A1:A6)

3.7.6 Random Sorting. The array form of the =RANDSORT( ) function can be used to simulate
(sample) random draws of a list of names or objects or numbers without replacement. For
example, if five names Jim, Joe, Sam, John, and Bill are to be randomly sorted (shuffled), enter
the names in an array and use =RANDSORT( ) as an array function. Assume the five names are
in A1:AS and the random sample is to appear in B1:B5; type the following command in B1 after
highlighting array B1:B5:

=RANDSORT(A1:A5)

Press Control Shift Enter, rather than Enter after typing the function, because this is the array
form of the function. Press F9 to “resort” the data for a second iteration or sample.

A | B | C | D | E | F |
1382|3.7.6 Random Sorting a List of Names Using the Array Function form of RANDSORT
383|List of Names to be Sampled Random Nos. |Formula
1384 Ace Random Shuffle of Objects Jack =randsort(A384:A387)
1385 King Using the Array Function form:  |Ace
1386 Queen King
387 Jack Queen
1388 Draw a single name at random  Jack =randsort(A384:A387)

3.7.7 Bootstrapping (Random Sampling with Replacement). Bootstrap sampling techniques
are used for advanced simulation problems and assume that past deviates or errors can be re-
sampled an infinite number of times. This method of sampling can be accomplished using the
=BOOTSTRAPPER( ) function which samples from a known distribution with replacement. An
example of the function is provided below and in Step 3.7.7 in Probability Distributions

Demo.xls.
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=BOOTSTRAPPER (Array of Random Values, [Preserve Rows])
=BOOTSTRAPPER (A27:A31, 1)

where: Array of random values is the location for the array of random values to be sampled

during simulation, and
Preserve Rows the optional term to retain the order of the values in rows, if the array of

random variables is a matrix.

A

B

©

D

E

F

393|Random Values for X

394 1

[5]
@
=

[ NN

Bootstrap
Booatstrap
Booatstrap
Bootstrap
Bootstrap
Bootstrap

392|3.7.7 Generate Random Numbers Using the Bootstrap Simulation

Random Nos.

1
5]
5]
B
B
4

Formulas

=BOOTSTRAPPER($A$394:5A$399
=BOOTSTRAPPER($A$394:5A5399

=BOOTSTRAPPER($A$394:5A$399
=BOOTSTRAPPER($A$394:$A$399

)
)
=BOOTSTRAPPER ($A§394:5A$399)
)
)
)

=BOOTSTRAPPER($A$394:$A$399

401|Bootstrap Simulation with a Matrix of Observations: Preserve the values across the row.

Random Bootstrap Nos. Maintaining the Rows

403 1 X2 X3 K1 K2 %3 Farmula

|404| 1.0 234 4.5 a0 554 1.5 =BOOTSTRAPPER($A$404:$C$408.1)
|405| 4.0 56.7 33 4.0 56.7 3.3=BOOTSTRAPPER($A$404:$C$408.1)
| 40| .0 128 6.9 1.0 234 4.5 =BOOTSTRAPPER($A$404:$C$408.1)
407 | 5.0 G4 2.3 50 555 1.5 =BOOTSTRAPPER($A$404:$C$408.1)
408 4.0 558 1.5] 4.0 56.7 3.3 =BOOTSTRAPPER($A$404:5C$408,1)

3.8 Time Series Probability Distributions

3.8.1 Random Walk. The =RANDWALK( ) function generates a random variable that is
characteristic of a random walk. A random walk distribution for Xx; is characterized as
X, =X, +¢&, where €, is normally distributed. Simulating a variable for N iterations will result

in a sample of length N. The function is used as:

=RANDWALK (Mean, Std Dev, [USD], [Distribution], [Initial Value], [Coefficient])

Mean is the expected value for the random variable,

Std Dev is the standard deviation for the variable and is greater than zero,

USD is an optional uniform standard deviate,

Distribution is an optional code for the distribution for generating random changes as:
normal (0 or 1), uniform (2), cosine (3), Cauchy (8), double exponential (9), logistic
(12), extreme value (13), exponential (14), and log normal (15),

Initial Value is an optional initial value to start the random sequence; the default is zero,
Coefficient is an optional value on the lag variableas a in X, = a X, +¢€,.

where:

A | B | T | D | E \ F | G | H
1412|3.8 Generate Random Numbers Using the Random Walk
1413/ Mean 10
1414|Standard Deviation 3
1415|USD 0.099617958
1416 Distribution Gaussian 0
1417 Initial Value 45
1418| Coefficient 0 Random Nos. Formulas
|419|Random Walk sequence RandomWWalk 6.148805478 =randwalk(C413,C414,C415,C416,C417,C418)

3.9 Multivariate Distributions

3.9.1 Correlated Standard Normal Deviates. Correlated standard normal deviates (CSND’s)
are generated in Simetar using the =CSND( ) function. An array of correlated standard normal
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deviates can be used to simulate multivariate normal (MVN) probability distributions in a two
step procedure. An array of CSNDs is simulated as:

= CSND (Correlation Matrix Range, [Optional Range of Independent SNDs])
= CSND (B152:G157)
= CSND (B152:G157, B161:B166)

where: Correlation Matrix Range specifies the location of a non-singular NxN correlation
matrix. Calculate the correlation matrix using the function described in Section 12.3.
Optional Range of Independent SND’s (ISND’s) is an Nx1 array of SND’s generated
using =NORM( ) in N cells.

As an array function =CSND( ) must be used as follows: highlight the output location for N
cells and type the command =CSND (correlation matrix location, optional range of ISNDs) and
press the Control Shift Enter keys.

A | B |

c | D |

1422/3.9.1 Generate Correlated Standard Normal Deviates

1423|Correlation Matrix for 3 Random Variables

1424 Price 1 Price 2 Price 3

1425|Price 1 1 0.868849998 0.980957963

1426 | Price 2 0 1 0.815781325

1427 |Price 3 0 0 1

1428|CSND is an array function so highlight a 3x1 array for the three variables

1429 | Random Nos. Formulas
1430 Price 1 1.37071|=csnd(B425:D427)
1431| Price 2 1.05759

1432 | Price 3 1.22886

3.9.2 Correlated Uniform Standard Deviates. Correlated uniform standard deviates (CUSDs)
are used to simulate multivariate non-normal (e.g., empirical) probability distributions in a two
step process. An array of CUSDs is simulated as:

=CUSD (Correlation Matrix Range, [Optional Range of Independent SNDs])
=CUSD (B152:G157)
=CUSD (B152:G157, B161:B166)

where: Correlation Matrix Range specifies location of a non-singular NxN correlation matrix.
Calculate the correlation matrix using the function described in Section 12.3.
Optional Range of Independent SNDs is an Nx1 array of SNDs generated using
=NORM( ) in N cells.

As an array function =CUSD( ) must be used as follows: highlight the output location for N
cells and type the command =CSND (correlation matrix location, optional range of ISNDs), and
press the Control Shift Enter keys.

A

B [ ¢ | D |

1435(3.9.2 Generate Correlated Uniform Standard Deviates

1436| Correlation Matrix for 3 Random Variables

1437 | Price 1 Price 2 Price 3

1438 |Price 1 1 0.868849998  (0.980957963
1439 Price 2 0 1 0.815781325
1440|Price 3 ] 0 1

441/ CUSD is an array function so highlight a 3x1 array for the three variables

1442 Random MNos. Formulas

1443 Price 1 0.53728|=cusd(B438:D440)
444 Price 2 0.79301

1445 Price 3 0.46306
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3.9.3 Multivariate Normal (MVN) Distribution in One Step

Simetar provides a one step function for simulating a MVN distribution. The =MVNORM( )
function uses an Nx1 array of means and an NxN covariance matrix to generate correlated
random values that are distributed multivariate normal. The array function is entered as follows:

=MVNORM (Means Vector, Covariance Matrix, [Array of ISNDs])

where: Means Vector is an Nx1 array of the averages to use for simulating MVN values, and
Covariance Matrix is an NxN covariance matrix for the N random variables.
Array of ISNDs is an optional Nx1 array of independent standard normal deviates
generated with n cells of =NORM( ).

To use the array function, first highlight the number of cells equal to the number of means at the
output location, second type =MVNORM (location for the array of means, location of
covariance matrix), and press the Control Shift Enter keys.

A | B | G | D | E | F | G |
1448|3.9.3 Multivariate Normal Distribution in One Step
1449|Covariance Matrix
1450 Price 1 Price 2 Price 3 Prod 1 Prod 2 Prod 3
1451 Price 1 100.000 173.770 147.144 -8.980 -43.833 -190.314
1452 | Price 2 400.000 244734 -9.523 -183.525 -246.381
1453 | Price 3 225.000 -12.938 -63.369 -304.910
1454 Prod 1 9.000 39.829 63.377
1455|Prod 2 625.000 425693
1456 | Prod 3 1296.000
1457 | Array Function for
1458 Assumed Means Correlated MVN Values Formulas for randem numbers
1459 Price 1 100.0 98.333 =mvnorm(B459:B464 B451:G456)
1460/ Price 2 200.0 185.444 =mvnorm(B459:8464,B451.G456)
1461 Price 3 250.0 246.706 =mvnorm(B459:B464 B451:G456)
1462 Prod 1 250 22737 =mvnorm(B459:B464,B451:G456)
1463 Prod 2 190.0 211.980 =mvnorm(B459:B464 B451:G456)
1464 |Prod 3 260.0 252160 =mvnorm(B459:B464 B451:G456)

3.9.4 Multivariate Normal Distribution in Two Steps. A general formula for simulating a
multivariate normal distribution is accomplished by first generating a vector of CSNDs and then
using the CSNDs in the formula for a normal distribution. In step 1 an Nx1 array of CSNDs is
generated using =CSND( ), see Section 3.9.1. The example provided here is for a three variable
model so N equals 3. Assume the non-singular covariance matrix is in A1:C3, the three means
are in cells B7:B9, and the three standard deviations are in cells C7:C9.

Step 1: In A4:A6 = CSND (A1:C3)

Step 2: In A7 =B7+C7*A4
In A8 =B8+ C8*A5
In A9 =B9+ C9*A6

These three Excel statements can be repeated for N variables. The three random variables will
be appropriately correlated within each period but will be independent across periods.

An alternative two step procedure for simulating a multivariate normal distribution uses a vector
of CUSDs. Instep 1 an Nx1 array of CUSDs is generated using =CUSD( ), see Section 3.9.2. In
step 2 use the =NORM( ) function to simulate the random values. The example provided here is
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for a three variable model so N equals 3. Assume the non-singular correlation matrix is in
A1:C3, the three means are in cells B7:B9, and the three standard deviations are in cells C7:C9.

Step 1: In A4:A6 = CUSD (A1:C3)

Step 2: In A7 = NORM(B7, C7, A4)
In A8 = NORM(B8, C8, A5)
In A9 = NORM(B9, C9, A6)

These three Simetar statements can be repeated for N variables. The three random variables will
be appropriately correlated within each period but will be independent across periods.

3.9.5 Multivariate Empirical (MVE) in One Step

Simetar provides a one step function for simulating a MVE distribution. The
=MVEMPIRICAL( ) function uses as input the MxN matrix of the M observations for the N
random variables. The result is an Nx1 array of MVE correlated random values for the N
variables. Program the function as:

=MVEMPIRICAL (Range for Random Variables ,,,, [Vector of Means], [Type])

where: Range for Random Variables is an MxN matrix of the M observed values for the N
random variables,
Vector of Means is an array of forecasted means for the N random variables, and
Type is a option code for the type data transformation used to generate the forecasted
means for the MVE: (0) for actual data, (1) for percent deviations from mean, (2) for
percent deviations from trend, and (3) is for differences from the mean.

The =MVEMPIRICAL( ) function is an array function so highlight an Nx1 array at the output

location and type the function, followed by pressing the Control Shift Enter keys. An example
of using the one step =M VEMPIRICAL( ) function is provided below for a MVE distribution

with 6 (N) variables and 13 (M) observations.

A | B | C | D | E | F | G
1496(3.9.5 Multivariate Empirical Distribution in One Step
1497 | Historical Data for the Random Variables
14493 var 1 var 2 War 3 var 4 var 5 War B
GEE] 1 1.500 2420 1.370 119.375 34.428 67.744
1500 2 1.840 24870 1.700 119.644 37.674 £9.396
1501 3 2.540 3.720 2270 84613 34.070 63.779
1502| 4 2.360 3.720 2.100 116.165 32.748 55428
1503| ] 2.280 2610 2120 118.503 39.498 §3.077
1504| A 2370 3.000 2.251 108.581 34.333 59.286
1505| 7 2.070 3.240 1.873 131480 39.308 72616
|506| 8 2.800 3.260 2310 100.705 38.213 59912
1507 | g 2.260 3450 2128 138.608 37.875 72.805
1508| 10 3.240 4.550 3.180 113453 35.812 55614
1504 11 2710 4.300 2.340 127.051 36.314 67.471
1510 12 2450 3.380 2.200 127.043 39.740 69.546
1511 13 2.007 2605 1815 133.300 43.265 66 469
512
513|Variables One Step MVE Formulas used for the random numbers Vector of Means
1514]  0.115384616 89.186]=MVEMP (B499:G511,,,.F514:F519.1) 100.000
1515| 0.1923076596 154 426 200.000
1516| 0.269230783 246.785 250.000
1517| 0.346153885 27924 25.000
1518| 0423076828 218.821 180.000
15189] 0.5 285.841 260.000
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3.9.6 Multivariate Empirical (MVE) Distribution in Two Steps

Multivariate empirical distributions can be simulated in two steps using the =EMP( ) function
and an array of correlated uniform standard deviates or CUSDs generated using the =CUSD( )
function described in Section 3.9.2. An example of the two step MVE is provided for a three
variable model, assuming the correlation matrix is in H1:J3, the forecasted means are in cells
A1:A3, the fractional deviations (S;) from the mean are in cells C1:E12, and the three variables

the probabilities for the deviates (F(S,)) are in B1:B12.

Step 1: In A14:A16 = CUSD (H1:J3)

Step 2: In C14 = Al + Al * EMP(C1:C12, B1:B12, A14))
In C15 = A2 + A2 * EMP (D1:D12, B1:B12, A15))
In C16 = A3 + A3 * EMP (EL:E12, B1:B12, A16))

The values in cells C14:C16 are appropriately correlated based on the correlation matrix in cells
H1:J3 and are distributed empirical about the respective forecasted means in cells A1:A3. The
formulas in cells A14:A16 and C14:C16 can be repeated for as many periods (years) as the
model simulates. Simulated MVE values will be correlated within each period but will be
independent across periods.

3.9.7 Multivariate Mixed Distribution

Simetar can simulate a multivariate mixed distribution (MVM) which has correlated variables
that are distributed differently. For example a MVM could include variables that are distributed
uniform, empirical, normal, and beta. To simulate a MVM, use the =CUSD( ) function to
simulate an Nx1 vector of correlated uniform standard deviates, one CUSD for each variable.
Use each of the CUSDs in the appropriate Simetar function to simulate the random variables.
Using an example of a four variable MVM with the variables distributed uniform, empirical,
normal and beta, respectively, use the following functions:

Step 1: =CUSD(Correlation Matrix Range)

Step 2: =UNIFORM(Min, Max, CUSD,)
=EMP(S;, F(S)), CUSD,)
=NORM(Mean, Std, Dev, CUSDs)
=BETAINV(CUSD,, Alpha, Beta, [Min], [Max])

where: CUSD; values refer to the i correlated uniform standard deviate simulated in the Nx1
CUSD array.

The simulated random variables will be appropriately correlated based on the correlation matrix.

3.9.8 Multivariate Log Normal. A log normally distributed series of random variables can be
simulated multivariate using the =M VLOGNORM( ) array function. The function is used as:

=MVLOGNORM (Mean Vector, Covariance, [Array of ISNDs], [Matrix Row], [Moments])
=MVLOGNORM (A1:A4, B1:E4, F1:F4, 1, TRUE)
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where: Means Vector is the location of the Nx1 vector of means. If the Moments switch is true,
each mean must be greater than zero. If the Moments is false, mean are reals.
Covariance is an NxN covariance matrix for the series,
Array of ISND is an optional nx1 array of independent standard normal deviates
generated with N cells of =NORM( ).
Matrix Row is an optional term for the ith variable if the function is to return only the
random value for the ith variable (Leaving this value blank makes the function return n
values so treat it as an array function with Control Shift Enter.), and
Moments is an optional switch to use the function two ways: if the term is TRUE (‘1’)
the function is for the moments of a log normal vector, and FALSE (‘0’) indicates the
moments are for a transformed normal distribution.

3.9.9 Multivariate Student’s t. A distribution of N variables can be simulated multivariate
Student’s t using the =MVTINV( ) array function as:

=MVTINV (Means Vector, Covariance Matrix, [Array of ISND], [Matrix Row])
=MVTINV (A1:A4, B1:E4, F1:F4, 1)
=MVTINV (Al1:A4, B1:E4, F1:F4)

where: Means Vector is the location of the Nx1 vector of means,
Covariance Matrix is the location of the NxN covariance matrix for the series,
Array of ISND is an optional Nx1 array of N cells with =NORM( ) SNDs, and
Matrix Row is the optional ith variable if only the random number for the ith series is to
be simulated. Leaving this value blank makes the function return N values so treat it as
an array function with Control Shift Enter.

3.9.10 Hotelling T-Squared. The Hotelling T* distribution is a multivariate analog to the
univariate Student’s t distribution. If x is a Px1 random vector distributed as multivariate normal
with a zero mean vector and an identity covariance matrix and W is a PxP random matrix
distributed as Wishart with an identity covariance matrix and m degrees of freedom. And x and
W are independent, then the variable T?=m x' W' x is distributed as a Hotelling T? random
variable. A special case is the Hotelling T random variable with 1 and M degrees of freedom
which is an F distribution with 1 and M degrees of freedom. The parameters for the Hotelling T
function, which produces a Hotelling T random variable, are p and df = M. Simulate Hotelling
T-Squared distribution as:

=HOTELLTINV(P, DF, [USD])

where: P is an integer indicating the dimension of the PxP covariance or identity matrix for a
Wishart distribution,
DF is the degrees of freedom or the number of observations in the MxP data matrix for a
Wishart distribution, and
USD is an optional uniform standard deviate.

3.9.11 Wishart. The Wishart distribution is a matrix generalization of the univariate chi square
distribution. The Wishart array function produces a matrix of random values that are distributed
Wishart. The distribution is derived from an MxP matrix X of normally distributed independent
vectors with mean zero and covariance matrix C. The PxP matrix of X’X has a Wishart
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distribution and is simulated as:
=WISHINV(C, DF)

where: C is a PxP covariance matrix that is positive definite, and
DF is the degrees of freedom or the number of rows in an MxP data matrix of values
used to calculate C.

The Wishart function is an array function so highlight a PxP block of cells, type the function,
and end by pressing the Control Shift Enter keys.

3.9.12 Wilks’ Lambda. If two independent random matrices, X and Y, are distributed as
Wishart, both with a PxP identity covariance matrix and N1 and N2 degrees of freedom,
respectively, then the scalar [X|/|X+Y]| has the Wilks’ lambda distribution with P, N1, and N2
degrees of freedom. This distribution is found in several likelihood ratio tests in multivariate
testing settings. Simulate Wilks’ lambda distribution as:

=WILKSLINV(P, N1, N2)

where: P is an integer representing the dimension of the Wishart random matrix PxP
N1 is the integer value for the degrees of freedom in the random Wishart matrix X, and
N2 is the integer value for the degrees of freedom in the random Wishart matrix Y.

3.9.13 Dirichlet. A Dirichlet series of correlated random variables can be simulated using the
Dirichlet array function as:

=DIRICHINV(Alpha Array, [Array of [IUSD], [Matrix Row])

where: Alpha Array is the location of an Nx1 array of parameter values for the Dirichlet
distribution; each value is greater than zero,
Array of IUSD is the location of an optional nx1 array of independent uniform standard
deviates simulated =UNIFORM( ), and
Matrix Row is the ith variable of the random series if the function is to return only the
ith series. Leaving this value blank makes the function return n values so treat it as an
array function with Control Shift Enter.

3.9.14 Uncorrelating Random Deviates (USD and SND). In advanced simulation applications
it is useful to uncorrelate random values. Simetar provides a function to calculate the implicit
independent deviates from a vector of CUSDs. The uncorrelated standard normal deviates
function, =USND( ), converts a vector of CSNDs to a vector of independent SNDs. The function
is programmed as:

=USND (Correlation Matrix, CSND Array)

where: Correlation Matrix is the cell reference location for the correlation matrix used to
generate the CSNDs, and
CSND Array is the cell reference location for the array of CSNDs to be converted to
independent SNDs.
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The uncorrelated uniform standard deviates function, =UUSD( ), converts correlated uniform
standard deviates (CUSDs) to uncorrelated USDs. The function is programmed as follows:

=UUSD (Correlation Matrix, CUSD Array)

3.10 Iteration Counter

For advanced simulation applications it is useful to use the iteration number to key a simulation
model to perform certain calculations. For example a table lookup function can be used to draw
values from a table where the rows correspond to the iterations for previously generated and
tested random values. The iteration number function in Simetar is =ITERATION() and returns
the iteration number from 1 to N, where N represents the number of iterations. As indicated in
the example below, the function returns “1” until the workbook is simulated. Selecting the cell
with =ITERATION( ) as a KOV for simulation will produce a series of values: 1, 2, 3, ..., 500
for a stochastic simulation with 500 iterations.

=ITERATION ()
A | B | C | D | E !
721/3.10 Iteration Counter in Simetar shows the iteration during simulation
722|Count of present iteration 1 =ITERATION()

4.0 Parameter Estimation for Probability Distributions

4.1 Parametric Probability Distributions

A univariate parameter estimator in Simetar estimates the
parameters for simulating a random variable for 16 parametric — EEEEEERCIEIIEEASINIEN

probability distributions. The univariate parameter estimator Select Range | Shestl3A45:4A415

is activated by using the & icon. The Simetar menu for the [ Labels in First Cel
univariate parameter estimator requires the user to specify the
historical data series for the random variable and the method Output Range | 9C35 =]

for estimating the parameters: method of moments or
maximum likelihood estimator (Figure 12). If a variable is not
consistent with a distribution, its parameter cells will be blank
rather than contain a value.

Include:
[V MLEs - Maximum Likelinood Estimatates

[T MOMs - Method of Morment Estirnates

Simetar also prepares the equations for simulating the random [ Cormon Randorm Gererator for EStrmates,

variable using the calculated distribution parameters in the

Formulas column of the example above. The formulas in the o % Carcel Help
Formulas column can be simulated to test how well the

different assumed distributions simulate the random variable. Figure 12. Univariate Parameter
The =CDFDEV( ) function can be used to calculate a test Estimator

scalar to determine which distribution is best for simulating

the random variable. See Section 5.7 for an explanation of =CDFDEV( ). An example of the
parameter estimation is provided in Parameter Estimation Demo.xls. The =CDFDEV( ) scalar in
the example above indicates that the Beta distribution fits the data better than the other
distributions tested.
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C | D | E | F | & | H | 1 | a ]
5 |Univariate Parameter Estimation for Wheat P at 12/18/2005 1:06:30 PM Compare Simulated
B MLEs Formulas  Results to History
¥ |Distribution Farameters Parrm. 1 | Parm. 2 Distribution MLE (COFDEY  SCALER
| 8 |Beta a, B, A==, o B0 0.738 1.004 Eeta 3.2068 1562765
| 4 |Double Exponential | a, 8, aSx<e, -m=g<eo, F=0 3.260 0.513|Double Exm 3.238 7 2RV7V8
| 10 |[Exponential H, O, -==x<m —w<=e g=[ 2420 0.874|Exponential 2991 1555898
| 11 |Gamma a, B, 0=x<=e=, q =0 27204 0.121|Gamma 3222 5.5335558
| 12 |Logistic H, @; 0=x<em —o<=o g=[ 3.278 0.371|Logistic 3.248 538848
| 13 |Log-Log H, @, -=<x<m —wm<<o g=( 2.980 0.530|Log-Log 3154 2718552
| 14 |Log-Logistic H, @; 0=x<e —o<=o g=[ 8483 3.226|Log-Logistic 3.196  5.563648
| 15 |Lognormal H, @; 0=x<e —o<=o g=[ 1.174 0.192|Lognormal 3.203 3.096948
| 16 [Mormal H, @, -==xsm —wsyse g 3.204 0.638 Marmal 3.262 4147785
| 17 |Pareto a, B azx=e= g =0 2420 34489 Pareto 2025 1858128
| 18 |Uniform a, b; asx=h 2420 4550 Unifarm 3442 1539766
|18 [Weibull a, fB; D=x=eo o B=0 5.480| 10585587 Weibull 3.286 5300051
| 20 |[Einomial n, p: x=01.2,....n; 0=p=1 4000 0.712 Binomial 3.000 13.20388
| 21 |Geometric p 1 x=12.. 0sp=1 0.260 Geometric 3.000 7.140645
| 22 |Poisson A x=01...; 05 <= 2 846 Fois=on 3.000 13.20388
| 23 |Megative Binomial s, pr x=1.2....; 0sp=1 Negative Bir
| 24 | Camrman UsD
| 25 | 0.48

4.2 Empirical Probability Distributions

The parameters for an empirical probability distribution are

estimated using a Simetar function activated by the I jcon, The RS -
Select Input Ranges window indicates the data to be used for OuputRange | 9419 =l
defining the probability distribution (Figure 13). Be sure to Seles T AT g

select the Labels in First Cell box when there is a name in the | [~
first cell (row or column) of the Selected Input Ranges. Four I € Data i Rows
examples of using the Empirical Parameter estimation dialog ,

box are provided in the Empirical Demo.xls workbook program. 7 Labelin et cel fdd | _ Dokt |

[Ermpirical xls]Sheet113B34: 98317

. . . [Ermpirical xls]Sheet11$CH4: $CH17

The dialog box (Figure 13) allows the user to estimate the [Ernprical s JSheer 11044150517
parameters for one empirical distribution or for numerous

distributions at once. The only restriction for using this function  rormat for the cumue:

is that all of the data series must have the same number of ® Actzl Data Gx |
observations. The dialog box allows estimation of the € Differences from Mean Cancel |
parameters four different ways: € Percentage Deviations from Mean

" Percentage Deviations from Trend Help |

— Use actual data (no transformations) for the distribution,
— Convert the actual data to differences (residuals) from
the mean prior to estimating the parameters,

Figure 13. Parameter
Estimation for the
Empirical Distribution

— Convert the actual data to deviations (residuals divided Dialog Box.

by the mean) from the mean prior to estimating the n B % 5 5 5

56 Results for calculatlng the paramehers for 3 Emplncal distributions
parameters, and 57 | Sorted Deviations from Mean as a Percent of Mean
. . . 58 |Fix) ComP WheatP SorgP
— Convert the actual data to deviations (residuals 59 0 035438 026548 0453
. . . . 60 | 00384615 -0.35495 -0.26547 -0.45386
divided by the trend values) from a linear trend line 61/ 0.1153845 0.16573 021984 -0.331%

. . . 62 | 01923077 -0.13563 -0.2078 -0.17104
prior to estimating the parameters. Ell 0.2652308| -0.10982 -0.2078] -0.11253

64 | 0.3451539 -0.02B12 -0.08242 -0.08815
E 0.4230769 -0.01952 -0.01658 0.024006
66
5’

0.5 0.014888 -0.01051 0.033758

The empirical distribution parameter estimation output o e oo o oaares
includes the random data (residuals from trend or mean), S 07307652 0075091 0125115 0108802

71| 0.BB45154 0.165399 0.30516 0.141035

72| 09515384 0.393318 0.331041 0.555514

73 1 0.393357 0.381079 0.555569

T4

75 | Simulate Random Values for 3 Empirical Distributions

76 |Stoch Dev  0.0182%8 -0.01615 -0.35955 =emp(D59:D73 AS9ATI)
77 Means 2.33 329 2.05 =D35

78 |Stoch Value 2.367935 3.241399 1.313415 =D77+077°0D76
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summary statistics, correlation matrix if more than one variable is specified, and the sorted
random values with cumulative distribution probabilities. The sorted deviations required by
=EMP( ) to simulate an empirical distribution are demonstrated in the example output to the
right. Once the Empirical distribution parameters are estimated, they can be simulated using the

=EMP (S;, F(Si)) function (see Section 3.7.1).

4.3 Multivariate Probability Distributions

Correlation and covariance matrices are both parameters for multivariate probability
distributions. Correlation and covariance matrices can be calculated using the Correlation

Matrix dialog box activated by the Bl icon. This Simetar dialog box calculates the upper right
triangle correlation matrix of size NxN when the user specifies N variables. The first step to
using the dialog box is to specify the location for placing the upper left hand corner of the
generated correlation matrix by indicating the Output Range in the menu (Figure 14). Next,
specify whether the data to correlate are in columns or rows. The first cell of each column (or
row) indicated in the Selected Arrays box should have a label so the output matrix is easier to

read.

The Correlation Matrix dialog box calculates either the
Pearson’s (standard) correlation coefficient matrix or the rank
correlation matrix. The default is the Pearson’s correlation
coefficient matrix. The rank correlation coefficient matrix is
calculated when the Rank Correlation radio button is selected.

The statistical significance of each correlation coefficient can be
tested by Simetar. Student’s-t values for the correlation
coefficients greater than the t-critical value indicate whether the
correlation coefficient is statistically different from zero and are
displayed in bold. See Complete Correlation Demo.xls for
examples of using the correlation matrix dialog box.

A covariance matrix can be calculated using the Correlation
Matrix dialog box (Figure 14). The upper triangle covariance
matrix is calculated by selecting the Covariance Matrix radio
button after specifying the arrays to include in the matrix. The
Full Symmetric covariance matrix is calculated by selecting this
option in the dialog box and the Covariance Matrix. See the

x
Output Rangs I $A320 J
Select Arrays

@ Data in Columns € Data in Rows

|7\=abe\s i Add | Delete |

Firat Cel
[Correlation xls]Shest114B36: B3 12
[Correlation xls]Sheet 11$C36:9C3 18
[Correlation xs]Sheat 11304640418
[Correlation . xls]Shest 11$E36:3E$ 18
[Correlation xls]Shest11$F36:3F$ 18
[Correlation xls Sheet 119536 45318

@ Standard Correlation [¥ Test Significarce.

" Covarlance Matrlx

Full S i
" Rank Correlation [ Pl Symmetric

Help

Ok | Cancel

Figure 14. Correlation Matrix
Dialog Box.

demonstration program Complete Correlation Demo.xls for examples of estimating covariance

matrices.
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A | B | ¢ | D | E F | G
20 |Correlation Matrix
21 ComP o WheatP SorgP ComY  Wheaty Sorg
22 |Com P 1 0.87 0.98 -0.30 -0.18 -0.53
23 [Wheat P 1 0.82 -0.16 -0.37 -0.34
24 |Saorg P 1 -0.29 -0.17 -0.56
25 |Comn Y 1 0.53 0.589
26 Wheat Y 1 047
27 |Sorg Y 1
28
29 |Correlation Coefficient t-values.
a0 | Significanc H5% t-critical 220
a1 Caomn P WheatP Sorg P CamnY  Wheaty Sorg¥
32 |Com P 583 16.79 1.04 0.BD 2.08
33 Wheat P 468 0.54 1.31 1.21
34 |Saorg P 1.00 0.58 2.27
358 |Comn Y 2.08 240
36 WWheat Y 178
a7 |Sorg Y
d8 |Bold values indicate statistical significance at the specified level,
34
40 |Covariance Matrix
41 ConP  WheatP [SorgP ComnY  Wheaty |[Sorg
42 |Corm P 0160533 0222644 0.160682 -1.68058 -0.20033 -1.20096
43 [Wheat P 0408639 0213254 -142204 -D.6B108 -1.24063
44 |Sorg P 016711 -1.64783  -0.1966 -1.30985
45 [Cormn Y 194 9708 20.82524 45475593
4B [Wheat v 7.8BB7421 7534503
47 |Sorg Y 3217118
4.4 GRKS Probability Distribution
Parameters for the GRKS probability distribution can be T—
estimated using the dialog box in Figure 15. The GRKS
distribution dialog box is accessed via the toolbar Simetar  Muaimum Vaiue: | Sheet1!$E$?J
drop down menu — GRKS Distribution. The GRKS pdf'is _
) .. . Middle ValLe: I Sheet13F37 J
defined by three values: Minimum, Middle Value, and
Maximum. Simetar places the parameters on the Maximum | Sheet1!$G$?J

worksheet starting in the designated Output Range. The
parameters are presented as values and their associated
probabilities (see GRKS Distribution Demo.xls). Simetar
also generates a chart of the distribution and that displays
how the shape of the distribution changes as the
minimum, middle, and maximum values change. Test
this feature by changing the three parameters and

Ok

Intervals in Each
Standard
Deviation:

[

Cutput Range: I

Cancel |

$D$10J

[~ Place chart in new sheet

Help |

observing their affects on the GRKS distribution figure.

The GRKS pdf parameters can be simulated using the
=GRKS( ) function in Section 3.5.2.

Figure 15. Parameter Estimation
for the GRK Distribution.




5.0 Statistical Tests for Model VValidation

Model validation must be done prior to application of a simulation model for decision making.
Validation can utilize graphs, such as PDFs and CDFs, but statistical testing of the simulated

distributions is required to determine whether the stochastic variables in the model are

statistically from the same distribution as the historical data. To facilitate the validation process
several hypothesis tests have been included in Simetar. The tests are organized using 5 tabs in
the Hypothesis Testing for Data dialog box opened by the s icon (Figure 16). Examples of the
validation tests described in this section are available in Hypothesis Tests Demo.xls.

5.1 Univariate Distribution Tests for Model VValidation

The means and variances for two distributions (or
series) can be compared by using the Compare Two
Series tab for the Hypothesis Testing dialog box
(Figure 16). The mean and variance tests are
univariate as they only test the difference between
two variables. This type of hypothesis testing is
useful in validation for comparing the simulated
distribution to the historical distribution. The null
hypotheses are that the simulated mean equals the
historical mean and the simulated variance equals
the historical variance. As demonstrated in the
example below, it is useful to statistically test if the
simulated data have the same mean and variance as
the historical data series.

Choose Test Type:

Compare [Means I

Test for Normality | Check Correlation
Compare Two Series

Test Parameters

1st Data Series:

| Yalidation Tests13847:48420

[

2nd Data Series:

| SirmDatal3B38:983 108 J

® Datain Colurnns ¢ Data in Rows

[¥ Labels in First Cell of Each Series

x|

Owverdl Confidence
Lewvel for Tests:

I 95%

Cutput Range:

| 34452 _ I

¥ Include Statistics

s

Cancel

Help |

Figure 16. Univariate and Multivariate

Distribution Tests.

The statistical tests are performed when the Compare Two Series tab in Figure 16 is selected and
you specify the two distributions (data series) to compare. A two sample, Student-t test is used
to allow comparison of means from distributions with an un-equal number of observations (see
example below). See Step 4 in Hypothesis Tests Demo.xls for an example of comparing two

distributions.
A | B | C | D | E | F | &6 | H |
| 52 |Step 3. Compare Two Distributions Using Student’s-t and F Tests Compare Historical Corn P with the Simulated Corn P
| 53 |Distribution Comparison of Corn P & Sim Corn P
| 54 |Confidence Lewvel 45.0000%
| 55 | TestValue Critical Value | P-Value
| 56 |2 Sample t Test -0.02 249 0.932 Fail fo Reject the Ho that the Means are Equal
| &7 |F Test 1.03 1.85 0.428 Fail fo Reject the Ho that the Varances are Equal

5.2 Multivariate Distribution Tests for Model Validation

Means and variances for multivariate (MV) probability distributions can be statistically tested
against the distribution’s historical data in one step by selecting the Compare Two Series tab in
the Hypothesis Testing for Data dialog box and specifying matrices as the input Figure 17.
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The first MV test uses the two-sample Hotelling T test which tests whether two data matrices
(the historical data MxN and the simulation results PxN) statistically have equivalent mean
vectors and covariance matrices. Assume historical data are arranged in an MxN matrix and the
simulated data are in a PxN matrix, where P is the number of iterations, then the means can be

tested with the Hotelling T test procedure. The
Hotelling T test is analogous to a Student’s-t test
of two means in a two-sample univariate case.

The second MV test calculated for this statistical
test, Box’s M, tests the equality of the covariance
matrices with dimensions MxM and PxN,
respectively, using a large sample likelihood ratio
testing procedure. The Box’s M test of
homogeneity of covariances is used to test
whether the covariance matrices of two or more
data series, with n columns each, are equal. The
assumptions under this test are that the data
matrices are MV normal and that the sample is
large enough for the asymptotic, or central Chi-
Squared, distribution under the null hypothesis to
be used.

Hypothesis Testing for Data

Choose Test Type:

Compare Means I
Test for Mormality I Check Correlation
Compare Twao Series

Test Parameters

1st Data Series:

I Valdation Tests'19B37:3G320

2nd Data Series:

=

| SimDatal §B48:9G$ 108

® Datain Colurns  © Data in Pows

[V Labels in First Cell of Each Series

[

x|

Overal Confidence
Lewvel for Tests:

| | 5%

Cutput Range:

I $A371 -I

[ Include Statistics

OK |

Help |

Figure 17. Multivariate Hypothesis Tests

for Six Variables.

A | B | C | 5] | E

@
@

Step 4. Compare Simulated Results to the Input Distribution
Distribution Comparison of Two Data Series
Distribution Comparison of Corn P & Sim Corn P
Confidence Level

=0
=

=0

=
=)

95.0000%
Critical Valug

13.73

3267

4011

Test Valug P-alue
o0.00
1.89

212

2 Sample Hatelling T2 Test
Bo's M Test
Complete Homogeneity Test

~d| =
o o B

1.000  Fal to Reject the Ho thaf the Mean Vectors are Equal

1.000 Fal to Reject the Ho thaf ihe Covanance Matrices are Equivalent™

1.000) Fail to Reject the Ho thai ihe Mean Veclors and Covariance Matrices are Equivalent, Respectively™
*Based on asymptolic distribution

The third MV test is the Complete Homogeneity test. This statistical test simultaneously tests
the mean vectors and the covariance matrices for two distributions. The historical data’s mean
vector and covariance matrix are tested against the simulated sample’s mean vector and
covariance matrix. If the test fails to reject that the means and covariance are statistically equal,
then one can assume that the multivariate distribution in the historical series is being simulated
appropriately. An example of this test is provided above and in Step 4 of Hypothesis Tests

Demo.xls.

5.3 Test Correlation

Another multivariate distribution validation
test in Simetar is a test to compare the
correlation matrix implicit in the simulated
output to the input (assumed) correlation
matrix. This test is useful for validating
multivariate probability distributions,
particularly the non-normal multivariate
distributions. Selecting the Check Correlation

Hypothesis Testing for Data

Choose Test Type:

Compare Two Series
Compare Means I
Test for Mormalty

Test Parameters
Check Correlation

Data Series: | SimData!§B43:4G4108
v Labels in First Cell

=

x|

Overall Confidence
Level for Tests:

| | 5%

Output Range:

I $a4113 _I

[ Include Statistics

[ Data is in Rows
K |
Location of
Correlatiors  Jation Tests"9B$134:9G$13¢] _ |
Help |

Figure 18. Test Correlation of MV Distribution

Simulation Results.
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tab in the Hypothesis Testing for Data dialog box (Figure 18) calculates the Student’s-t test
statistics for comparing the corresponding correlation coefficients in two matrices. The dialog
box requires information for the location of the simulated series (a PxN matrix) and the location
of the NxN correlation matrix used to simulate the multivariate distribution (or the correlation
matrix implicit in the historical data for the distribution).

The confidence level for the resulting Student’s-t test defaults to a value greater than 0.95 but
can be changed by the user after the test has been performed. An example of this test is provided
in Step 6 of Hypothesis Tests Demo.xls. If a correlation coefficient for two simulated variables
is statistically different from the respective historical correlation coefficient, the Student’s t-test
statistic will exceed the Critical Value and its respective statistic will be displayed as a bold
value. If the test shows several bold values check the formulas used to simulate the multivariate
distribution to insure the distribution is modeled correctly.

A | B ] C | o | E | F |
Step 6. Compare Simulated Correlation Matrix to Input Correlation Matrix
Test Correlation Coefficients
Confidence Level 99 .6586%
Critical Value 3.00

)

[25]

=

ch

om

-1

Sim Wheat P | Sim Sorg P SimCormnY | SimWheaty Sim Sorg Y

1118|Sim Can P 0.31 0.03 0.39 0.74 0.21
1 118|Sim Wheat P 042 0.50 048 0.a7
1120|Sim Sarg P 0.39 0.94 n.2a
1121|Sim Carn Y 0.67 1.18
122|Sim Wheat v 0.a7

5.4 Test Mean and Standard Deviation

Hypothesis Testing for Data il
The mean and standard deviation for any data series Choose Lest Type: . Overel Confidence
(c.g., simulated data) can be compared to a Test for Norg”oit;fare L Ss:::'i Correlation l EX
specified mean and standard deviation using the Cormpare Means st PeamEEs .
Test Parameters tab in Figure 19. The Student’s-t St e
test is used to compare the user specified mean to Data Series:  reidaton Tests'§347:48520 | | | gags0 [
the observed mean of any distribution (or series) as ¥ Labels in irst Cell [l Siatetios
demonstrated in Figure 19. A Chi-Squared test is TestMen: | Veldaon TeswlsBges _| »
used to test a user specified standard deviation —l
against the standard deviation for any distribution. TestSondad [ g T L]
The null hypothesis is that the statistic for the series  Deviaton: ' =
equals the user’s specified values. An example of Help |
testing the historical data for a variable against a
specified mean and standard deviation is provided Figure 19. Test Mean and Standard

below and in Hypothesis Tests Demo.xls Deviation for a Univariate Distribution.

A [ B [ C I D E [ F T &6 | H ] [0 T K ]

| 87 |Step 5. Compare Simulated Results to an Assumed Mean and Standard Deviation
| 88 |Assumed Mean 2325
| 88 |Assumed Std Dev 0.400
| 90 | Test of Hypothesis for Parameters for Corn P
| 91 | Confidence Level 95.0000%
| 92 Given Value  TestValue Critical Value  P-Value
|93 |tTest 2325 0.00 286 1.00| Fail o Reject the Ho that the Mean is Equal fo 2.325
| 94 | Chi-Square Test 0.400 13.01 LB: 440 0.74 | Fail o Reject the Ho thai the Standard Deviation is Equal fo 0.4

£l5 UBE: 23.34
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5.5 Univariate Tests for Normality

Five different tests for normality can be
performed by selecting the Test for Normality tab

after the ® icon is selected (Figure 20). The
normality tests are: Kolmogornov-Smirnoff, Chi-
Squared, Cramer-von Mises, Anderson-Darling,
and Shapiro-Wilks. The Chi-Squared test requires
the number of bins (or intervals); 20 or more
intervals appear to work for most data series. In
addition to the normality tests this option
calculates the skewness and kurtosis, relative to a
normal distribution (not shown in the example

Hypothesis Testing for Data

Choose Test Type:

Compare Two Series

Compare Means |
Test for Mormality

Test Parameters
Check Correlaton

Cwverdl Confidence
Lewvel for Tests:

Cutput Rangs:

Data Series: | ‘aldation Tests'14B47:3B420 J

[v Labels in Eirst Cel

Mumber of Bins for Chi 20

Squared Test:

[ Include Statistics

Cancel

s

R

| | 95%
I $aga2 _I

Help |
below). See an example of these normality tests
in Hypothesis Tests Demo.xls. Figure 20. Univariate Normality Test.
A | 8 [ ¢ [ © | E | F | H |

| 31 |Step 2. Tests for Normality

| 32 | Test for Normality of Distribution for Corn P

| 33 | Confidence Level 95.0000%

24 |Pracedure Test Value p-value

| 35 |S-W 0.962856115  0.793551884 Fail fo Reject the Ho that the Distribution is Normally Distributed”

| 36 |A-D 0.303080068 0523780533 Fail fo Reject the Ho that the Distribuiion is Mormally Distributed™

| 37 |CwM 0.04581582 0544739272 Fail fo Reject the Ho that the Distribution is Normally Distributed”

| 38 k-5 0149172142 NA Consuif Crifical Value Table

| 39 |Chi-Sgared 13.61538462  0.808633117 Fail fo Reject the Ho that the Distribution is Normally Distributed™

140 | *Based on approximalte p-values
5.6 Multivariate Tests for Normality

Hypothesis Testing for Data il

A multivariate distribution test for normality
can be performed on any data matrix of PxN.
The MV normality test can be performed by
specifying a PxN matrix in the Data Series
box for the Test for Normality tab in the
Hypothesis Testing dialog box (Figure 21).
The MV normality tests are: skewness
criterion, kurtosis criterion, and Chi-Squared
quantile correlation. Simetar reports the test
statistics, critical value, and p-value for the
first two tests and the test statistic for the

Compare Means I
Test for Mormality

Murmber of Bins for Chi
Squared Test:

Choose Test Type:

Compare Two Series

Test Parameters
I Check Correlation

Data Series: I Valdation Tests'19B37:9G$20 J

[V Labels in Eirst Cell

E—

Owveral Confidence
Lewel for Tests:

I 5%

Cutput Range:

| $A3191 _I

v Include Statistics

E:

Cancel

Help

third test. The null hypothesis is that the data
matrix is distributed MV normal. See the
example output for this test below and in
Hypothesis Tests Demo.xls.

Figure 21. Multivariate Normality Tests Dialog
Box.

A \ B [ C \ D

190
[191]
192

Step 9. Multivariate Test for Normality
Test for Normality of a Multivariate Distribution

Confidence Lewvel 95.0000%

196,

Chi-Sguared Quantile Caorrelation 0940571025 *Based on asyrmptotic p-ralues

193|Procedure Test Value Critical Value  p-Yalue
194|Skewness Criterion 43.65856655 74 4683241 0.88502126 Fail fo Reject ihe Ho that the Data Are Mullivariate Normally Distribufed™
1896 |Kurtosis Criterion -1.196897667)  1.9589638856 0.118673222 Fail fo Reject ihe Ho that the Dala Are Mullivariale Mormally Distribufed™




5.7 Compare Means (ANOVA)

The Hypothesis Testing for Data dialog box
includes a means test (ANOVA) capability
(Figure 22). Selecting the Compare Means tab in
the Hypothesis Testing for Data dialog box
produces a menu for specifying the two series to
compare. For this test the user must specify the
two distributions (or series) using the Select Data
Series to compare window and the Add button to
list the series in the window at the bottom. The
confidence level defaults to 0.95 and must be
specified before clicking the OK button. The
results of the ANOVA test are the sum of squares,
mean square error, F-statistic and its p-value. A
sample ANOVA test is demonstrated below and is
provided in Hypothesis Tests Demo.xls.

Hypothesis Testing for Data

Choose Test Type:

Test for MNormality I Check Correlation

Compare Two Series

Compare Means I Test Parameters

Select Data Series to Cormpare;

|

% [Data in Columns & Datz i Fows

[Ebels iy Add |
M First Cel

Delete |

[Hyopothesis Tests.xls]validation Tests1$A$155
[Hyopothesis Tests.xlz]validaton Tests'1$B%155

S

Orverdll Confidence
Level for Tests:

I 95%

Cutput Range:

| $A4168 _ I

[v Include Statistics

0K |

Help |

Figure 22. Compare Means Test Dialog Box

A | B | C | D | E | F |
|167|Step 8. Compare Means for Two Series in other words, an ANOVA test
168 Tests to Compare Multiple Mea
| 169|ANOVA Table
| 170{Source of Sum aof Degrees of Mean
171 variation Squares Freedom Sguare F statistic p-value
172 Treatments B 1 6 1951642633 00002175
173 Errar 5763533333 22 0.307433333
174 | Total 12 76353333 23

5.8 Compare Two Cumulative Distribution Functions (CDFs)

A scalar measure to compare the difference between two cumulative distribution functions
(CDFs) is calculated by the =CDFDEV( ) Simetar function. The function calculates the sum of
the squared differences between two CDFs with an added penalty for differences in the tails.
The scalar is calculated for two CDFs, F(x) and G(x) as:

N
CDFDEV =Y (F(x,) - G(x,))” + W,

i=1

where: w; is a penalty function that applies more weight to deviations in the tails than values

around the mean.

If the G(x) distribution is the same as the F(x) distribution, then the CDFDEV value equals zero.
The CDFDEYV measure is programmed to compare a historical series Nx1 to a simulated series

Px1 as follows:

=CDFDEV(Range for Historical Series, Range for Simulated Series)

where: Range for Historical Series is the location for the historical data, such as B1:B10, and
Range for Simulated Series is the location for the simulated values, such as B9:B109.
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The =CDFDEV( ) function is useful when testing the ability of different assumed probability
distributions to simulate a random variable. In this case, the =CDFDEV( ) measure is calculated
using the simulated values for each of the alternative probability distributions. The probability

distribution associated with the lowest =CDFDEV( ) scalar is the “best” distribution for

simulating the random variable. See Parameter Estimation Demo.xls for an example.

Compare Ability of Alternative Distributions to Fit a Series

Distributions Tested CDFDEV()

Formula

Beta 0.0163 =cdfdev
Double Exponential 2 2610 =cdfdewv
Exponential 1.1321 =cdfdev
Gamma 0.2233 =cdfdewv
Logistic 1.2496 =cdfdev
Log-Log 0.3239 =cdfdev

Sheet1!1$A36:3A%18,SimData!B9:B108)
Sheet115AS6:5A%18,5imData!C9:C108)
Sheet1!1$AS$6:5A%18,SimData!D9:D108)
Sheet1!1$A$6:3A%18,SimDatalE9:E108)
Sheet1!$AS6:5A%18,SimData!F9:F108)
Sheet11$AS6:5A%18,5imDatalG9:G108)

6.0 Graphical Tools for Analyzing Simulation Results

Simetar provides nine graphics tools for displaying the results of stochastic simulations and for
analysis of data. These graphics tools utilize the charting capabilities of Excel so all charts and
graphs can be edited and enhanced using standard Excel charting tools. Simetar charts and
graphs are developed using menus which allow the user to easily specify the data, titles, and
labels for charts that are used frequently for simulation. An example of Simetar’s charts is

provided in Charts Demo.xls.

6.1 Line Graph

Any series of numbers can be graphed on an X-
Y axis as a line graph using this option. The

icon to access line graphs is [ . The Line
Graph menu (Figure 23) requires that you
specify the values for the X axis (such as,
years) and the Y values (such as, prices) in the
X and Y-Range boxes. Labels for these
variables are optional and are entered in the Y
and X-Axis Label boxes. The Chart Title is
optional. You may include a label in the first
cells (row or column) indicated for each Y
variable, if you select the box for Series Labels
in First Cell.

The chart can have more than one line by using
the Add Y’s button and indicating multiple Y
series in the Select Y-Axis Range, one at a time
or all at once if the variables are contiguous.
Once the graph is drawn by Excel, it can be
edited using Excel chart commands.

Graphing Center

Line Graph
Line Graph

Chart Data Arranged In! & Columns  Rows
£-Axis Range Sheetll§Ag6:4A$19
Ean Graph {(Optional): I 1A96:949 J
Y-fudis Rangels): I J
Histograrm ¥ Series Labels in Fist el
Add Y's [Charts xlz]Shest119B47 98519
COF Graph — | [Charts xlsJoheet14C$7:3C 419
PDF Graph Remove Y's |
Optional:
Probebity Plot ~ Datalebels: | Sheetll$Hs7:$H$io L
Chart Title: I Frices of Corn and Wheat
Box Flot
- ¥-Axis Label I Vear
Scatter Matl;| ¥-fis Label; I $/bu |
Flace Chart:

" As New Sheet

QK | Cancel |

Help

® [ Current Sheet

Figure 23. Dialog Box for Developing a Line

Chart.

The Line Graph dialog box allows the user to label the points on line graphs. For example, a
price/quantity chart can be developed with year labels on the individual data points to show
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years when structural changes took place. To use this option indicate the column or row of
labels in the Data Labels box, being sure to have the same number of labels as there are rows (or
columns) of data to graph. The result of the chart specified in Figure 18 is presented below and

in Charts Demo.xls.

5.00

Prices of Corn and Wheat

450
4.00
380
300
O 250
2.00
150
100
080
0.00

Year

—Corn P —'wheat P

6.2 CDF Graph

Cumulative distribution function (CDF) charts of
individual or multiple variables (simulated values)
can be developed using Simetar. CDF graphs are

initiated by selecting the L icon. Identify the
variables to graph by highlighting the column(s),
after first clicking in the Select Range to Graph
box (Figure 24). Include names in the first cell of
the variable range, so the chart will include names
for the individual lines. (Be sure the variable
names begin with a letter.) The chart can be placed
on the current worksheet or in a new chart sheet.
Use Excel’s chart commands to format the scale for
the X axis and to make changes to the title.

CDF graphs developed using Simetar are dynamic
so when the values referenced for the chart change,
the CDF graph is automatically updated by Excel.
This feature is particularly useful for simulation.
Each time the simulation results are updated in
SimData, the CDF graphs will be updated.

Graphing Center

Ling Graph

Ean Graph

Cumulative Distribution Function Graph

Output Bange: I $H$3 J

Select Range to Graph

Histogram

COF Graph

[

® Datain Columnes  © Data in Rows

v Labels i first Add Delete |

el

FDF Graph
Frobabiity Flot
Box Flot

Scatter Mat. =
-

[Charts.«s|Sheet113B47:9B319
[Charts.«s]SimDatal$B49: 84103

Mumber of Plotting Points: 100
Kermel Type: Galssian

v

Place Chart:
(" As New Sheet

® [ Current Sheet

Figure 24.

CDF Chart Dialog Box.

The Smoothing option in the CDF menu utilizes kernel density functions to smooth the observed
values and develop smoothed CDF charts. In addition to the CDF charts, the output for this
option includes a text box with a drop down menu to allow the user to select the kernel. The
default kernel is the Gaussian, but ten more are provided. The kernel smoothed CDF for a
historical series depicts the probability distribution Simetar would use if the series was simulated

using =KDEINV( ), see Section 3.7.4.
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The CDF graph option is useful for comparing simulated values of a random variable to the
variable’s historical data. This is possible in Simetar even though the two series have a different
number of observations. See the example below and in Charts Demo.xls.

CDF of the Historical and the Simulated ¥alues

SoeLoooLoo s
o O mNWRIM~NEWo
. L L L L L L L L L

1))
=

1.00 150 2.00

—— Corn P— Average Sim Corr

2.50 3.00 3.50

6.3 PDF Graph

Probability distribution function (PDF) graphs of
individual or multiple variables can be estimated
using the 2% icon. Identify the variables to
include in the PDF graph by selecting the
variables in the Select Range to Graph box and the
Add button if the variables are not in continuous
columns (or rows) (Figure 25). The PDF graph
function uses kernel estimators to smooth the data
rather than just using line segments to connect the
dots. Eleven kernels are available to develop the
PDF graphs: Gaussian, Cauchy, Cosinus, Double
Exp., Epanechnikov, Histogram, Parzen, Quartic,
Triangle, Triweight, and Uniform. Once the graph
is drawn you can change the kernel by editing the
output range in the worksheet.

If the data series have names in the first cell
indicate this on the menu, otherwise unselect the
Labels in First Cell option. Multiple PDFs can
appear on the same axis so the simulated values
and their historical values can both be graphed on

g
Probability Density Function Graph

Line Graph

OupUt Rangs: I 3044 J
Fan Graph Select Range to Graph

|| =
IEtsitegram @ Data i Columne ) Data in Rows

LLabels in | |
CDF Graph I First Cel Add Delete
[Charts.xs]SimDatal$8$9:984 108

PDF Graph

Frobablity Plot
Mumber of Plotting Points: 100

Box Flot
PEIHD [v Plot Series [Mean(s) [« Plot Quanties

Scatter Mau;l Kernel Type: I Gaussian
-

Place Chart:

" As Mew Sheet o' | Carcel | Help |
@ [n Current Sheet

Figure 25. PDF Chart Dialog Box.

the same axis. This feature is possible because the data series being graphed do not have to be

the same lengths.

PDF graphs developed using Simetar are dynamic so when the values in the Selected Range to
Graph, change the graph is instantly updated. This feature is useful when displaying simulation
results using PDFs. The mean of the variables in a PDF is included in the chart. Confidence
intervals at the alpha equal 5 percent level can be added by selecting the Plot Quantiles. The
quantiles can be redrawn by changing the Alpha equal 0.9 to 0.10 in the seventh row of the PDF
Graph output table. The title can be changed by editing the first line of the PDF Graph output.
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See the example below of a PDF chart developed for a simulated series in Charts Demo.xls.

PDF Approximation

0.00 050 100 150 200 250 3.00 350 4.00

—5im Corm P

6.4 Histograms
Histograms of individual variables (simulated output) _ ) Histogram
can be developed using the Simetar menu. The e G Cutput Range: | 1784

. . HIST . . . .
histogram icon s activates this option. Indicate the Fan Graph
variable to graph by clicking the Select Range to %?fgﬁ.Ra”ge © [ SmDaariets 509108
Graph box in the dialog box (Figure 26) and bstogram 7 Lebets 1 F

. . . . . . v Labels in First Cel
highlighting the variable in the worksheet. Specify |
the Number of Bins (intervals) and select OK. The COF Graph  Number of Bins: | 25

more bins the smoother the histogram. The

maximum number of bins is the number of O e oo 2 [Hatogram of Simuated Coln Prices
observations minus one. Experiment with the number e
of bins to find the number which best suits the data. oy | Smated Comprice
An added feature of the histogram option in Simetar Box Plot
is to display data as a cumulative distribution with the =~ ———  chart Tupe: @ pOF € coF
bins growing in height from zero to one as the X Scatter Matrfl
value gets large. Place Chart:
" As MNew Sheet oK | Carcel | Help

#* In Current Sheet

Figure 26. Histogram Dialog Box.

Histogram of Simulated Corn Prices
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6.5 Fan Graph

A Fan Graph consists of multiple lines in the Y axis
for multiple scenarios (or multiple years of one
variable) graphed in the X axis. The variables
graphed in the X axis can be successive years for a
simulated output variable. Alternatively, the variables
on the X axis can be the same simulated variable but
for different scenarios. The purpose of a Fan Graph is
to show the effect of risk on a variable over time or
across scenarios.

A Fan Graph showing the simulated mean and
percentiles or confidence interval lines about the mean

can be developed using the E= icon in Simetar. The
range of variables to be graphed on the X axis must be
specified in the Select Ranges to Graph box (Figure
27). The variables (scenarios or years) must be
specified in the order they appear in the graph. For
example, if the graph is for 10 years of a probabilistic
forecast, specify the 10 variables across the, say, 500
iterations as the selected range to graph. If the

Fan Graph

Line Graph

Dutput Ranges: I 3A1%3 J
Fan Graph Select Ranges to Graph

[ [
Histogram @ Bata i Colurmns ! Data i Rows

Labels i First

COF Graph Faa Add | Delete |

[Charts. xls]SimDatal 3849 383108
PO Graph [Charts.xs |SimDatal $039: 303108
[Charts. < ]SimDatal 3039304108

Probahility Plot

Fercentle Specificatons:

Box Piot [0 el [o7 Lnes | Line 5
. I Line 2 Line 4 Line &
Scatter IVIatr—l 0.22 I 095 I el

Place Chart:
O As Mew Sheet (64 | Cancel | Help

@ [ Current Sheet

Figure 27. Fan Graph Dialog Box.

variables are not contiguous, they can be specified one at a time using the Add box.

The Fan Graph dialog box (Figure 27) provides boxes to specify up to six percentile or
confidence lines about the mean. The individual lines to add to the Fan Graph must be specified
as fractions, such as 0.05 and 0.95 would result in a graph with 3 lines: the mean, the 5
percentile and the 95 percentile lines. Once the Fan Graph has been developed, you can
dynamically change the graph by editing the percentile values in the output table. For example,
if the 5% and 95% lines need to be changed to 1% and 99%, simply change the 0.05 to 0.01 and
the 0.95 to 0.99 in the Fan Graph output table. Changing the percentile causes Excel to re-draw
the graph. An example of a fan graph developed to show the relative risk between three

distributions is provided below.

Fan Graph to Compare the Risk for Three Price Series

Sim Corn P Sim Wht P

Average = = = 5th Percentile = = = 25th Percentile = = =




6.6 StopLight Chart
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Select Arrays to Compare

X

The StopLight chart compares the target probabilities
for one or more risky alternatives and is activated by

selecting the B icon. The user must specify two
probability targets (Lower Target and an Upper
Target) for the StopLight and the alternative scenarios
to compare (Figure 28). The StopLight function
calculates the probabilities of: (a) exceeding the upper
target (green), (b) being less than the lower target
(red), and (c) observing values between the targets
(yellow). An example is provided below.

StopLight Chart for Probabilities
Less Than 1.500 and Greater Than
3.000

100%
90% -
80% -
70% -
60% -
50% +
40% +
30%
20%
10% ~

0%

0.67

0.92
0.94

0.33

| 0.07 I

Sim Sorg P

Sim Corn P Sim Wht P

6.7 Probability Plots

Three types of probability plots can be generated by

selecting the probability plot icon [ . The
probability plot function develops Normal
Probability (or NP), Quantile—Quantile (or Q—Q)
Plots and Probability—Probability (or P—P) Plots
(Figure 29). See Charts Demo.xls for an example of
all three types of probability plots.

The Normal Plot is a method for checking how
close to normal a random variable is distributed. A
Normal Plot compares the ordered data to the
standard normal distribution’s percentiles. If a
variable is normally distributed the sorted data
values will be entirely on a straight line with the

& Data in Columns

Latels im
= Firat Cell

-l

 Data inRows

Delete

Add |

[Chartz xlz]simDatal $B.42:984108
[Charts . xls]SimDatal $C38:$C$108
[Charts =z ]SimDatal $048: 303108

Lower cut-off value I

Upper cut-off value I

3.0|J

Help |

(8] | Cancel

Figure 28. StopLight Dialog Box.

Graphing Center

Box Plot Graph

Line Graph
Dot Range: I 1Bx 34 J
Ean Graph Select Range to Graph
| -
Histograrm I J
® Datz i Colurmns  Dats in Rows
CDOF Graph
Labels i Add | Delete |
M First Cel = =
EDF Graph [Charts. X5 JSimDatal$639:353 108
[Charts = ]SimDatal $C39: 304108
; [Charts. =z ]SimDatali0$s: 304108
Probabiity Plot
Box Plot
Scatter Matr;l
Place Chart:
" Az MNew Sheet oK | Cancel | Help

% [ Current Sheet

only deviations from the line due to sampling error.

Figure 30. Box Plot Dialog Box.

A Quantile-Quantile (Q-Q) Plot can be used to
compare two distributions. If the two random
variables have the same distribution, their paired
observations lie on a 45° line. If the two random

Probability-Probability Plot for Sim Corn P and Sim Wht P
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variables are in the same family of distributions, their paired observations tend to be linear
although they may not lie on the 45° line. A P-P Plot consists of a graph of the percentiles for
the sorted values of two variables graphed on one axis. If the two random variables have the
same distribution (shape) the observations for a P-P Plot will be on a 45° line.

6.8 Box Plots

Box plots of one or more variables can be prepared by selecting the 2 icon. The Box Plot
dialog box (Figure 30) indicates the information required for this function. The Box Plot is a
quartile summary of a random variable in graphical form that indicates whether a variable is
skewed to the left or right. The names and values of the Box Plot are best defined in a chart:

where: IQR = [75™ Quartile — 25" Quartile]
Fifty percent of the observed values fall within the box (25" to 75" quartile). If the distribution
is skewed to the right then the bottom line segment is longer than the top line segment, and vice

versa if the distribution is skewed left. Values that lie outside the extreme lines are likely to be
outliers. The median and mean will show up as one line for symmetrical distributions.

<— 75" Quartile + 1.5 * IQR

Box Plot of Three Price Distributions
6
5 <«4— 75t Quartile
ol
. <4— mean
3 I % I median —»
2
1] <4— 25% Quartile
0
‘—Sim Corn P —Sim Wht P =—Sim Sorg P ‘
<4— 25t Quartile - 1.5 * IQR
: x
6.9 Scatter Matrix Graph
Scatter Matrix Graph
Ean Graph
A scatter matrix of multiple univariate data series can =~ ———— OuutRangs: | 5940 |
. . smT o :
be created using the scatter matrix icon k£ (Figure Histograrm Select Range to Greph
31). The scatter matrix is an array of individual -]
graphs of several univariate data series. Each series EPFEE:
. . . ® Dtz m Colurmns € Datalin Rows
is plotted against each of the other series, one at a CoF o
. . . . El Sl )
time, like a correlation matrix (see the example [ ebee Delete |
below). The graphs show the linear relationships Brobatity ot | [Crarts s sheet 114857 46415
Ao . : B [Charts. s 1sheet113C47:4C419
betwgen 1nd1v1dpal series and. can be .usefl.ll in [Char o Bhoot 11404730419
multiple regression to determine collinearity and for Box Plot
identifying linear relationships between variables for
a multivariate probability distribution. See Charts Scatter Matrix
Demo.xls for an example of a scatter matrix.
P ;I Individual Chart Lengths (inches): I 25

Flace Chart:

" As New Sheet oK | Cancel | Help |
* I Current Sheet

Figure 31. Scatter Matrix Dialog Box.
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7.0 Scenario Analysis
Simulation models are most useful when used to x]
simulate alternative scenarios. Scenario analysis Locaton of utput Varisble Names: —
. oy e . [~ ToThe Left [ abave [~ None eameterm (b Sk 31517
lves specifying different values for several y . .
mvo . Select Output Variables for Analysis: Nurnber of Iterations: 100
exogenous or management control variables and | ] addouput | T S — B

simulating the model for the different scen

arios.

The Simetar Simulation Engine dialog box (Figure

32) provides an input field for entering the
Number of Scenarios. When the number o
scenarios exceeds 1, Simetar executes the
=SCENARIO( ) functions in the model.

A separate =SCENARIO( ) function must be

f

List of Output Yariables

'[Simulate Scenarios xisJsheet1 198934
'[Simulate Scenarios xisJsheet119§B$28
'[Simulate Scenarios xdsIsheetl'1$C$28
'[Simulate Scenarios xks1Sheetl'19D328

Delete Selectad | Clear Al Output Yariables

Output Worksheet: Group Cutput By:

® Varisble
I SimData  Seenario
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[ Mew Seed for Each Scenario

[ Conduct Sensitivity Anghysis

|_ Incorporate Sohver

Worksheet Sampling Type:

@ Stochastic

" Expected Value

SIMULATE

Save |

Cancel

| Help

specified for each variable to be systematically

changed for the alternative scenarios. The

Figure 32. Scenario Analysis Dialog Box.

=SCENARIO( ) function specifies the values the variable can take on for each scenario. For
example, simulating three input variables for example, Hours Product; for five scenarios (see the
example below) is programmed using three =SCENARIO( ) functions as follows:

In B21:D25 enter the values for 3 variables for the exogenous variables

In B27 = SCENARIO (B21:B25)
In C27 = SCENARIO (C21:C25)
In D27 = SCENARIO (D21:D25)
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The values for the first scenario in cells B21:D21 appear in the =SCENARIO( ) after the
functions have been entered. During simulation the subsequent scenario values of Hours Product;
(values in rows 22-25) are used, when the Simulation dialog box (Figure 32) is set to simulate 5
scenarios. If the Number of Scenarios cell in Figure 32 is set to 1, only the values for the first
scenario are used in simulation. The cells containing the =SCENARIO( ) function must be used
in the equations of the model for the multiple scenario option to work. For example B27 is used
in B30 and B32 below. See Simulate Scenarios Demo.xls for the example provided below.

A | B | c | D | E | F |
18 |Scenario Analysis Table contains the alternative values for each
20 |of the variables across the n scenarios.

21 Haours Product 1 Hours Product 2 Hours Product 3

22 |Scenario 1 1400 1700 2660

23 |Scenario 2 1200 3060 1500

24 |Scenario 3 2000 1000 2760

25 |Scenario 4 a 2500 3260

26 |Scenario & a00a 2760 I

a7 Product 1 Product 2 Product 3 Formulas for Product 1
28 |Active Scenario (Hrs) 1400 1700 2660 =SCENARIO(B22:B26)
29 |Stoch Price 2229 3.119 1.963 =TRANSPOSE(B10:B12)
30 |Stoch QuantityHour a7 232 33.395 52 889 =TRANSPOSE(B13:B15)
31 |Receipts 272 266 177,052 328,303 =B29*B30*B28

32 |Fesource Cost/Hour 25 a5 48 Constants

33 |MNet Return 237 266 117,852 200,623 =B31-B32*B28

34 [THNR 555,441 Key Output variable

The results of a scenario simulation can be reported to SimData two ways using the Group Output
option in the Simulation Dialog Box (Figure 32). Grouping the results by Variable causes
Simetar to present the results in SimData as: Scenario 1-M for Variable 1, then Scenario 1-M for
Variable 2, and so on for K output variables. Grouping the results by Scenario causes Simetar to
present the results as: Variables 1-K for Scenario 1, then Variables 1-K for Scenario 2, and so on
for M scenarios. Both formats have their own advantage, use the one which best suits your
purpose. It is recommended when using the Scenario option that the List of Output Variables
include the cells associated with the =SCENARIO( ) functions. This will facilitate verifying that
the values in the Scenario Table were appropriately used in the simulation.

The benefit of using the =SCENARIO function is that Simetar runs the model multiple times
using exactly the same random deviates (risk) for each scenario. Thus the analysis guarantees
that each scenario was simulated using the same risk and the only difference is due to the
differences in the scenario variables. The results can be presented as charts and used in risk
ranking analyses.

CDF

0.8 A

0.6 A

Prob

0.4

0.2

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

—TNR: 1 —TNR: 2 =—TNR: 3 —TNR: 4 TNR: 5




8.0 Sensitivity Analysis

When the Conduct Sensitivity Analysis

option in the Simulation Engine dialog box

is selected, the Simulation Engine dialog
box expands to add the sensitivity options
in Figure 33. Simetar systematically
manipulates one exogenous variable at a
time to quantify the sensitivity of the

output variables. The Select Input Variable

to Manipulate cell can refer to any cell in
the Excel workbook. The variable to
manipulate can be either a constant or a
formula. In either case, Simetar uses the

Simulation Engine

Location of Oumput Variable Rlames:
[ ToThe Left [ above

Select Output Variables for Analysis:

List of Output Yarizbles

I - I Add Output |

™ pione Random Number Seed:
MNumber of Iterations:

MNumber of Scenarios:

'[Simulate Sensitivity xlz]Sheet11$A$1

Delete Selected | Clear Al Qutput Variables

[ Conduct Sensitivity Anat

u Incorporate Solver

Worksheet Sampling Type:
@ Stochastic

 Expected Value

Oumput Worksheet:

I SimData

Group Cutput By
@ Yariable
" Scenario

SIMULATE |

[ Estimate Sensitivity Elasticities
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%]
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I Shest11§B$7 _I

Sensitivity Range 1:
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31517
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Sis
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Sensitivity Range 3:
) 15 %

Save |

Help |

Figure 33. Simulation Sensitivity Dialog Box.

initial value as the base and simulates the model using fractional deviations about the base value.

The range of test values for the manipulated input variable are specified using the three
Sensitivity Ranges. If you are interested in testing the effects of +/- 5, 10, and 15 percent
changes in the selected input variable, type these values in the Sensitivity Range boxes and
simulate the model. If further investigation shows that the ranges could be +/- 3, 6, and 9
percent, then type in these values and re-simulate the model.

Results of sensitivity analyses are summarized in the SimData worksheet. The results are
presented, by output variable, in the following order: the Base value for the Input Variable to
Manipulate (or IVM) is 1.0 * IVM, the smallest IMV (say, 0.85 * IVM), the next larger IMV
(say, 0.9 * IVM), and so on until the seventh value which is the largest IMV tested (say, 1.15 *
IVM). This organization of results facilitates direct comparison of the impacts of the IMV on
each of the Output Variables using a Fan Graph.

It is recommended that when sensitivity analyses are being simulated, the list of Output
Variables in the Simulation Engine should include the Input Variable to Manipulate. Using this
convention, one can easily verify that the Input variable indeed took on the intended values.

9.0 Sensitivity Elasticity Analysis

The sensitivity of a key output variable
(KOV) in a simulation model to
changes in several exogenous variables
can be measured using sensitivity
elasticities (SE,). A SE, is like an
elasticity, but it quantifies the average
percentage change in a KOV to a one
percent change in the exogenous
variable X. Simetar calculates SE,

values by simulating the model for the
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47

by a specified percentage change and simulates the model. The SE. values are calculated for

each X, value across all iterations and the mean and standard deviation of the SE. are reported in
worksheet SEDATA.

Sensitivity Elasticity Results for TNR at the 105.00%

A chart of the SE, values is provided so Level © 2005
the analyst can see which X, variable has TNRwit | ]
the greatest impact on the KOV. The variable Costs ] R

. . . wr
standard deviation for the SE's is —JProduction
displayed in the SE chart as well. To 1 Means

. . TNR wrt Price
simulate SE values for stochastic Means
simulation model in Excel, select the ‘ ‘ ‘ ‘
e s . - . -1 -0.5 0 0.5 1 15 2

Calculate Sensitivity Elasticities button in

the Simulation Engine (Figure 34). This

action causes Simetar to expand the Simulation Engine menu to include the inputs for SEs.
Select the one KOV to be used for the analysis and select the exogenous variables for which
SE’s are to be estimated. Specify the percentage change to use for estimating the SE’s; 5 percent
is usually adequate for this purpose. Simulate the model and review the simulated results in the
SimData and SEData worksheets. Edit the SE chart using the Excel chart commands. An
example Sensitivity Elasticity chart is presented in Simulate Sensitivity Elasticities Demo.xls.

10.0 Simulating and Optimization

Stochastic simulation and optimization of a model is complicated because it requires iteratively
simulating random shocks to the equations and then optimizing the system. For example, in a two
equation supply and demand model with 2]x|

stochastic shocks we would solve for the price Set Target Cell TE [ sove |
that makes demand equal supply or: Eual To:  CMax  CMn @ Valueof: [0 dose |
By Changing Cells:
Qg =a+bPrice + cX + (Std Dev * SND) |sH§21:5t522 M guess
QD =g+ b PI‘iC@ +cY + (Std Dev ES SND) ~Subject to the Constraints: Options
— E$28:$E$29 >=0 -

Es - Qs - QD §H$§;21:$$H$$22>>= 0 J Agddl

Change

Reset All

If the stochastic shock is zero (SND = 0.0) we | _ Delete %
simply use Excel’s Solver (Figure 35) to solve for s |

the price where ending stocks (E) equals zero. _ _
Figure 35. Excel's Solver Dialog Box for

See the Sim Solve Demo.xIs for an example. Sim Solving an Optimal Control Problem.

Solve Demo.xls demonstrates how a x|
1 1 1 L f Output Variable Names: _
snpultaneous equation system can be., mmulated l;ci'f::e L;Tut T e Eedomurber S —
using the Incorporate Solver option in Simetar e s et IREETY)
(Flgure 36). I Sheet1l3H$13 J Add Output | MNumber of Scenarios: 1
LIS Gff OVipLE YRS [ Estimate Sensitivity Elasticities
. : . . SimSolve xds JSheet 113H334
The first step in simulating a stochastic emastes e et 1455 I Gondiact Sensitvty Anchyss
. . . SimSohve xls]Sheet11$H336
simultaneous equation model is to use Excel’s el clbarirs o ¥ Incorporate Sobver Set Solur |
. [SimSolve xls]Sheet1l4H$32
Solver (Tools > Solver) to specify the change wres S T g, |
variable (price, in the example) and the target @ Stochastc
Delete Selected | Clear Al Output Variables  Expected Valle

Output Workshest: Group Output By:

- ® ariable
I SimData  Scerario SIMULATE | Help

Figure 36. Sim-Solver Dialog Box.
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variable (stocks or Eg, in the example). An example of Excel’s Solver dialog box is provided in
Figure 35. While the spreadsheet is set to Expected Value, solve the model using Solver, after
specifying the Solver parameters, and then open the Simetar Simulation Engine. In the
Simulation Engine dialog box select the Incorporate Solver option and specify the output
variables and simulate the model as usual (Figure 36). It is recommended that the Output
Variables include the control variable and the target value which Solver is programmed to
optimize. This pair of output variables allows one to check Solver’s results for each iteration. As
should be expected the Incorporate Solver option is slow. The reason being that Excel is solving
an optimal control problem 100 or more times. Sim-Solver option works well for small models
but will not be efficient for large simulation models with numerous (10 or more) simultaneous

equations. See the example in Sim Solve Demo.xIs.

11.0 Numerical Methods for Ranking Risky Alternatives

The results of a Simetar simulation are written to the SimData
worksheet. The results can be analyzed many different ways to
help the decision maker determine the most preferred alternative.
Functions in Simetar to facilitate analysis of simulation results
are described in this section.

11.1 Stochastic Dominance (SD)

11.1.1 First Degree Stochastic Dominance. First degree SD is
the least discriminating stochastic dominance method for ranking
risky alternatives. However, if the CDFs for the risky alternatives
do not cross, this is the preferred method for ranking alternatives.
First degree SD can be accessed in Simetar by selecting the #b
icon. Select the 1* and 2nd Degree Dominance Table option
Simetar will develop first degree stochastic dominance table
(Figure 37). The Stochastic Dominance dialog box (Figure 35)
requires the analyst enter the location for the simulated values of
the risk alternatives (or scenarios) specify the risk aversion
coefficients (RACs). The first degree SD table will be placed in
the SD1 spreadsheet. See the example below and in Stochastic
Dominance Demo.xls.

Stochastic Dominance Analyze x|
Select Arrays to Compare
| SimDatal 4838 §F3108 J

® Data in Colurns ¢ Data in Rows

Labels in | |
d First Cel 4dd Dekete

Risk Aversion Coefficient:

Lower: |-o.ooo1o Upper: |0.0001|

[ Create COF Graph
[+ lst and 2nd Degree Dominance Tables

[ Run StoplLight

(0]l4 | Cancel I Heln

Figure 37. Stochastic
Dominance Dialog Box.

11.1.2 Second Degree Stochastic Dominance. Second degree SD assumes the decision maker
is risk averse so the RACs must be positive. The #b icon causes Simetar to open the Stochastic
Dominance menu (Figure 37) which asks for the simulated values for the risky alternatives and
the RACs (say -0.0001 and 0.0001). By selecting the 1% and 2nd Degree Dominance Table
option Simetar will develop a second degree SD output table in the SD1 worksheet. The results
for a second degree SD analysis are generally inconclusive. See the example below and in

Stochastic Dominance Demo.xls.

First Degree Dominance Table
THR 1T TWRE2  TNR: 3 ThNR: 4 TNR:S

Second Degree Dominance Table
TNR: 1 THNR 2 THR:3  TMR:4  TNR: B

THR: 4 30D

THNR: 1 FDD FDD FOD The table says that TNR:1 is second degree dominate over the 2 and 4 risky alternatives.
THR: 2 FDD FOD

THR: 3 FDO: FOD FOD FOD

THR: 4 FDD

THR: 5 FDD: FOD FDD FDD FDD The table says that TNR:5 is first degree dominate over the risky alternatives.

THR: 130D THR: 2 THR: 4
THR: 2 50D THR: 4
THR: 3 500 TR THR: 2 THR: 4 The table says that TNR:3 is second degree dominate over the 1, 2, and 4 risky alternatives.

THR: 5 SDD TR 1 THNR: 2 THNR:3  THR: 4 The table says that TNR:5 is second degree dominate over the risky alternatives.
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11.1.3 Generalized Stochastic Dominance with Respect to a Function (SDRF). The SDRF

option is initiated by selecting the # icon which opens the dialog box depicted in Figure 37.
When specifying the simulation results in Select Arrays to Compare, be sure to highlight the
label in row one and all of the rows (simulated values) and columns (scenarios or alternatives) to
compare. Use the Add button to add scenarios that are not adjacent to the first scenario added in
the Select Array window. All of the scenarios must have the same number of observations.

The SDRF comparison of risky alternatives uses the Lower and Upper Risk Aversion
Coefficients (RACs) the user specifies in the dialog boxes (Figure 37). The lower RAC must be
less than the upper RAC . No scaling takes place with the user’s RAC values. If a RAC is too
large in absolute terms (relative to the series to analyze), the STODOM ranking results will show
“#VALUE!” rather than ranking each scenario. This result comes about because an exponent
overflow is caused by excessively large RACs.

The SDRF results table are written to worksheet SDRF1 (see the example below). The SDRF
results table is dynamic so the user can systematically change the RACs in the stochastic
dominance results table and observe the effect on scenario rankings. When the SDRF table uses
simulation results in the SimData worksheet, the SDRF table will be updated automatically each

time Simetar simulates the model.

Efficient Set Based on SDRF at

0.00001

Level of Preference

11.2 Stochastic Efficiency with Respect to a Function (SERF)

SERF is a new procedure for ranking risky alternatives based on

their certainty equivalents (CE) for alternative absolute risk aversion
coefficients (ARACs). The CEs for risky alternatives are calculated

and the results are presented in a table and a chart by selecting the

SERF option in the Simetar toolbar,

sE. The SERF icon opens the

SERF Analyzer dialog box (Figure 38). The SERF table and chart
are placed in a worksheet named SERFTbI1. The CE values in the
table and chart are dynamic so the lower and/or upper ARACs and

the utility function can be changed after the dialog box has been run.

The SERF procedure defaults to the Exponential Utility Function,
yet six more utility functions are available in cell D4 of SERFTDbI1.

The SERF table values and chart can be calculated assuming a Power

Utility Function by
typing a “2” in place

Stochastic Efficiency with Respect to A Function (SERF)

Under a Neg. Exponential Utility Function

of the “1” in cell D4.
The rule for ranking
risky alternatives is

1,200,000

1,000,000 - TNR: 5

800,000 -

600,000 -

that at any given

i
400,000 -

ARAC value, the

200,000 +

0

0

0.000001  0.000002 0.000003 0.000004 0.000005 0.000006
ARAC

—TNR: 1 —TNR: 2 =—TNR: 3 —TNR: 4 TNR: 5

Most Preferred
2nd Most Preferred
3rd Most Preferred
4th Most Preferred
Least Preferred

Al B | C | D | E | F

1 Analysis of Stochastic Dominance with Respect to a Function (SDRF)
| 2 | 2005
| 3 |
| 4 | Efficient Set Based on SDRF at

3 Lower RAC 0 Upper RAC
| B | [ame Level of Preference Hame
| 7 | 1 THNR: 5 Most Preferred 1/ THNR: &
| 8 | 2 THNR: 3 2nd Most Preferred 2 THNR: 3
| 9 | 3ITHR: 1 3rd Most Preferred 3 THR: 1
| 10 | 4 TNR: 2 4th Most Preferred 4 TNR: 2

11 5 THNR: 4 Least Preferred 5 THNR: 4

Stochastic Efficiency Analyzer x|

Select Arrays to Compare

| SimDatal$B4%:3F$103] J
® Datain Colurnns © Data in Rows
Labels in |
L
v First Cell = Lk

Risk Awversion Coefficient:

Lower: I -0.00010 Upper: I 0.0001

[ Create Stochastic Efficiency Chart
® In Output Sheet € In New Sheet
[V Include Confidence Frermiurm Information

(04 | Cancel I

Help

Figure 38. SERF Dialog Box.
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preferred alternative is the one which is the highest on the Y (or CE) axis. An example of the
SERF analysis is available in SERF Analysis Demo.xls.

11.3 Risk Premiums

The confidence premium (or the conviction level)
with which a decision maker would prefer one
alternative over another is visually displayed in
the SERF Chart as the vertical distance between
the CE lines at each RAC. The SERF analysis
also produces a certainty equivalents risk
premium (RP) table and chart in the SERFTbl1
worksheet. The RP table compares the absolute
differences in the CE’s for a base alternative with
the other alternatives across RAC values. A chart
of the RP’s displays the relative position of each
alternative to the base over the range of the
RACs. The user can change the lower and upper
RAC:s and the alternative designated as the base.

Neg. Exponential Utility Weighted Risk Premiums
Relative to TNR: 1

300,000
TNR: 5

200,000 +

100,000 +—FNR-3

L) LATIr

¥R-000001 0.000002 0000003 0.000004 0.000005 0.00

(100,000) -

(200,000) -

P006

(300,000)
ARAC

—TNR:1 —TNR: 2 — TNR: 3 —TNR: 4 TNR: 5

An example of the RP analysis is presented here and in SERF Analysis Demo.xls. The dynamic
nature of the SERF option will degrade execution time if the model is re-simulated. If this is a
problem, delete the SERFTbl1 Worksheet before re-simulating the model.

11.4 Target Probabilities for Ranking Risky Alternatives

The probability of a variable taking on a value less than or equal to a specified target value for a
simulated distribution can be calculated using the =EDF( ) function in Simetar. Risky
alternatives can be ranked with respect to their probabilities exceeding target vales. The

=EDF( ) function is programmed as follows:

= EDF (Array Location, Target Value)
= EDF (B8:B108, B110)

where: Array Location is the location for the distribution (simulation results) to analyze, and
Target Value is the location for the target value or an actual number.

An example of how the =EDF( ) function can be used is to first simulate net returns for a business.
The probabilities of observing net returns less than particular target values are calculated using
=EDF( ). Alternative target values for net returns can be specified by the decision maker. See the
Stoplight chart in Section 6.6 for a graphical means of calculating and displaying target
probabilities. An sample table of EDF values is presented below from the Simulate Scenarios

Demo.xls workbook.

F [ G

TNR: §
2.8% =EDF({SimDatalF$0:F$108,Sheet11$A8T)
17.2% =EDF(SimDatalF$3:F$108,Sheet11$468)
56.4% =EDF(SimDatalF$3:F$108,Sheat 113483

TNR: § =SimDatalF8

751,586 =QUANTILE(SimDatalF$9.F$108 Sheet11$A72)

846,876 =QUANTILE{SimDatalF$9:F$108 Sheet11$A473)

975,918 | =QUANTILE(SimDatal F$E:F$108 Sheet11$A74)
1,117 963 | =QUANTILE(SimDatalF$3:F$108 Sheet11$A75)
1437351 =QUANTILE(SimDatalF$3:F$108, Sheet11$ATE)

A ] B [ [ [ D E
| 65 Demonstrate the Quantile and EDF Functions for Analyzing Scenarios of Net Returns.
| BB Prob X<x TNR: 1 TNR: 2 TNR: 3 TNR: 4
| 67 | 600,000 17.7% 27 3% 7.8% 778%
| 68 | 800,000 £3.9% 72.8% 45.1% 99.6%
| 63 1,000,000 94.8% 898.2% 854% 100.0%
70
| 71 Quantiles TNR: 1 TNR: 2 TNR: 3 TNR: 4
| 72 | 0100 543,591 518,786 §21,780 360,289
| 73 | 0.250 618,722 586,552 700,798 428431
| 74 | 0.500 733,556 693,150 B3d4.415 506,923
| 75 | 0.750 846,658 807,150 948,356 582,738
| 76 | 0.990 1,092,817 1,033,887 1223517 799,216
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11.5 Target Quantiles for Ranking Risky Alternatives

Instead of ranking risky alternatives based on their probability of exceeding a target, some decision
makers want to know the target value which has a particular probability of being true, or the
quantile for their KOV. This method can be implemented by calculating the value of the key
output variable at, say, the 25 percentile. The =QUANTILE( ) function returns the value of a
series that is associated with a specified probability. If =QUANTILE( ) is given a series of values,
such as, [1, 2, 3,4,5,6,7,8,9, 10] and asked to locate the 35t quantile, then the function returns
the value of 3.5 as the 35™ quantile value. The array of values to evaluate does not have to be
sorted from low to high. An sample table of QUANTILE values is presented above from the
Simulate Scenarios Demo.xls workbook. The function is used as:

=QUANTILE (Array Location, Percentile)
=QUANTILE(B9:B108,0.56)

where: Array Location is the cell reference for the distribution to be evaluated, and
Percentile is the percentile to evaluate and is a fraction, such as 0.56.

12.0 Tools for Data Analysis and Manipulation

The Simetar functions developed to facilitate data analysis and manipulation are described in this
section. All of the Simetar functions in this section are dynamic so if the historical data for a
model or its stochastic variables change, the parameters are automatically updated. This feature
is particularly useful when developing simulation models that can use different input data from
one application to another. Another feature of Simetar functions is that the formulas are cell
locked so the formulas can generally be copied and pasted or dragged to new locations to speed
up the data analysis process

12.1 Matrix Operations

Most data in an Excel workbook can be thought of as a matrix. Thirty-three Simetar functions
that facilitate the manipulation and analysis of data matrices can be accessed by clicking the [t4]
icon (Figure 39). The Simetar functions are programmed in C++ and therefore not constrained
to Excel’s restrictions on array size. The matrix functions are in alphabetical order in the Matrix

Operations dialog box:
x

Center Matrix of a Specified Dimension Choose a Matrix Gperation:

Choleski Factorization of a Matrix

Cofactor of a Square Matrix

Column Vector to a Diagonal Matrix
Column Vector to a Matrix

Column Vector to a Toeplitz Matrix
Concatenate Two Matrices

Determinant of a Square Matrix
Eigenvalues of a Square Matrix
Eigenvectors of a Square, Symmetric Matrix
Equicorrelation Matrix of a Specified Dimension
Exponential Power of a Matrix

Factor a Square, Symmetric Matrix
Generalized Inverse of a Matrix

Inner Product of Two Matrices

Invert a Nonsingular Square Matrix]

[ L«

Centering Matrix of a Specified Dimension
Choleski Factorization of an nx(n+p) Matrix, (p=0)
Cofactor of a Square Matrix b
Column Vector to a Diagonal Matrix

Column Vector to a Matrix

Column Vector to a Toeplitz Matrix

Concatenate Two Matrices

Determinent of a Square Matrix hd
| | B

[¥ Include Output Label

OK | Cancel | Help |

Figure 39. Matrix Operation Menu.
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Invert a Nonsingular Square Matrix
Kronecker Multiply Two Matrices
Mahalanobis Distance of Two Data Matrices

X
Matrix of 1s
. 1. Select Vector Range: .
Matrix to a Vector I Sheet11$B58: 38519 J

Choose a Matrix Operation:

I Column Vector to a Matrix

Multiply Two Matrices S i e iy [4
Norm of a Matrix Matrix:

Orthoganalize a Matrix Output Range: | $A%4
Rank of a Matrix

Reduced Row Echelon Form of a Matrix
Reverse a Column or Row of Values
Row Echelon Form of a Matrix
Sequence of Numbers

Lock Formula References for [v Columns [ Rows
[ Check to fill rows then columns
[ Include Output Label

oK Cancel Hel

Sort a Matrix by a Specified Column | i | "
Sweep a Square Matrix on a Diagonal Element ) ) _
Trace of a Square Matrix Figure 40. Dialog Box for Changing a
Transpose a Matrix Vector to a Matrix.

Wishart Matrix of Random Variables

The most frequently used matrix functions are described in detail in this section. The Simetar
Matrix and array functions are dynamic so changes made to the data are automatically observed
in the output functions. For example, changes to the input data will change the associated
correlation matrix, the Choleski decomposition matrix of the correlation matrix, and subsequent
calculations for parameter estimation and stochastic simulation. The matrix functions described
in Section 12.0 are demonstrated in the Excel workbook Matrix Operation Functions.xls.

12.1.1 Column Vector to a Matrix. The Matrix Operations dialog box accessed by selecting

the [Ml icon contains a function to Change a Column Vector to a Matrix (Figure 40). The
function is dynamic so changes in the original vector are observed in the matrix.

12.1.2 Reverse a Column or Row of Values. A vector of values can be reversed by selecting
the Reverse a Column or Row of Values in the Matrix Operations menu. The function outputs
the data as a column if a column of input is provided and as a row if the input is in a row.

12.1.3 Convert a Matrix to a Vector. The task of converting a matrix of weekly, monthly, or
quarterly data to a vector for time series analysis is simplified with the Matrix to a Vector
function. To use this function indicate the matrix to operate on and the output location for the

Choose a Matrix Operation:
12.1.4 Sort a Matrix. An array or a matrix can be sorted | Factor a Square, Symmetric Matrix =
in Simetar using the Sort a Matrix by a Specified Column

. . . . 1. Select Matrix R : .

in the Matrix Operations menu. The user must specify the SUMRange: | sheettisngodscs2o |
Column to Sort By as well as the location for the matrix.

The sort is dynamic so as the values in the original data Output Range: [sases ]

matrix change, the values in the sorted matrix will be
updated.

Lock Formula References for [ Columns [v Rows

; . [+ Include Output Label:
12.1.5 Factor a Square Matrix. Simetar can factor a '

covariance or correlation matrix for simulating a OK | Cancel | Help
multivariate probability distribution by either the Square _ _
Root method or the Choleski method. Both of these Figure 41. Factor a Square Matrix

Dialog Box.
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methods are accessed via the [ icon for matrix functions (Figure 41).

12.1.6 Transpose a Matrix (Excel). A matrix can be transposed by selecting the Transpose a
Matrix option in the Matrix Operations dialog box, specifying the matrix to transpose and the
upper-left hand cell to anchor the output matrix. This procedure simplifies Excel’s transpose
function by eliminating the need to block the area for the transposed matrix and avoids array size
limitations in Excel.

12.1.7 Generalized Inverse of a Rectangular Matrix. The Generalized Inverse of a Matrix
function in the Matrix Operations dialog box uses Simetar’s function. Select this option and
specify the input matrix (highlight only the numbers) and the output range for the upper left hand
value, then select OK. The inverse of the input matrix will appear in the worksheet without
row/column names. Copy and paste in the names if needed.

12.1.8 Invert a Nonsingular Square Matrix (Excel). The Invert a Nonsingular Square Matrix
option in the Matrix Operations dialog box is demonstrated in Figure 42. (Simetar uses Excel’s
function but provides an easy to use menu.) Select this option and then specify the input matrix

(highlight only the numbers) and the output range for the %]
upper left hand value, then click OK. The inverse of the Choose a Matrix Operation:
input matrix will appear in the worksheet without | Invert a Nonsingular Square Matrix =
row/column names. Copy and paste in the names if needed. _ _

L Select MatrixRange: | sheet115B$24:$6$29 |
12.1.9 Multiply Two Matrices (Excel). Excel’s matrix Output Range: [onsa -

multiplication, MMULT, function is made easier by
selecting the Multiply Two Matrices option in the Matrix
Operations dialog box. An additional feature is that
Simetar’s matrix multiplication will handle larger matrices
than the Excel function MMULT. OK | Cancel | Help

Lock Formula References for [ Columns [¥ Rows

[ Include Output Label

12.1.10 Concatenate Two Matrices. A new matrix of data ~ Figure 42. Invert a Square Matrix
can be developed by concatenating the data from two Dialog Box.

locations in the workbook. The Concatenate Two Matrices

option in the Matrix Operations menu requires as input the location of the two input arrays or
matrices and the output location.

12.1.11 Convert a Vector to a Diagonal Matrix. In simulation it is useful to convert a vector
of standard deviations to a diagonal matrix. The Simetar function =MDIAG( ) can be used to
convert an array to a diagonal matrix using the Column Vector to a Matrix option in the Matrix
Operations dialog box.

12.1.12 Find the Determinant of a Square Matrix. The determinant of a square matrix can be
calculated by selecting the Determinant of a Square Matrix option in the Matrix Operations
dialog box. The Excel function =MDETERM (square matrix) is used for this calculation.
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12.2 Data Manipulation

Data often comes in the wrong format or orientation. Data may be in an array when we need it
in a matrix or vice versa. Sometimes we need to reverse the order of the data or concatenate
arrays from different places in the worksheet. Functions to make these data manipulations easy
have been included in Simetar and can be accessed by selecting the [M] icon. Additional data
manipulation functions are also presented in this section.

12.2.1 Create an Identity Matrix. An indemnity matrix of dimension NxN can be generated
using the =MIDEN( ) function in Simetar. The format for the function is =MIDEN (dimension)
where dimension is a scalar to specify the number of rows in the square identity matrix.

11.2.2 Create a Sequence of Numbers. A sequence of numbers in an array can be created
using the =SEQ( ) function. The =SEQ( ) returns a column of numbers that follow any sequence
you specify. The function is programmed as:

=SEQ(No. of Values, Starting Value, Interval or Increment)

where: No. of Values is the number of cells to be highlighted,
Starting Value is the first value in the sequence, and
Interval or Increment is the interval between each value.

For example the sequence of number for 10, 20, 30, ..., 200 is generated by programming the
function as =SEQ(20,10,10) and a sequence of 2, 4, 6, ..., 20 is generated by programming the
function as =SEQ(10, 2, 2).

11.2.3 Create a Matrix of Ones. In statistics a J matrix is an array or matrix with a 1.0 in each
cell. The Simetar function =MJ( ) is used to create a J matrix. To create a 10x1 array of 1.0s
highlight 10 cells in column and type the function =MJ(10). To create a 10x10 matrix of 1.0s,
highlight a 10 cells in 10 columns and type =MJ(10,10). Be sure to hit the Control Shift, Enter
keys after typing the =MJ( ) function as it is an array function.

11.2.4 Create a Centering Matrix. The =MCENTER() array function that creates an NxN
centering matrix when n is specified as the dimension.

11.2.5 Create an Equicorrelation Matrix. The =MEQCORR() array function generates an
NxN equicorrelation matrix using any specified correlation coefficient. The =MEQCORR( )
function is an array function so you must highlight the cells for the square equicorrelation matrix
and end the function by hitting Control Shift Enter. The function is programmed as
=MEQCORR( Rho), where Rho is the correlation coefficient.

11.2.6 Create a Toeplitz Matrix. The =MTOEP() array function creates a square symmetric
Toeplitz matrix given a column or row of data. To create a Toeplitz matrix of an array in Al1:A4,
highlight a 4X4 array and type the function as =MTOEP(A1:A4). Be sure to press Control Shift
Enter as this is an array function.
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12.3 Box-Cox Transformation

The =BOXCOX() function can be used to transform the data for a skewed distribution to make it
approximately normally distributed. The function uses a user specified exponent to transform
the data. The =BOXCOXEXP() function is provided to estimate an appropriate exponent. The
format for the Box Cox transformation functions are:

=BOXCOX( Data Array, Power Value, [Shift to Plus])

where: Data Array refers to the location of the Nx1 data series to be transformed,
Power Value is the exponent for the transformation, and
Shift to Plus is an optional term if the data are to be shifted to positive values enter
‘TRUE or 1’, otherwise enter ‘FALSE or 0’.

The =BOXCOX( ) function is an array function so highlight the appropriate number of cells and
type the function and press Control Shift Enter. See Data Analysis Demo.xlIs for an example.
Once a model has been estimated using a Box-Cox transformation, the =UNBOXCOX() function
can be used to transform the forecast values back to original data. The reverse Box-Cox
transformer function is:

=UNBOXCOX (Data Array, Power Value, Original Data Array, [Shift to Plus])

where: Data Array is the location for the Nx1 array transform back to the original data,
Power Value is the exponent for the transformation,
Original Data Array is the location for the original data Nx1 array, and
Shift to Plus is an optional term if the data are to be shifted to positive values enter
‘TRUE or 1’, otherwise enter ‘FALSE or 0’.

The maximum likelihood estimation of the Box-Cox transformation exponent function can be
calculated using the following function:

=BOXCOXEXP( Data Array, [Shift to Plus], [Lower], [Upper], [Max Iter])

where: Data Array refers to the location of the data n-1 array to be transformed,
Shift to Plus is an optional term if the data are to be shifted to positive values,
Lower is an optional minimum for the search routine, -2 is the default,
Upper is an optional maximum for the search routine, +2 is the default, and
Max Iter is an optional parameter for the search routine.

12.4 Workbook Documentation

12.4.1 Delete Numbers in a Cell. When a cell has both numbers and text, to extract only the
text, use the =DELNUM( ) function. See Data Analysis Demo.xls for an example. If cell Al
contains the string “1013 Sycamore Street” and we want the text in cell A2, then in A2 type:

=DELNUM(A1)

12.4.2 Delete Text in a Cell. Often times the numbers in a cell are needed even though the cell
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contains both numbers and text. For example, the worksheet may have an address in a cell as
“1013 Sycamore Street” and we want the number without the text. Rather than re-typing the
numbers to a new cell or editing the existing cell use the =DELTEXT( ) function. See Data
Analysis Demo.xls for an example. Say the cell Al has the string “1013 Sycamore Street” and
you want just the number to appear in cell B1, then in B1 type:

=DELTEXT (A1)

12.4.3 View Cell Formulas. To show the formula typed in a particular cell use

=VFORMULA( ). An advantage of using this function is that you can both see the formula for a
cell, say B24, and you can see the value in B24. The =VFORMULA( ) function is dynamic and
changes (updates itself) as rows and columns are added to or removed from the worksheet. The
Simetar function to view the formula in cell B24 can be typed into any cell (say, C24) as follows:

= VFORMULA (B24)

12.4.4 View All Formulas. In the process of writing and documenting simulation models in
Excel we often write formulas that need to be printed. Simetar provides a function to easily view
every cell in the worksheet as a formula, and then switch the worksheet back to values. This
function can be accessed by clicking the *El icon in the Simetar toolbar. Click the *EQ icon a
second time and the worksheet will return to the normal view.

12.4.5 Workbook and Worksheet Name. Functions in Simetar have been provided to
dynamically show the name of the workbook or the worksheet in a cell. These functions are
useful for documenting a model. The workbook name is shown in any cell that contains the
following command:

=WBNAME( )
The worksheet name is shown in any cell that contains the following command:

=WSNAME( )

If you rename the workbook or the worksheet, the function updates the text in the cell after
pressing F5.

13.0 Regression Analysis

Simple and multiple regression (ordinary least square (OLS), Probit, Logit, GLS, Ridge, 2SLS,
and GLS) capabilities are included in Simetar to facilitate estimating parameters for simulation
models. Not only are the regression coefficients (beta-hats) useful, but in simulation the
residuals are used to quantify the unexplained risk for a random variable. The regression
functions in Simetar take advantage of Excel’s ability to recalculate all cells when a related value
is changed. Thus when an observed X or Y value is changed the betas are recalculated. Also,
multiple regression models can be instantly re-estimated for different combinations of the X
variables by using restriction switches to ignore individual variables.
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13.1 Simple Regression

The parameters for a simple OLS regression are calculated when you select the #* icon. The
simple regression icon opens the dialog box depicted in Figure 43 so the X and Y variables can

be specified. The intercept (a) and slope (B) parameters for the equation:
Y =4+ bX
are estimated and placed in the worksheet starting where the Output Range specifies. The names

of the estimated parameters appear in the column to the left of the parameters. The R?, F-Ratio,
Student’s -t test statistics, and residuals are calculated if you select the appropriate boxes.

A | B | ¢ ] x|
74 Simple Regressionof Y=a+b X Dependent Yariable () I Sheet113B312:98%25 J
75 Comn P [v Labels in First Cell
i Intercept 1.98 Independent Variable (X) Sheetll§A$13:34325
77 |Slope 0.049231 =
78 | R-Square 0 211367
79 |F-Ratio 2948195 Quput Range | sheatlpagys =l
a0 PI‘Db{F} 0.11396 [ R-Squared [ t-Test
81 S.E. 0 028672 s e ok | cmd | wep |
82 |T-Test 1.717031

Figure 43. Simple Regression Dialog Box.

Be sure that X and Y have the same number of observations when you specify their ranges in the
Simple Regression dialog box. This Simetar function is useful for checking the presence of a
trend in a random variable Y. In this case, create a column of X values that increment from 1, 2,
3, ..., N and then use Simetar to estimate the regression parameters. A feature to this function is
that the coordinates for the X variable are cell reference locked (fixed) so the formula cells can
be copied and pasted across the spreadsheet to estimate simple regressions for numerous Y’s
using a common X or trend variable. An example of the simple regression function in Simetar is
provided below and in the Data Analysis Demo.xls workbook.

13.2 Multiple Regression

The Multiple Regression option is accessed through the Ré icon. Multiple regression estimates
the least squares a and b, parameters for:

A

Y =a+b,X, +b,X, +... +b, X,
The Multiple Regression dialog box (Figure 44) allows the user to specify the Y and X variables,
and the type of output for seven different multiple regression models.

A sample output for a multiple regression is provided below to show the format for the first part
of the results. The name of an X variable and its beta are in bold if the variable is statistically



significant at the indicated one minus alpha level (e.g., Xj,
X3, X3, and X4 in the example). Standard errors for the betas,
the t-test statistics and the probability (p) value of the t-
statistics are provided for each explanatory variable. The
elasticity at the mean for each independent variable as well
as the partial and semi-partial correlations for these variables
is provided as well. The variance inflation factor is reported
for each X variable to indicate the degree of multicolinearity
of X to other variables in the model. See Multiple
Regression Demo.xls for the example presented in this
section.

The Restriction row in the parameter block of output values
allows the user to interactively experiment with various
combinations of X variables. After the initial parameter
estimation the Restriction coefficients are all blank, meaning
that every X variable is included in the unrestricted model.
The user can interactively drop and re-include a variable by
changing its restriction coefficient from blank to 0.

Compare the results in the first example to those in the
second example where X5 was restricted out of the model.
The exclusion of Xs improves the F —test (61.5 vs. 79.2).

i =2 .
Three test statistics (F, R* and R ) for the Unrestricted

Multiple Regression
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Diependent | -

Variable (Y I Sheet11$5348:4G432 J
[v Labels in First Cell(s) of Selections

Independent

| Sheet 114848 9F936

7

Output Range: I [MLltple Regression‘xls]Sheetl'J

"

Variables (x's):

Regression

| oS
Type:

Optional Cutpit:
[ Predictions & Residusls

[ Covariance Matrix of Coefficients

[ Cbservational Diagnostics

v Observational Confidence &
Prediction Intervals

Graphing Cptions:

[+ Residusls
Cancel

[+ Cbserved & Predicted

P

v §Dependent ve, Independent Help

Figure 44. Multiple Regression
Dialog Box.

Model are provided and remain fixed while testing alternative specifications of the model’s
variables. This is done to facilitate the comparison to the original unrestricted model to the
restricted models. If you type a non-zero number in the restriction row, the value becomes the

beta-hat coefficient for a restricted regression.

A ] B [ T [ D [ E I F I G ] s B I C | [5] I E | F I G
| 40 |OLS Regression Statistics for Y. 11/18/2005 10:53:10 AM | 40 |OLS Regression Statistics for Y. 11/18/2005 10:53:10 AM
|41 |F-test 88.136 Prob(F) 0.000 Unrestricted Model | 41 |F-test 115.837 Prob(F) 0.000 Unrestricted Model
| 42 MSE"® 0.011/CV Regr 0.204 Ftest 88.156 | 42 MSE'? 0.011 CV Regr 0.189 F-test 88.156
|43 R 01.961 Durbin-Watso 1768 R? 0.861 | 43 R 0.861 Durbin-Watso 1.784 R 0.861
| 44 |RBar’ 0.950 Rho -0.006 RBar* 0.850 | 44 RBar® 0.862 Rha 0.004 RBar* 0.850
45 |Akaike Infori -8.883 Goldfeld-Qua 1.818 Akaike Inform -B.883 | 45 |Akaike Infor| -8.963 Goldfeld-Qua 1.378 Akaike Inform -8.883
| 46 |Schwarz Infi -8.638 Schwarz Infor -8.638 46 | Schwarz Inf( -8.766 Schwarz Infor -8.638
47 95% Intercept X1 X2 X3 X4 5 47 95% Intercept X1 X2 X3 X4 X5
| 48 Beta 0417 0.156 0.298 0.014 0.611 -0.013 |48 Beta 0.370 0.153 0.288 0.014 0.620 0.000
|49 S.E. 0.778 0,042 0.109 0.002 0.087 0.047 [48]S.E. 0.737 0.039 0.089 0,003 0.089 0.000
| 50 |t-test 0537 37 2730 -4.302 8.307 -0.288 |50 t-test 0.502 3810 2.888 4547 5.948 0.000
| 51 Probyt) 0,598 0.002 0014 0.000 0.000 0782 |51 |Prob() 0.822 0.001 0.010 0.000 0.000 1.000
52 |Elasticity at Mean 0077 0436 -0.035 0812 -0.014 | 52 |Elasticity at Mean 0.078 0421 -0.034 0621 0.000
| 53 Variance Inflation Factor 18.155 B7.613 98.155 4.897 4.105 |53 |Variance Inflation Factor 16.708 58.835 88.872 4454 4.108
| 54 |Partial Correlation -0BB1 0541 -0.712 0.830 -0.063 | 54 |Partial Correlation -0.868 0.554 0722 0847 0.000
55 |Semipartial Correlation -0.174313628 0127443618 -0.200861965 0294466122 -0012500054 | 55 |Semipartial Correlation -0.178026492 0131861838 -0.207052399 0 316282667 0
56 Restriction 56 Restriction 0
A E c D E E ] [ I H |
oy o G5 S.D.Resids 00003551383 MAPE 0.14581097 Lower Upper Lower Upper  Scatter Plot of A
In addltlon to the ablllty to exclude and 6 |Actual Y Predicted Y Residuals _ SE Mean PreiSE Predicted 95% Conf. Int:95% Contf. Int-95% Predict. 195% Pred(
. . . A7 5 Ban| 56 [IH Ol oot 5507 G540 GAHG G564 7 Ball
- & 5511| EIE 0006 [I1E] 5511 5507 s4dr 5581 254
re 1nclude Varla’bles n the mOdel’ 60 | | -0.014 0.006 0013 5468 5492 5453 5505 3011
: ) : : : n noia 0004 oniz 5 446 5463 5470 5478 2818
Simetar’s multiple regression function 7 T T T 7 T 7 3%
. 72| 0.002 0.004 0012 5445 5463 5470 5479 2,850
allows the analyst to make corrections to [ oo ooms ool &4 sass s 2000
. 74 I 0.ous oz 5410 5431 5345 2910
75 0.002 0.005 0012 5,307 5417 5382 2,854
the data for the actual observations of the |2 Ddil  ooe 6ol egg  favil  e3m 1964
: : 77 003 0.008 omz 5,360 5345 5248 2.754)
XandY Values, without havmg to re-run 70| nont 0006 ana 5347 5an 5333 2771
. . . 78] 0.005 0.006 0013 5.358 5.305 535 2683
the regression. The Simetar multlple 80 0.002 0.005 0mz 5312 5394 5357 2599
R X X o X 81| 0o 0004 omz 5388 5407 5373 2 558
0012 3 361 2 T
regression routine is not limited in the a T I T 224
. fid n.0na 0005 001z 5388 5412 5375 2517
number of €xogenous variables that can o5 | 0.003 0.006 0012 5380 5405 5 366 2526
. . . &6 | 0.005 0.007 0013 5,389 5417 5.376 2,340
be included in the model. Regression 7| oo08| oM Opi2  sam s 536 2390
(] 0.004 0.005 oz 5,961 5902 5348 2.3
80 | 0.007 0.006 0013 5343 5.360 5330 2338
an nnan 0006 oniz? 5237 5 36N 5327 2780
a1 00na 0ot 517 5751 3 2374
a7 non7 onia 5313 5 9R2 2250
a0 | nona a0t 50 533 2337
o | nong o0l 5278 5310 5 760 2320
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models with 5000 observations and 250 X variables can be estimated with Simetar.

If the analyst specifies more observations for the X variables than for the Y variable, Simetar
will forecast the Y values. The forecast values in the “Predicted Y’ column of the output uses
the betas for the regression and the additional Xs. Probabilistic forecasts of the Y variable are
provided as bold values in the Actual Y column of the output. For the example, there are five
extra X values indicated for the regression dialog box (Figure 44) so Simetar calculated the
deterministic forecast values in column B and the probabilistic forecast values in column A,
starting in row 91 (see the output above). Probabilistic forecasts are calculated assuming
normality, the mean equals the deterministic forecast, and the standard deviation is the standard
error of the predicted Y in column E for the example. Press F9 to make Excel simulate the
probabilistic forecasts. The probabilistic forecasts can be used in a stochastic simulation model.

Residuals for the regression are also
included in the example output. The
residuals for the regression are

calculated as & =Y, - Y, for each

observation i and represent the
unexplained risk for the dependent Y
variable. The standard error for the
mean predicted value (SE mean
predicted) is provided for each
observation 1. In addition the SE of the
Predicted Y for each observation is
provided in column E of the example
output. As indicated in the example

5.60

Observed and Predicted Values for Y

5.55 1
5.50
5.45 4
5.40 A
5.35 1
5.30
5.25

—Predicted = Observed

— Lower 95% Predict. Interval —— Upper 95% Predict. Interval

— Lower 95% Conf. Interval —— Upper 95% Conf. Interval

output, the SE Predicted Values increase as the forecasted period gets longer. Prediction and
confidence intervals for the model are provided in the table (above) and graphically (below) for
the alpha equal 5 percent level. The alpha level can be changed by changing the value in line 47
of the output example from 95% to, say, 90% or 99%.

The observed and predicted Y values can be viewed graphically along with the confidence and
prediction intervals. For the example program five more Xs than Ys were used to estimate the
model, as a result the last five values in the Observed line to the right are the probabilistic
forecast values and will change each time the F9 function key is pressed.

The covariance matrix for the betas is an optional output for multiple regressions. The beta
covariance matrix is used in simulation when the model is assumed to have stochastic betas. The
beta covariance matrix is provided when specified as an option in the multiple regression dialog

box (Figure 44).
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If requested in the regression dialog box (Figure 44), observational diagnostics are calculated
and reported for the unrestricted model (see the example to the right). The column of 1’s in the
DFBetas Restriction column indicate that the unrestricted model was fit using all of the observed
data.

If you change a DFBetas Restriction to 0 for a particular row the model is instantly updated
using a dummy variable to ignore the effects for that row of X’s and Y. The rule for excluding
an observation is if its Studentized Residual is greater than 2 (is bold). This is the case for
observation 24 in the sample output. Setting the Restriction value to 0 for observation 24 causes
the F statistic to increase from 88 to 107, given that X5 has not been excluded from the model.
The R? increases to 96.1 from 96.9 (see Multiple Regression Demo.xls). This result suggests
that observation 24 is either an outlier or should be handled with a dummy variable. A priori
justification should be used when handling observations in this manner.

B (4 o E F G H 1 Jd K L M
85 | Obzervatonal Dlagnostice Curoff Values 0.250
OB DFBetas D408 D408 0408 0408 D408 0500 2,000 1.750 1.000
97 |Restriction Observation Intercept X x2 X3 x4 Leverage Studentized Re:CovariancDOFFits  DFFit
88 1 1 0594 1593 0324 0445 0.589 L 1382 2,045 oo
88 1 2 0.504 022 01089 0158 0997 -1.038 0.008
L[V 1 3 1 0515 0388 0.549 0 BEs -1.038 0 008
101 1 4 01 <0213 oo 0938 osn 0002
102 1 5 0469 <0128 025 0508 0 604 0.003
103 1 ] 0002 -0032 0035 1681 -0074 0.000
14| 1 7 0123 -0.21 0148 1433 -0.318 -0.002
105| 1 B 040 0.118 004 1240 0.568 0003
108 ! 8 0oz -0.025 0.04 17 ooer 0.o0a
107 | 10 0.0 oo 0m7 1888 0114 000
108 1 1 0.0 0.599 D.464 0.984 0817 0.005
108 1 12 ooz 0o ooo 1.959 0088 0.0
A1) 1 13 oo 0,080 0155 1.822 0 365 0002
111 1 14 <0033 0041 -0 063 1791 0100 0.oom
112 1 15 0158 -0 260 0315 1205 -0411 -0.002
113 1 18 0.003 0.008 -0.007 1.745 003 0.002
14| 1 17 0.088 -0z 0138 1744 -0177 -0.001
115 1 18 0052 022 -0.200 1.360 0.504 0.003
118 1 18 0.188 0.182 0044 1460 o0sm oooa
"7 1 20 0.766 0.014 0052 2026 D4% 0.003
118 1 21 0.080 0.057 0.1 138 0,365 0.002
118 1 a2 0006 0,084 00es 1702 0184 0001
130 1 3 0122 0.269 0284 1684 <0469 <0003
1 1 ol =0.152 <0.700 0.566 0354 1.381 0007

13.3 Bivariate Response Regression

13.3.1 Probit Analysis. The PROBIT regression function estimates a logistic regression given
dependent and independent variables. Probit regression models can be estimated by using the

multiple regression icon R and selecting the Probit option in the menu, see Figure 44 for the
menu. The PROBIT function allows for independent variables to be restricted from the complete
model (enter ‘0’ in place of the ‘1’). In addition, individual observations can be restricted from
the regression (enter ‘0’ in place of ‘1”). The PROBIT Function uses an iteratively re-weighted
least squares technique to estimate the model parameters. A sample Probit output for Simetar
from the Probit and Logit Demo.xls is summarized below.

ER H [ I Ly e T L [ W | N [ a | r [ g | R | 5 |
13 i i igti
i 95| Intercept Price t Stock 11| Trend Observed and Predicted Values for Stocks Over 250
| 5 |Beta™ 14.988 -2.218 0.004 -0.261
| & |SE.~ £.938 0.990 0.007 0150/ 1000 g— By s * -
| 7 [t-tests 2780 220 0582 M6 gggg ] % L
| 18 |Prob(h)™ 0.044 0.037 0.561 0.097 D:?DD ] *x *
| 19 |Elasticity 8.125 6982 0.652 552 | 5o | «
20 | Derivative 5435 -0.804 0.002 -0.095| 0500 X
21 |Restrictiol 1 1 1 1| 0.400
| 22 |Predictions & Residuals 0.300 4
| 23 |5.D. Resic 0.293858579 DObservational 002133 : y
24 | Actual St Predicted Sto RBesiduals Restrictiol Observati 0.000 e . — . - — -
| 25 | 1.000 0.995 0.005 1 1
25 1000 0,998 0.002 1 2 ¥ Predicted # Observed
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13.3.2 Logit Analysis. The LOGIT function estimates a logistic regression given dependent and
independent variables. Logit regression models can be estimated by using the multiple

regression icon Ré and selecting the Logit option in the menu, see Figure 44 for the menu. The
LOGIT function allows for independent variables to be restricted from the complete model. In
addition, individual observations can be restricted from the regression. The LOGIT function
uses an iteratively re-weighted least squares technique to estimate the model parameters. A
sample Logit output for Simetar is presented below from the Probit and Logit Demo.xls.

[E]

H

[ J

[ K ]

L

I N [

0 [P T g [ R [ 5§ ]

B5

Logit B ion Statistics For Stocks Over 250, 1202712005
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14.0 Cyclical Analysis and Exponential Forecasting

Functions to facilitate analysis of seasonal and cyclical data
are included in Simetar. Seasonal indices and moving average
analysis of cyclical data are described in this section. Three
different procedures for developing exponential forecasts
included in Simetar are described as well.

14.1 Seasonal Index

A seasonal index of any array can be calculated by Simetar

using the Forecasting and Cyclical Data icon & and clicking
on the Seasonal Indexing tab. The Seasonal or Cyclical
Indexing dialog box (Figure 45) allows the user to specify the
data series to analyze and the number of periods in the cycle,
(say, 4 or 8 or 12). A sample output table is presented below
and in Seasonal Analysis Demo.xls.

When the input data are months and the Number of Periods in
the Cycle is 12 the result will be a 12 month seasonal index.
The quarterly index in the example below is developed from
five years of quarterly sales to calculate a seasonal sales
index.

Forecasting 8 Cyclical Data

Moving Average

Exponential Smoothing Seasonal Indexing

Seasonal Indexing & Decomposition Table

-
r

—

CutpLt
Range:
Data
Series:

| 4045

| Index!§B45:38325
[ Labels in Eirst Cal

Murmber of Periods in the Cycle:

Use a Centered Moving Average
with Specified Periods

[V Arrange Table by Rows

flnclude Seazonsl Decormposton withf
Forecast Periods:

| Cancel |

QK

Help |

Figure 45. Seasonal or
Cyclical Indexing Dialog Box.

A seasonal index can be calculated one of two ways, namely: simple average or centered
moving average. The simple average index is a more reliable indicator of the seasonal pattern if
the data has no trend. If the data series has an underlying trend the Centered Moving Average
will remove a portion of the variability caused by the trend. The Seasonal and Cyclical Indexing




dialog box (Figure 45) assumes the user wants a simple average index.
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D | E F E H L 0k L |
| 5 |Cyclical Indices for Sales ($1,000s), 11/18/2005 12:28:26 PM
| 6 | 1 2 3 4 SUM AVERAGE ST DEV | INDEX FRAC. CO
| 7 1 25.14 15.12 21.41 30.14 91.81 22,9525 5481165 0.884 0177
KN 2 26.71 18.91 2415 30.21 99.898 24995 4.119427 0.962 0192
| 9 | 3 26.12 17.45 23.36 35.61 10254 25635 6555641 0.987 0197
|10 4 273 14.89 31.28 38.99 11246 28115 8715614 1.082 0216
|11 5 24.91 16.76 2967 4145 11279 281975 5936178 1.085 0217
| 12 |SUM 13018 8313 129 87 176 4 51958
| 13 |AVERAGE 26.036 16.626 25974 35.28 25.979
| 14 |[STDEV 0.908815 1.489635 3815865 4 562157 T.287482
| 15 [INDEX 1.002 0.640 1.000 1.358 40450
| 16 |FRAC. CONT. INDEX 0.251 0160 0.250 0.340 1
| 17 |INDEX LCI 0.934 0464 0712 1.105
| 13 |INDEX UCI 1.071 0.816 1288 1611 Conf. Level 95% 1.959964

14.2 Seasonal Decomposition Forecasting

A Seasonal Decomposition forecast of a data series can be
calculated by Simetar using the Forecasting and Cyclical

Data icon 2 and clicking on the Seasonal Indexing tab
(Figure 46). After indicating where the data series is
located and the number of periods in the cycle, click on
the last box in the menu to Include Seasonal
Decomposition with Forecast Periods. This will cause
Simetar to calculate the parameters for a seasonal
decomposition forecast for the number of periods
indicated in the last window of the dialog box, four for the
example presented below.

The output for the seasonal decomposition forecast
contains two switches that allow the user to alter the type
of decomposition model that best fits the data series being
forecasted. The options are Additive and Cycle (see the
example output below). The default value for the
ADDITIVE option, “TRUE”, is for an additive model

Forecasting & Cyclical Data

[Moving Average

Exporential Srmoothing Seasonal Indexing

Seasonal Indexing & Decomposition Table

Output

Range: I s J
g:rt;:& | Index!14B45: 46425 J

[V Labels in Birst Cell

Murnber of Periods in the Cyde:

Use a Centered Moving Average
with Specified Periods

-

[ Arrange Table by Rows
Include Seasonal Decompostion wi

- B t|

I Forecast Periods: 4

| Cancel |

['g Helpm |

which assumes the seasonal component is additive. If the
seasonal effects are multiplicative, use the “FALSE”
setting for the ADDITIVE option. The second option,
CYCLE, defaults to “TRUE” assuming the series has an

Figure 46. Seasonal
Decomposition Forecasting.

underlying cycle. If a cycle is not present change this option to “FALSE”.

The user’s requested forecast values are presented in the charts, the trend component forecast is

the series of dashes on the linear trend line. The cyclical and

seasonal forecasts are the dashes

on their respective lines. The composite forecast is the dashes on the actual data line (Sales in
the example). The values for these forecast components are indicated in the table after the
historical values, the last four values for the example below and in Seasonal Analysis Demo.xls.
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14.3 Moving Average Forecast

Forecasting & Cyclical Data il
A moving average of any series can be calculated by selecting Exporential Smoothing | Seasonal Indexing |
. . . . Moving A

the forecasting icon £ and selecting the Moving Average tab ST
(Figure 47). The Moving Average dialog box requires Moving Average Forecast
information on the number of periods to include in the moving %r%it- | Moving Average'lgE4s [
average and the number of periods to forecast. s

Series:! I 437 J
Once Simetar has completed the analysis you can change the I Labels in st Cel
number of periods for the moving average using the sliding scale

) Number of Moying A Periods: | 12

to observe how the number of periods affects the goodness of fit TR TS e e
measures. The MAPE, WAPE, Thiel U2, RMSE, and MAE are Forecast Periods: |12—

included in the output so you can experiment with different
moving average lengths and observe the affects on forecast
error. A graph of the historical and predicted values is provided
as well. The example of a moving average forecast below comes ™ Use a Centtered Moving Average

from the Moving Average Demo.xls workbook.
Ok | Cancel I Help |

[v Graph Historical & Projected

Figure 47. Moving Average
Forecast Dialog Box.

E [ F [ ¢ [ H [ 1 [ o [ w [ L ' »m [ N [ o [ P | o [ R T s

| 5 |Moving Average Forecast, 11/22/2005 10:49:51 PM

B |Number of Periods 12 4 » Moving Average Forecast, 11/22/2005 10:49:51 PM
| 7 |Mean Abs. Percent Error 9.521
| 8 |Weighted Abs. Percent Error 8.956 140
| 9 |Theil's U2 Statistic 0.113 120 .
| 10 |Root Mean Squared Error 8.211 100 4 .'“
| 11 |Mean Abs. Error 6.081 a0 4
| 12 |St. Dev. Residuals 8113163 Determin 60 -

13 |Period Sales ($1.1Predicted Residuals Period Forecast Sales
| 14 | 1 20,06 #NFA #NA 433 106.1033 401
115 2 2034 #NA A 424 106.0361 207
| 16 | 3 2141 #NFA #NIA 435 10618 0

17 4 2251 #NA ENA 436 105.6391 126 51 76 101126 151 176 201 226 251 276 3071 326 351 376 401 426

18 5 239 #MNA HNIA 437 1049207
T 6 2812 mvE | @vA 438|100 8533 [—sales ($1,0005) — Predicted Sales ($1,000s) |

D [ E [ F [ & [ H T 1 T 1 T ¥ T L T ™M [ W [ o [ F T @ [ ® [ § 1

| 20 |Seasonal Decompostion for Sales [$1.000s). 14182005 12:28:26 PM
| 21 |ADDITIVE TRUE

22 |CYCLE TRUE
| 23 |cbs. Sales 101 Tremd  Cucle  Season  Error
| 21 | 1 25.14| 22762693
= 2‘ 1. 12‘ 23077969
| 26 |

o7 Data and Trend Cycle and Season

50 14 10
40+ A S .

B e =g [ 1

cl
uoseas

] G e Vo =
04 . ;
0z

3 g 13 L 23 3 3 13 8 23

=——Sales [$1000s] =—Trend —Cycle —— Season

T TB.7E T 3317 36 -J.3363T -173309]
3 29.67| 28437656 10060055 -0.03866 11002227
20 4145| 287625932 10R26628 8843418 2 0547852
Forecast 21 23.0491( 20068208 174138 -9.33601 0
Forecast 22 33.2873( 29.383483 11341723 -0.03866 0
Forecast 23 43.5283( 29698703 1167831 8.843418 0
Forecast 24 26.8671| 30014035 12062363  -9.33691 0

| | [ | e e o o [ feo foo oo oo | oo |ro |
Sie | h RS S S S B BN e s RS RS S ES
o
=
&
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An exponential smoothing forecast for any data series can be developed using the forecasting

icon £ and selecting the Exponential Smoothing tab (Figure 48). Before running the
Exponential Smoothing option, open Solver to make Excel activate Solver in the worksheet
where you want the forecast model to appear. Solver can be opened and closed by clicking on

Tools > Solver > Close

Simetar provides three different exponential smoothing estimator/forecasts tools:
e Single exponential smoothing estimates one parameter alpha (Dampening Factor).
e Double exponential smoothing or Holt’s method estimates parameters for two parameters

alpha and beta (Optional Trend Factor).

e Triple exponential smoothing or Holt-Winter’s method estimates three parameters alpha,

beta, and gamma (Optional Seasonal Factor).

Additionally, Simetar estimates the parameters for the exponential smoothing model with
different assumptions about the trend and seasonal component. The options are:

e Holt Method Trend with
0 No trend
0 Dampened additive trend
0 Dampened multiplicative trend
e Holt Winters Seasonal with
0 No seasonal component
O Additive seasonal component
O Multiplicative seasonal component

These alternative specifications are effected by changing the Trend Method and the Trend
Method options from 0 to 1 or 2 in the output. Re-run Solver after changing any option.

Simetar estimates and forecasts the requested model based on the
non-zero initial guesses the user provides in the dialog box or by
using SOLVER to optimize the parameters by selecting
parameters that minimize the MAPE (Figure 48). Probabilistic
forecasts of the exponential smoothing model can be observed by
setting the Stochastic Forecast option to “TRUE”. The
probabilistic forecast values appear at the bottom of the second
column of the results. See Exponential Smoothing Demo.xls for
the example presented below.

After Simetar estimates the initial model, you can experiment
with alternative parameters by using the slide scales for the Level
Smoothing Constant, the Trend Smoothing Constant, the Season
Smoothing Constant, and the Dampening Parameter, to see what
they do to the MAPE,

RMSE, MAE, etc.

Forecasting & Cyclical Data il

[Maoving Average
Exponential Smoothing I Seasonal Indexing

Exponential Smoothing

Output

Range: I iE$3 J

B Sl | ExpSmi$Cgs:$C§437 [
v Labels in First Cell

Dampening Factor: 0.25

Optional Trend Factor: il

Optional Season Factor: 1

Optional Seasons per Period: 12

Forecast Periods; 12

[ Graph Historical & Projected

[ Optirmize Parameter Yalues:

0K | Cancel | Help |

Figure 48. Exponential
Smoothing Forecast Dialog Box.
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E [ F | & [ H [ 1 T 9 T ¥ [ L I v [ N T o [ P [ a T RrR [ s ]

| 2 |Exponential Smoothing Forecast, 12/9/2005 5:24:34 PM
| 4 |Level Smoothing Constant 0938901 4| 4
| 5 |Trend Smoothing Constant 0.316731| 4| 3 Exponential Smoothing Forecast, 12/9/2005 5:24:34 PM
| 6 |Season Smoothing Constant 0.121987| 4| 4
| 7 |Dampening Parameter 0.520188| 4| 4 400
| & |Periods in Season 12 200 |

9 |Trend Method (0=N 1=DA 2=D 1|{Dampened) Additive Trend
| 10 |Season Method (0=N,1=A 3=M) 1| additive Season 200 1
| 11 |Confidence Level for P | s 95% | 1.644854 100 ":
| 12 | Stochastic Forecast TRUE 0 :
[Bich Moan Abs. Percent Error 3728 00 425 5176 101125 151 176 201 225 251 276 301 325 351 376 401 425
| 14 |Median Abs. Percent Error 2 684
| 15 Wweighted Abs. Percent Error 3.039 -200 4
| 16 | Theil's U2 Statistic 0.046 -300
| 17 |Root Mean Squared Error 3.304

18 |Mean Abs. Error 2447 —Sales —Predicted Sales —=LFl —=UP|

19 |Period Sales Predicted Error Level Trend Season
20| 11 20.06] #NA | ENA | ENA #NA #NA Trend and Cycle
| 21| 2 2034 #NA #NA #NA #NIA #MAA
| 22 | 3 2141 #NA #NA #NA #MIA #MAA
| 23 | 4 2251 #NA #NIA #NA #NIA #MAA 4 4
| 24 | 5 239 #MNA #NIA, #NIA, #N/A #MAA 34 ‘ J . } T3
IR E R R AR
| 26 | TI2415 #NA | ENA | ENA | #NA #NA 04 ﬂjf bty |“|‘ 0 Wh” i ||4 ‘ ,l| Wl \‘I | i ‘ ’
El 5 2402 #wA | #NA | ENA ENA #NA "b 18 T B TR ST ' iy ‘ a “
| 25 | 9 237 #NA #N/A #N/A #N/A, #NFA, -2 0
| 29 | 10 2511 #NA #N/A #N/A #N/A, #NFA, -l
| 30| il 2336 #NA #N/A #N/A #N/A, #NFA, 41 L.2
| 31| 12 2488 #N/A #NIA #NA #N/A #MFA 5 3
| 32| 13 273 2814687 -0.84687 2837147 -015691 -1.02604
| 33| 14 2932 293929 -0.0729 2821989 -0.10471 1.103818 — Trend —— Season
| 34 | 19 31.28| 30.69336) 0.586638 28.715937 0.119041 2.533156

14.5 Measuring Forecast Errors

Five functions are included in Simetar for quantifying forecast errors. The functions are found in
most statistics books so the equations are not presented here. An example of the five forecast
error statistics is available below and in Forecast Errors Demo.xls.

— Mean Absolute Percent Error function is:
=MAPE (Array of Residuals, Array of History)

— Weighted Absolute Percent function is:
=WAPE (Array of Residuals, Array of History)

— Mean Absolute Error function is:
=MAE (Array of Residuals)

— Root Mean Square Error function is:
=RMSE (Array of Residuals)

— Theil U2 statistic function is:
=THEILU2 (Array of Residuals, Array of History, Change)

where: Array of Residuals is the cell reference for the array of errors or residuals,
Array of History is the cell reference for the array of historical data that was used to
generate the residuals, and
Change is an optional term to indicate if the statistic is to be calculated in the given
levels of the data or as a function of the changes in forecast. FALSE returns the statistic
based on levels; TRUE returns the statistic based on changes. The default value is
FALSE.



66

E | F [ G H g k]
| 5 |Forecast Error Statistics Values  Formulas
| B | Mean Abs. Percent Error 52768 =MAPE(DE.D2S BB:B29)
| 7 | WWeighted Abs. Percent Error 5,285 =WaAPE(DE D29 BE.E29)
| B | Theil's U2 Statistic 0.064 =THEILU2{DE:D23 ER.E29)
| 9 | KootMean Squared Error 1.714  =RMSE(DE:D25)
10| Mean Abs. Error 1.400  =MmAE(DE:D29)
11| Mean 2643083 =AVERAGE(BEEZ9)
| 12 | Std Dev from Mean J.B57701  =STDEVP(EE.E29)
| 13| Std Dev of Residuals Trend 1.714281 =STDEYP(DE:D29)

15.0 Time Series Analysis and Forecasting

Functions for estimating and forecasting time series models in Simetar are presented in this
section. Functions used to test for stationarity and number of lags are described first, followed
by a general autoregressive model menu for estimating autoregressive (AR) and vector
autoregressive (VAR) models. The time series analysis functions facilitate parameter estimation
and forecasting with both AR and VAR models to aid in developing probabilistic forecasts for
simulation. The time series capabilities of Simetar are demonstrated in Time Series Demo.xls.

15.1 Tests for Stationarity

Time series models should only be estimated for data series that are stationary. A series can
generally be made stationary by differencing. An accepted test for determining if a series is
stationary is the Dickey-Fuller test. The Dickey-Fuller Test can be calculated using the Simetar
function =DF (). The =DF( ) function allows the user to test for alternative combinations of
differences in an efficient manner to find the combination of adjustments necessary to make a
series stationary. The equation used to calculate the DF statistic is:

B, + BY, + B,T, + z o, AY,,

i=1

AY, =

t

Dickey-Fuller Test

Augmented Dickey-Fuller Test

where: AY, is the first difference of the data series Y,

B, is the intercept,

B, is the slope parameter estimated for the lagged Y variable (Y, ),

B; is the slope parameters estimated for the trend variable (T), and

o; 1s the parameter for the AY,; for different lengths of higher order lags (1), such as

first, second, third, ... order lags.

The Dickey-Fuller Test uses the first two components of the above equation and tests for the
presence of nonstationarity, in the absence of trend. The Augmented Dickey-Fuller Test
includes the third and/or the fourth components of the equation to test for the presence of a trend
in the series and for higher order differences. The Simetar function to calculate the Dickey-
Fuller Tests on a series of data is:

=DF(Y Values Range, [Time Trend], [No. of Lag Diffs], [No. of Diff.])
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where: Y Values Range is the location of the data series to be tested (this is all that is necessary
for the basic Dickey-Fuller Test),
Time Trend is a true or false switch to indicate whether a trend is to be included in the
Augmented Test: “False or 0” for no trend and “True or 1” for a trend,
No. of Lag Diffs is the number of higher order lags to use for the Augmented Test,
usually 0, (this is the value for n in the AY, ;summation), and

No. of Diff is the number of differences for the original data series Y. This parameter
can be used to test for nonstationarity of a specified number of differences, say 2.

Examples of using the =DF( ) function are provided below and in Time Series Demo.xls to
demonstrate how it can be used. The basic Dickey-Fuller Test is entered as:
=DF(Y Values Range)
The Augmented Dickey-Fuller Test that includes a trend is entered as :
=DF(Y Values Range, 1)
The Augmented Dickey-Fuller Test that has no trend and tests for the presence of a second order
autocorrelation lag is entered as:
=DF(Y Values Range, 0, 2)
The Augmented Dickey-Fuller Test that includes trend and tests for the presence of a second
order autocorrelation lag is entered as:
=DF(Y Values Range, 1, 2)

The null hypothesis for the Dickey-Fuller
Tests is: Hy: data series is nonstationary.
The critical test statistic for the Dickey-
Fuller Test, based on large sample theory,
is approximately -2.9 at the 5% level. The
null hypothesis is rejected if the DF statistic
is less than the -2.9 critical value. The
Dickey-Fuller test demonstrated above is in
the Tests worksheet of Time Series
Demo.xls workbook. The Dickey-Fuller ;
tests for the data are reported for alternative Critical Value is -2.90

lagS’ differences, and trend ShOW hOW the | 21 |Reject "Ho: The Series is Nonstationary” if DF is less than the Critical Value
function can help identify the combination of differences, trend, and lags necessary to make the
raw data series stationary.

¢ | o | E F | ¢ | = | 1 | 1 |
Demonstrate the use of Dickey-Fuller Test
=DF (Data Range, [Time Trend True or False], [No. of Lags], [No. of Differences])
Dickey-Fuller Test of the Witchita Data
No. Diff. No.Lags Trend =DF() Statistic Formula for DF()

0 0 o] -2.6038 =DF($A37 $AF91 E10D10,C10)
-12146  =DF($A37 §AF91 E11,D11,C11)
-16188  =DF($A37 $AF91 E12D12,C12)

-1886 =DF(3AF7 $AF91 E13D13,C13)
-1.7454  =DF($A37 $AF91 E14D14,C14)
-6.3545 =DF($A37 §AF91 E15D15,C15)
-8.0561 =DF($A37 $AF91 E16D16,C16)
-10776  =DF($A37 $AF91 E17D17,C17)
-4.1588  =DF($A37 §AF91 E18D18,C18)
-12111  =DF($A37 $AF91 E19D19,C19)
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15.2 Number of Lags

For time series analysis it is necessary to determine the optimal number of lags for the AR model
after determining the number of differences necessary to make the series stationary. The
=ARLAG() function in Simetar suggests the optimal number of lags to use for the AR model.
The =ARLAG( ) function returns the number of lags that minimizes the Schwarz criterion given
a particular number of differences. The function is programmed as:

=ARLAG (Y Values Range, [Constant], [No. of Diff])

where: Y Values Range is the range of the time series data to be evaluated,
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Constant is an optional term if the AR model is expected to have a constant term (true or
1) or has no constant (false or 0). The default is to use a constant term (true) if the
value is omitted, and

No. of Diff is the optional number of differences of the original data series Y assumed to
make the series stationary.

The =ARLAG( ) function bases its suggestion for the number of lags on the Schwarz criterion
test. The test statistic for the Schwarz criterion can be calculated using the following Simetar
function

=ARSCHWARZ (Y Values Range, [Constant], [No. of Diff])
where: All parameters are defined the same as the ARLAG function.

A table for implementing the =ARLAG( ) and =ARSCHWARZ( ) functions is demonstrated
above. In Excel these functions are dynamic, so you can change the number of differences or the
presence of a constant and observe the change in the test statistics. An example of how the
=ARLAG( ) and the =ARSCHWARZ( ) functions are used is provided in the Tests worksheet of
Time Series Demo.xls workbook. Both tests are demonstrated for 1-4 differences, with and
without the constant term. Use the =ARSCHWARZ( ) function to test alternative differences
and select the lag structure that minimizes the Schwarz test statistic.

15.3 Sample Autocorrelation Coefficients

In time series modeling it is useful to estimate the sample autocorrelation coefficients and the
sample partial autocorrelation coefficients. These coefficients are calculated using the Simetar
functions =AUTOCORR( ) and =PAUTOCORR( ). The functions are programmed as:

=AUTOCORR (Y Values Range, No. of Lags, No. of Diff)
and
=PAUTOCORR (Y Values Range, No. of Lags, No. of Diff)

where: Y Values Range is the range of the time series data to be evaluated,
No. of Lags is the number of higher order lags to test, and
No. of Diff is the number of differences of the original data series Y to test.

. c | o | E ] F | e | = | 1 I
BOth Of these fllnCtlonS C'an be used as | 26 |Demonstrate the AR and ARSCHARZ Functions to Test the Numnber of Lags for
“Scalar” or “array” functlons_ When used | 27 |Alternative Assumptions about C'onstant and Numbers of Differences.
. . 23 No. of Calculated
asa Sqalar, the funcjtlon's re.turn. a Slngle 29 |Constant Differences No of Lags Formula
value in the cell which is highlighted. The |30 =ARSCHWARZ()

. . . 31| © 1 123 =ARSCHWARZ($AS7 $4$91,031,D31)
value returned is the correlation coefficient |5, 5 145 —ARECHWARZ(3AST SAS91.032D32)
or the partial autocorrelation coefficient. 33 ¢ 3 L73 =ARSCHWARZE:£? :ﬁ%CBDBB;

. . . 34 1 1 1.23| =ARSCHWARZ 7 91,034,034
To use these functions in their array form, |35 5 145  —ARSCHWARZ(SA$7 SAS91 C35 D35
highlight three cells in a 3x1 or 1x3 e 3 7@:50 =ARSCHWARZ(AST $4391,036 D36
pattern, enter the function name and I 1 1| =ARLAG(SA$7:$4$91,C38,D38)
parameters indicated above, and then press 32 ¢ 2 2 =ARLAGEAIT:SAT91,C39,D39)

. 40| © 3 5 =ARLAG(EAST:$A$91,040D40)
the Control Shift Enter keys. Three values |41 1 1 —ARLAG(EAST $ASS1,C41,D41)
will be calculated and placed in the 42 1 2 2| SARLAG(SAS7 $A891,042D42)

43| 1 3 5 =ARLAG(EAST $A$91,043D43)
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highlighted array. The first value (top or left most) is the autocorrelation or partial
autocorrelation coefficient. The next (middle) value is the Student’s -t statistic for the
coefficient. The last value is the standard error for the coefficient. In the array form these
functions can be used to develop tables showing the autocorrelation coefficients and their levels
of statistical significance for alternative numbers of lags and differences.

The example on the right demonstrates
using the two functions to estimate
sample autocorrelation and partial
autocorrelation coefficients. The
example comes from the Tests
worksheet of the Time Series Demo.xls
workbook. Four different lags and first
and second differences were tested for
the data series. Both autocorrelation
functions are demonstrated in array form
and the partial autocorrelation
coefficient function is demonstrated as a
scaler to develop a table of test statistics.

¢c | o | E | F [ & | =®w | 1 | 1 | & L

|42 |
|49 |
|50
|51
52

Demonstrate the Auto-Correlation and Partial Auto-Correlation Coefficients Functions

Sample and Partial Auto Correlation Coefficient Functions Demonstrated as Array Functions

Test Lags of 1, 2, 3, and 4 periods, assuming First or Second Differenced Data

Sample Auto CoriStudent-t Std Error for
Coefficier Statistic  Auto Corr Coefl

No Lags No. Diff Formula for =Autocorr() in Column F

15.4 Maximum Likelihood Ratio Test

| 53 | 1 1 -0.2885  -2.6444 010911 =AUTOCORR($A$7 $4$91,053 D53)
| 54 | 2 1 -0.2054 0 -1.743 011784 =AUTOCORR(SAF7 :$AF91,C54,D54)
| 55 | 3 1 0.17633 144494 012203 =AUTOCORR($AF7 :$AF91,C55,D55)
| 56 4 1 -01216) -0.9723 012503 =AUTOCORR($AST $A591,C56 Da6)
| 57 | 1 2 -0.5313 -4.8405 0.10976 =AUTOCORR($A$7 $4591,057 D5T)
| 58 | 2 2 -0.1176) -0.8366 Q1373 =AUTOCORR($A$7 :$A591,C58,D58)
| 59 | 3 2 026795 193455 013851 =AUTOCORR($AF7 :$A591,C59,D59)
| 60 4 2 -0.1289 -0.8915 0.14462 =AUTOCORR($AF7 :$A591,C60,D60)
| 61 Partial

| 62 | Auto Cori Student-t Std Error for Partial

63 |No Lags No. Diff Coefficiel Statistic Auto Corr Coef Formula for =FPAutocorr() in Column F
| 64 1 1 -0.2885 -2.6444 010911 =PAUTOCORR($ALT $A$1,064,D64)
| 65 | 2 1 -0.3149 ) -2.8858 010911 =PAUTOCORR($AST $AF21,C65,D65)
| 65 | 3 1 0.00%15) 0.08384 010911 =PAUTOCORR(SAST $AFS1,C68,D68)
| 67 | 4 1 S0.1411 -1.293 010911 =PAUTOCCORR($AST $4$91,067 D67y
| 68 | 1 2 -05313 -4.8405 010976 =PAUTOCORR($AST $A$91,068,D68)
| 69 | 2 2 -0.5572 50763 010976 =PAUTOCORR($AST $AF21,C69,D69)
| 70 | 3 2 -0.2534 ) -2.3085 0.10976 =PAUTOCORR($AST $A$21,C70,D70)
|71 | 4 2 -0.2035  -1.8535 010976 =PAUTOCORR($AST $4$91,071.D71)

A maximum likelihood ratio test (LRT) is included as a function in Simetar to facilitate
estimation of the number of lags for an unrestricted vector autoregressive (VAR) model. The
LRT is estimated for alternative possible lags using the following function:

=LRT (Y Values Range, No. of Lags, Constant, No. of Diff, Error Correction)

where:

inclusion in a VAR. Two or more data series must be identified.
No. of Lags is the number of lags to test,
Constant is a switch as to whether a constant term (True or 1) is to be included or not

(False or 0),

Y Values Range is the range of the time series data to be evaluated for potential

No. of Diff is the number of differences of the original data series to test, and
Error Correction is whether to perform an error correction (True or 1) on the data or not

(False or 0).

The =LRT( ) is demonstrated in the Tests worksheet of the Time Series Demo.xlIs workbook.
Two data series were tested for 7 different lags assuming three differences, a constant, and error
correction. The parameters for the =LRT( ) are displayed in a table below the LRTs so one can

easily change a parameter and observe the changes in the LRTs.

¢ | o | E | F | ¢ | B | 1 | 1 | E
82 |Demonstrate the LRT or Liklihood Ratio Test
23 Lags
84 1 2 3 4 ] 5] 7
25 |Wichita 4525 1923 454 2171 712 768 £.63
26 |Salina -36.21 0.09 7.68 0.98 1.37 1.37 1013
g7 Constant | Diffs  Error Correction
38 TRUE 3 TRUE | Change the bold values and observe the LRTs.
89 Formula in cell DES
90 —LRT($A37 $A591 D84 $D$88 JEFSS,$FE8S)
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15.5 Estimating and Forecasting Autoregressive (AR) Models

The Time Series Analysis menu (Figure 49) provides the
mechanism to program the information necessary to
estimate and forecast an auto-regressive (AR) model. The
Time Series Analysis menu is activated by selecting the
L5 icon. If you specify the data to analyze as a single
variable (column of data) in the Data Series window, the
Time Series Analyzer will estimate an AR model.
(Specifying two or more columns causes Simetar to
estimate a VAR model.) The Number of Lags_and
Number of Differences for the original data must be
specified for the AR model. In addition, provisions are
available in the dialog box to indicate whether or not the
Constant is Zero. The number of Forecast Periods to
project using the estimated model is also specified in the
dialog box. It is recommended that the Time Series menu
be programmed to: (a) calculate the residuals, (b) graph
the historical and projected values, and (c) graph the
impulse response function (see example below).

The results of estimating an AR model with four lags and
one difference or an AR (4,1) model is presented below
and in the AR worksheet of the Time Series Demo.xls

Time Series Analysis Engine

Output Range: I $Co

Data Series: | ARI$AY6:34991

[ Labels in Eirst Cel

® Data in Columns " Data in Rows

Mumber of Lags:

Mumber of Cifferences:

Forecast Periods: 1

11

[ Error Correction
[v Constant is Zero
v Calculate Residuals

[¥ Graph Historical & Projected

[ ‘Graph Irmpulse Response Function:

Ok

Cancel Help

Figure 49. Time Series
Analysis Dialog Box.

workbook. Several supporting tests are provided along with the coefficients, namely, the
Schwarz test, and two Dickey-Fuller tests. The forecast values for the AR model are provided
for 10 periods, as programmed in the dialog box, and are labeled “Forecast.” “Impulse
Response” values are provided for each forecast period (see th example below). Student-t
statistics for the sample and partial autocorrelation coefficients are provided for the 10 periods of

forecast output.

c [T o T T F [ ¢ [ 8 [ 1 [ 17 [ & [ L [ ™ [ § [ o " [ o [ R ]
| 6 |AR Series Analysis Results for 4 Lags & 1 Difference. 12/18/2004 10:09:44 PM
| 7 | Constant | WichitaL.] Wichital.Z Wichital.? WichitaL4 Historical & Predicted
| & [Wichita [ 0407 0383  -0327  0.000  0.000]
| 9 |S.E. of Coefficients 40.000
10 |Wichita ‘ 0.333 0.108 0.108 0.000 DUDD‘
E Restriction Matrix 30.000
| 12 [Wichita | 1 1 1 0 0] 20000
iDiﬂ'elvnf# 1
| 14 | Character Dickey-Fr Aug. Dick Schwarz | §.. ResicMAPE  AIC 10.000
|15 | Wichita  -12146  -0021] 1227 2000186 1173 220 gooo
16 |[Forecast Impulse Auto- t-Statistic Partial t-Statistic
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The time series output generated by Simetar is dynamic meaning that the beta coefficients in the
AR model will update if you change the values in the original data or replace the input data array
with another series of data. An added feature is the capability to impose restrictions on the
initial AR model by dropping out/re-entering lags in real time. The Restriction Matrix has 1°s
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beneath each lags’ coefficient. When the restriction value of 1 is changed to 0 the model is re-
estimated without that particular variable or lag. The example AR model in DemoSimetar-Ar
was run with 4 lags so the user can experiment with deleting unnecessary lags using the
Restriction Matrix. When the 2™, 3™ and 4™ lags are restricted out the standard deviation for the
residuals increases slightly from 2.86 to 3.06. As these higher order lags are removed the MAPE
increases only about 1.3 percentage points. The AIC is minimized when lags 3 and 4 are
removed.

Note that the initial number of lags and differences specified for the AR model determines the
number of observations used to estimate the coefficients. When an AR model of 1* differenced
data is estimated with four lags initially but the 3 and 4™ lags are restricted out, the resulting
coefficients will not equal those for an AR(1) model estimated with two lags. The reason the
coefficients are slightly different is that the latter model uses two more observations to estimate
the parameters. It is recommended that the restricted AR model be re-estimated using the exact
number of lags once the restricted model is acceptable.

As the restrictions on the lags are imposed on the unrestricted model the following test statistics
do not change: Dickey-Fuller Test, Augmented Dickey-Fuller Test, and Schwarz Test (see
example above). These statistics do not change because they reflect the number of differences
specified for the unrestricted model. For example, the Dickey-Fuller Test statistic for an
AR(4,1) model is calculated as =DF(data,,,1) and for an AR(4,2) model it is =DF(data,,,2). The
Schwarz Test statistic is based on the number of differences [=TARSCHWARZ(data,,No. of
Differences)] and does not change as the number of lags is restricted.

It is possible to interactively analyze the impact of changing the number of differences to
the data in the AR model. In the second row of the Restriction Matrix (see the example above) is
the word Differences followed by a value, in this case 1. The 1 in the Difference row means the
data have been differenced once. To “re-run” the model with second differenced data, type a 2
into the restriction matrix in place of the 1. This change causes Simetar to re-estimate all of the
parameters and update the goodness of fit test statistics.

The predicted values over the historical period and their residuals are provided for the AR
model. The residuals are also expressed as a fraction of the predicted data. The predicted values
and the residuals begin with observation 6, for this example, because the lag/difference structure
of an AR(4,1) model uses the first 5 observations.

A graph of the historical and predicted values for the data series is generated by the Time Series
function. The thin line represents the original data while the bold line represents the predicted
values. Projections beyond the historical data in the graph correspond to the 10 period forecast
requested in the dialog box (Figure 43).

A graph of the Impulse Response Function is also included in the forecast. The impulse
response values are included in the output, but they are easier to see in the graph. A stationary
model will exhibit continuously decreasing impulse responses to a 1 unit change at the outset of
the period, as depicted by the graph in the AR Worksheet. The Impulse Response Function
graph changes as the lags in the model are restricted out. Not shown in example above are the
autocorrelation and partial autocorrelation function graphs for the AR model.
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15.6 Estimating and Forecasting Vector Autoregressive (VAR) Models

The Time Series Analysis Engine dialog box (Figure 50)
can be used to estimate and forecast VAR models. VAR
model analyses begin by selecting the & icon on the
Simetar toolbar. To estimate a VAR model, take all the
steps used to estimate an AR model with one exception,
specify two or more adjacent series in the Data Series
menu (Figure 50). When two or more data series are
specified, Simetar uses the more general estimation
procedure for a VAR. The number of lags and differences
should be specified based on prior analyses and tests.

The results of estimating and forecasting a two variable
unrestricted VAR model are presented in the VAR
worksheet of the Time Series Demo.xls Workbook and
below. The Time Series function estimated the parameters
for the VAR model using 4 lags and 1 difference with a
constant, so 18 parameters are presented in the results.
Various time series tests statistics for the model are
presented below the parameters.

The first and second rows of the Restriction Matrix
contain 1’s indicating all lags are initially in the model.

Time Series Analysis Engine il
Cutput Range: I jE$8 J
Data Series: I VARISASS:3B393)] J

[ Labels in Eirst: Cel

® Data in Columns (" Data in Rows

Mumber of Lags:

Mumber of Cifferences:

Forecast Periods: 1

11

¥ Error Correction
[ Constant is Zero
v Calculate Residuals

[ Graph Historical & Projected

[v Graph Impulse Response Function

Ok Cancel Help

Figure 50. Time Series
Analysis Dialog Box for a VAR

These restriction values can be changed to 0’s to re-fit the VAR in real time by selectively
deleting lags for one or both of the variables (see the example below). Changing the 1’s to 0’s
and observing the change in the test statistics will enable the user to instantly experiment with a
large number of model specifications. The interaction among the variables and their lags can be
tested interactively using this feature in the Simetar VAR. The third row in the Restriction
Matrix provides the switch to re-fit the VAR model with alternative numbers of differences, in

real time.
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Forecasted values for both of the data series are provided in the output section. Impulse
responses for the system of variables are also provided. These impulse response values are also
summarized in a graph when requested.

Actual and predicted values over the historical period are presented in the top chart. Numbers
behind the predicted values over the historical period are provided, beginning with period 6. The
forecast values have a label with the word “Pred” following the variables name. Residuals for
the VAR predicted values are also included in the output.

The residuals from the historical data can be used to simulate the unexplained variability or
stochastic components of the random variables. Use the residuals to estimate the standard

deviation about the forecasted values. Also use the residuals to estimate the correlation matrix
for correlating random values about the forecasts.

16.0 Other Statistical and Data Analysis Functions

16.1 Summary Statistics

The dialog box used to calculate summary statistics for a variable EXEEEaER0e x|
(Figur_e 45) appears when the Summary Statistics menu item or SckctRange | Sheet1B$1298925 o]
icon 9% is selected. Select in the Select Range box and highlight Ell el o e G2
the range (columq or row) to analyze. Next click in the Output QupatRange [ gag7 |
Range box and click the cell where the results are to be placed.
All of the statistics and their names (mean, standard deviation, v Standard .

; L. . ; Deviation C Population @ Sample
coefficient of variation, minimum, maximum, lower and upper
confidence interval, and sum) will be placed in the worksheet V" Coefficient of Variation
starting with the Output Range cell if the Add Output Labels P

button is clicked. The standard deviation can be calculated using
either the population or the sample formula. The coefficient of IV count | If > | 200 [~
variation, sum, count and autocorrelation coefficient are not
calculated unless these statistics are specified by selecting their
boxes. Experiment with the dynamic nature of Simetar by ¥ Add Qutput Labels
changing the values in the original data and observing the
updated summary statistics. See Data Analysis Demo.xls for an

[ iutocorrelation Coefficient:

(84 | Cancel Help

example.
Figure 51. Summary Statistics

The Count and Sum options in the Summary Statistics menu are Dialog Box.

available for conditional counts and sums of the data. Consider

the situation where you have 2,500 observations and need to know how many values are less

than or equal to 10.0. Perform this calculation by clicking on Count, followed by selecting the

IF <= box, and then type the target value in the right hand box 10.0. The conditional count will

appear with the other statistics.
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16.2 Jackknife Estimator

Simetar provides a jackknife function which can be used to estimate parameters for any
statistical formula or function in Excel or in Simetar. Given an n-dimensional vector or matrix
of data and an associated statistic based on the data, the jackknife procedure sequentially re-
estimates the statistic, leaving out the ith row at each iteration, where 1 = 1,...,N. These n
statistics are then used to calculate the average statistic, the bias relative to the original statistic,
and the jackknife variance of the statistic. The format for the =JACKKNIFE() function is:

=JACKKNIFE(DataRange, FormulaRef, RetVariance, Delete_D)
=JACKKNIFE(A2:B20,C2:D3)

Where: Data Range is a reference to a range of data that will be resampled to calculate the
jackknife estimator. If this range is an Nx1 vector, then the estimator will be calculated
based on sequentially removing the ith row of the vector, where i = 1,...,N. Similarly, if
this range is an NxK matrix, the estimator will be calculated based on sequentially
removing the ith row of the matrix. Thus, multivariate data should be arranged with
variables in columns,

FormulaRef is a reference to a range or cell that contains a formula which calculates an
estimate based on the given Data Range. The jackknife estimator will be an average of
the result of this formula based on the sequentially re-sampled data,

RetVariance is an optional term to include if only the jackknife estimate of the estimator
variance is desired. A value of TRUE (or 1) will produce only the variance. A value of
FALSE (or 0) will produce the jackknife estimator, bias, and variance. The default
value is FALSE, and

Delete D is an optional term to include if D rows are to be deleted at a time instead of
one, where D is a positive integer less than n, the number of rows. The JACKKNIFE
Function will then estimate statistics based on removing D adjacent rows at a time
sequentially. This method is recommended when dealing with nonlinear statistics and
should be used in conjunction with random sub-sampling methods. The default is one.

17.0 Function Evaluation

Two Simetar functions are available for evaluating user specified nonlinear functions. The first,
=OPT( ), finds the minimum or maximum of a function given boundary constraints on the control
variables. The =OPT( ) function can also be used to find the value of X when a function equals a
target value, as zero. The second function, =RINTEGRAL( ) integrates a function over a given
range. Both functions provide approximate answers using efficient optimal control search and
solve algorithms. The level of precision can be increased, but at a slight cost of longer execution
times.
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17.1 Optimize a Function

The =OPT( ) function uses the Golden Section method for HES

opt

optimizing a non-linear function specified by the user. The Formulaet [C11

I

8

Constraint (12
‘hangeVariable (1}

=
=

function to optimize (maximize or minimize) can be either

[ s [ O

typed into the =OPT( ) function as a literal or as an equation  towerorsuess[cis 1000 m
typed into a cell. Optimization Function Demo.xls o St -
demonstrates both techniques for optimizing functions. No help avaliabie i
The easiest method for using the =OPT( ) function is to

type =OPT and then click on Excel’s Equation editor, %, ;;molmif:m i L] e
and fill in the blanks in the OPT equation editor form

(Figure 52). The optimization function parameters are: Figure 52. Equation Editor for the

Optimization Function =OPT().

=OPT (Formula, Constraint Type, Change Variable, Lower Guess, Upper Guess, Max
Iterations, Precision)

where: Formula is the function to be optimized, as: = 100 — 25X + 45X and must be typed into
the referenced cell as a formula,
Constraint Type must be typed as the word “Min” or “Max” for minimization or
maximization, respectively,
Change Variable is the cell which refers to the X variable in the function and can be any
feasible value of X,
Lower Guess is the minimum X,
Upper Guess is the maximum X,
Max Iterations is the maximum number of calculation cycles to use, and
Precision is the degree of accuracy, such as 0.000001.

The value of X which causes the Y function to be optimized will appear in the cell where
=0OPT( ) is typed. Changing the parameters will cause Excel to calculate a new optimal value if
the current solution is at a boundary or more precision can be obtained. Changing the function
or input values to the function of course changes the =OPT( ) answer.

17.2 Value of a Function

Given a complex polynomial function that can be programmed in a cell as Y = f(X), Simetar can
solve for the value of X where Y equals a target value such as zero. A variation on the =OPT()
function can be used to solve this type of optimization problem. The parameters for the function
are:

=OPT (Formula, Target Value, Change Variable, Initial Guess, Upper Bound, Max
Iterations, Precision)

where: Formula is the cell reference for the function to be optimized,
Target Value is the value of Y when the function is optimized,
Change Variable is the cell referring to the X variable in the function and can be any
feasible value of X,
Initial Guess is the lower bound constraint of X,
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Upper Guess is the upper bound constraint of X,
Max Iterations is the maximum number of calculation cycles, and
Precision is the degree of accuracy, such as 0.000001.

When the =OPT( ) function fails to find the target value for Y over the range of the function it
returns #VALUE in the cell where =OPT( ) is typed. In this case, try another initial guess, the
upper bound, the level of precision or the maximum number of iterations. Excel will solve some
functions very fast; for example, Y = X* will find that Y equals 23 at 2.1958 very rapidly. See
Optimization Function Demo.xls for this example.

17.3 Integral of a Function

A function can be integrated over a specified range using the o Argumerts x|
=RINTEGRAL( ) function. This function provides an s e 10
approximate value for the integral using Riemann Integration. L‘;:‘;:“:l“ §f’o“

The level of precision can be increased by increasing the Urpstond]0 3- 100
number of partitions. The easiest way to use the function is to e j::f:]m%
develop a table of parameters and then use Excel’s Equation e
editor after typing =RINTEGRAL, as depicted in Figure 53. FormulaRet
An example of integrating a function Y = 100 — 25X + 45X? — P
over the interval of X equal 0 to 100 is provided in tle.on s foclon o | _an |
Optimization Function Demo.xls. The parameters for the Figure 53. Equation Editor
integration function are: for the Integral Function.

=RINTEGRAL (Formula, Variable Ref, Lower Bound, Upper Bound, Partitions)

where: Formula is the cell reference to the equation to be integrated,
Variable Ref is the cell reference for the independent variable (X) in the equation,
Lower Bound is the minimum X for the range of the integration,
Upper Bound is the maximum X for the range of the integration, and
Partitions is the number of intervals X range is partitioned into for integration.

The answer will appear in the =RINTEGRAL( ) function cell. It is recommended that you
increase the number of partitions until the change in the integral answer is zero. As you increase
the number of partitions, response time will slow. For the example in Optimization Function
Demo.xls the true value of 14,885,000 is reached at 300,000 partitions in about 25 seconds.

18.0 Getting Help with Simetar

Simetar Help is provided in two forms: detailed description of the functions and equation
editing help. Detailed descriptions are available for all of the Simetar functions by clicking the
help icon ¥ on the toolbar. When the help icon is selected the Help Index for Simetar window
(Figure 54) appears on the screen. Scroll down to the function of interest and click on the
function name. This action results in the requested Simetar Help screen appearing on the screen.

An example of requesting help from the Simetar Help Index for the =NORM( ) function is
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displayed in Figure 55. The help provided in the screen is designed to supplement the material
in this manual. You can either print the help screen, return to the Help Index, or close the help
screen by clicking on the appropriate button at the bottom of the Help Screen. Additional help on
the function is available from Simetar by clicking on the line “Help on the function” as
demonstrated for the =NORM() function below.

Excel provides pop-up help menus to assist with writing or editing equations. To access help for
equation programming simply type “equal and the function name” in a cell and then click the
“=" button or the # icon on the formula bar. An example of how this works for getting help
with the =CSND( ) function is provided in the worksheet example below and Figure 56. In the
example the analyst has highlighted three cells (B7:B9) in preparation for using the CSND
function as an array. After typing “=CSND” click the “fX” button in the formula toolbar at the
top of the worksheet and Excel will place a dialog box like Figure 50 on the screen.

T 4 ol -Ioi
e E——— e & Windows Help -|O &
Erd | valp Topes| | e | gpvome T | Fle Edt Bookmark Options Help
. Help Topics Back Options
Help Index for Simetar | | |
Chick on & topic link below lo search for specific funclions :‘ N ORM
Normal random variable ﬂ

Syntax
NORM(Mean, StanDev,RandNumber)

Mean Population expected value of the normal random variate
StanDev Population standard deviation of the normal random variate
e far bl willy teslbar menu cptions RandNumber  Uniform standard deviate used to generate the random variable

The pdf for the normal distribution given p and o is:

1:\7{;:;
e ¥ xe(-ww)ue(-w,%)c>0

1
o f(ﬂ#,-c)—oﬂ &

Figure 54. He|p Index D|a|og Box. Figure 55. Example of a Simetar Help Screen.

The equation help box in Figure 50 indicates the order of parameters for the =CSND( ) function
and the names of the parameters. You can fill in the worksheet cell locations for the parameters
by clicking the miniature grid to the right of each parameter and painting the appropriate cells
with the mouse. After filling in values for the parameters select OK.

The equation editor help function can be used to develop new equations and to de-bug existing
equations. Select a cell with an existing equation and click the “="" or “fX”” button on the formula
bar to see the equation editing help box. Equation editing help screens are available for all

Simetar and Excel functions.



IF » ¥ & =csnd| X
A | B | C | D | CovMatrix | -
1 |Correlation Matrix ISNDs )| =-
2 1 0.25 -0.5/ 0.550576 watsiow | -
3 1 03 0?08632 Correlated standard normal deviates . B
4 1 0.894564
5 |Generate 3x1 array of CSNDs CovMatrix Covariance matrix used in the dependency relationship of the vector .
[} :csndd
T Formula result =
5 Help on this function Cancel
Figure 56. Example of the Equation Help
Box.

19.0 Solutions to Problems in Simetar Application

Like all computer programs Simetar 2006 is the result of many enhancements. Each time one
function is complete we find two more to add and in the process a better way to do the first
function is developed. The program has come a long way given that it began in May 2000.
Simetar continues to grow and become more useful.

Most problems are associated with installing Simetar on computers with old operating
systems/versions of Excel and operators without administrative privilege. The optimal
environment is Windows 2000 operating system with Microsoft Office XP. The Demo programs
were developed in this environment. The first time you open one of the Demo workbooks it may
warn you of embedded macros — select “Enable Macros” and proceed. Next your Excel may
warn you that the Demo has external links — select “No” and proceed. Save the workbook to
your hard drive and the next time it is opened you will not have link warnings. The workbook
link warnings are caused by your computer storing Simetar in a different location than the
developer’s computer. Excel will update the links on its own.

This section documents errors we have observed. Most of the problems occur because Excel’s
Calculation is set to Manual or the Operating System burps and sets Calculation to Manual
during your Excel session. Set Calculation to Automatic and leave it there and check it if
errors occur.

19.1 My program was working when | saved it, but now the Simetar functions have
#NAME

Sometimes Simetar and Excel gets confused and you need to remind Excel that Simetar is
loaded, to do this follow these steps:

Tools > Add-Ins > Uncheck the box for Simetar

Then repeat the process

Tools > Add-Ins > Check the box for Simetar
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19.2 File Not Found dialog box with a file name of “PBJ.XLA” listed, appears when | open
a workbook

Click the “Cancel” button and Excel will update the links to Simetar and PBJ using the current
location of these files on your computer. This error occurs when the workbook was created on a
different computer. Save the workbook and the next time it is opened there will be no problem.
19.3 Simetar Functions returns #NAME! instead of values
Sometimes Simetar and Excel gets confused and you need to remind Excel that Simetar is
loaded, to do this follow these steps:

Tools > Add-Ins > Uncheck the box for Simetar

Then repeat the process

Tools > Add-Ins > Check the box for Simetar

If your computer is running Excel 97, load Service Pack 2. If your computer is running
Excel 95, get a newer version of Excel.

19.4 Scenario names in Stochastic Dominance tables appear as #NUM!
Press Function key F9
Set calculation to automatic by following these steps:

Tools > Options > Calculation, set the calculation option to Automatic

19.5 Statistics for the first stochastic variable in SimData Worksheet appear as #DI1V/0!

Press Function key F9 if the problem goes away, do the following:
Check Tools > Options > Calculation, set the Calculation option to Automatic

Check if the variable is a constant. If it is then the means will not be zero but the standard
deviation and coefficient of variation will be #DIV/0!

19.6 Values for SERF table and chart in SERFTDbI1 do not change when you change the
ARAC:s or the utility function

Check Tools > Options > Calculation, set the Calculation option to Automatic

19.7 Results from Testing a Single Variable for Normality returns #VALUE! in place of
values

Check Tools > Options > Calculation, set the Calculation option to Automatic
Delete the formats in the cells for the output range that may be left over from previous sessions.

19.8 Results of Compare Two Data Series returns #DI1V/0! and #NUM! in place of values

Check Tools > Options > Calculation set the Calculation option to Automatic
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19.9 Multiple regression returns #D1V/0! for standard deviation of residuals and/or MAPE
is #VALUE!

Check Tools > Options > Calculation, set the Calculation option to Automatic

19.10 Multiple regression does not update the beta hats and goodness of fit statistics when a
restriction value is changed

Check Tools > Options > Calculation, set the Calculation option to Automatic

19.11 Multiple regression does not update the beta hats and goodness of fit statistics when
one of the X or Y observations is changed

Check Tools > Options > Calculation, set the Calculation option to Automatic

19.12 Multiple regression, time series, and other menu enabled functions return numbers
instead of the names for the X and/or Y variables

The dialog boxes allow you to enter “Labels in First Cell,” you did not include the label in the
first cell, so Simetar used the first observation as the name of each X variable and/or for Y.
Include the variables label when dialog boxes are used to enter data for functions.

19.13 Time series (AR and/or VAR) procedure returns #VALUE! instead of the coefficients

Check Tools > Options > Calculation, set the Calculation option to Automatic

19.14 Stochastic variables (cells) in the worksheet do not change when the Enter or F9 Keys
are pressed

Check Tools > Options > Calculation, set the Calculation option to Automatic

Check the Simetar Toolbar to see if worksheet sampling has been set to “Expected Value”, if so
click the Expected Value button on the Simetar Toolbar.

19.15 Stochastic variables (cells) in the worksheet are fixed at zero or the mean and do not
change when F9 is pressed

The “Expected Value” button in the Expected Value button on the Toolbar is turned on. Turn
the option off by clicking on the Expected Value button.

19.16 The CDF or SERF chart has numbers instead of names on the lines and/or the
scenario names in the legend are numbers

The “Labels in First Cell” option was turned on so the program used the first observation for
each scenario as the scenario names.

Be sure that the label in the first row starts with a letter, not a number, as 1998 or 2000.

19.17 Results and calculations in the simulation output worksheet, SimData, are gone
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Simetar writes the iteration results to worksheet SimData after each run. It uses as many
columns of the worksheet required for the output variables in the Simulation Engine. If you had
tables from a previous simulation run in the columns needed for the current run, they got over
written. When you place summary tables, tests, or chart data in SimData, rename the worksheet
so it will be protected from the next simulation.

19.18 Simulation used to run fast and now it has slowed down

e Another Excel workbook which contains stochastic variables may be open. When Simetar
simulates the stochastic variables in the open workbook, Excel also simulates the workbooks
that are minimized.

e The SERF option is dynamic and can slow the simulation down if the model is simulating
more than 500 iterations and SERF is tied to the SimData worksheet.

e Simulation can be slowed down if the SimData output is being used to calculate a large
number of CDF and PDF charts.

e The number of Key Output Variables that Simetar is collecting for statistical analysis may
have been expanded from previous runs.

e The number of Scenarios is greater than previous runs.

e The SimSolver option in the Simulation Engine is turned on.

19.19 A Simetar matrix or array function returns a single value when you expected an
array or matrix of answers.

Press F2 to edit the function; if it is typed correctly press three keys: Control Shift Enter.
Any time an array function is used, you MUST end by pressing these three keys: Control Shift
Enter.

19.20 Hypothesis Test statistics appear wrong.

e Re-do the test and be careful to indicate no labels in the first row and only include the data.

e Change the variable labels or names so they begin with a letter, as Y1988, not 1988 and re-
do the test.

e The t-tests are two tailed tests, so thye will not be the values you expect for a one-tailed test.

19.21 After installation, if the Excel Tool Bar does not show “Simetar,” it can be re-loaded
to the toolbar using the following steps:

Tools > Select Add-Ins ... > scroll down and click the box for Simetar > OK



20.0 List of All Simetar Functions

Following is a list and short description of all functions in Simetar:

ction Name

Description

Fun

ANOVA
ARLAG
ARSCHWARZ
AUTOCORR
BANDWIDTH
BERNOULLI
BERNOULLIDIST
BINOMINV
BLOCKIT
BOOTSTRAPPER
BOXCOX
BOXCOXEXP
BOXM
CAUCHY
CAUCHYDIST
CDFDEV
CELLSUB
CERTEQ
CMOVAVG
CONCAT
COSDIST
COSINV
CSND

CUSD
DELNUM
DELTEXT
DEMPIRICAL
DEXPONDIST
DEXPONINV
DF
DIRICHINV
EDF

EMP
EMPCOPULA
EMPIRICAL
EPANDIST
EWMA
EXPONINV
EXTVALDIST
EXTVALINV
GEOMDIST
GEOMINV
GMDIF

GRK

GRKS
GRKSDIST
GUMBELDIST
GUMBELINV
HOTELLTDIST
HOTELLTINV
HYPERGEOMINV
IMPULSE
INVGAUS
INVGAUSDIST
IQR
ITERATION
ITERSUM
JACKKNIFE

One way analysis of variance

Recommends the number of lags in an autoregressive model

Schwarz criterion associated with recommended number of lags
Autocorrelation function for a univariate time series

Bandwidth function in kernel density estimation

Bernoulli random variable

Bernoulli distribution function

Binomial random variable

Column Vector to a Matrix

Bootstrap resampling of a univariate or multivariate series

Box-Cox transformation of a data series for normalization

Estimate of the Box-Cox exponent in a Box-Cox transformation

Box’s M statistic for testing multivariate variances

Cauchy random variable

Cauchy distribution function

Indicate goodness of fit between sample data & known distribution data

Replace an item or items in a block of data

Certainty equivalent of a data series assuming a utility function

Centered moving average

Concatenate two or more matrices

Cosine distribution function

Cosine random variable

Correlated standard normal deviates

Correlated uniform standard deviates

Remove the numbers from a string of text and numbers

Remove the text from a string of text and numbers

Discrete empirical distribution random variable

Double exponential distribution function

Double exponential random variable

Dickey-Fuller test statistic

Dirichlet random variable

Empirical distribution function

Empirical random variable

Empirical copula function

Empirical random variable

Epanechnikov distribution function

Exponentially weighted moving average

Exponential random variable

Extreme value distribution function

Extreme value random variable

Geometric distribution function

Geometric random variable

Gini’s mean difference

GRK random variable

GRKS random variable

GRKS distribution function

Gumbel distribution function

Gumbel random variable

Hotelling T-squared distribution function

Hotelling T-squared random variable

Hypergeometric random variable

Impulse response function in a vector autoregression

Inverse Gaussian random variable

Inverse Gaussian distribution function

Inner quartile range of a sample

Show the iteration number during simulation

Sum a value across iterations during a simulation

Jackknife estimate of statistic, bias, and variance
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KDEINV
KTAU
LOGISTICDIST
LOGISTICINV
LOGIT
LOGLOGDIST
LOGLOGINV

LOGLOGISTICDIST
LOGLOGISTICINV

LR
LRAIC
LRBIG
LRDFBETA
LRDHATMAT
LRDW
LREGLS
LRGLS

LRGQ
LROBS
LRPARTCORR
LRRESID
LRRHO
LRRIDGE
LRSEMICORR
LRSIC

LRT

LRVIF
LRWLS

MAE
MAHANGLE
MAPE
MCENTER
MCHOL
MCOFACTOR
MCOR
MCOV
MDAPE
MDET
MDIAG
MDIST
MEDAVG
MEQCORR
MEVAL
MEXP
MGINVERSE
MIDEN

MINV

MIP

MJ

MKRON
MLEBETA
MLEBINOM
MLEDEXPON
MLEEXPON
MLEGAMMA
MLEGEOM
MLELOGISTIC
MLELOGLOG

MLELOGLOGISTIC
MLELOGNORM

MLENEGBIN
MLENORM
MLEPARETO
MLEPOISSON

Random variable based on a kernel density estimate
Kendall's Tau measure of concordance

Logistic distribution function

Logistic random variable

Logit binary response regression

Log-log distribution function

Log-log random variable

Log-logistic distribution function

Log-logistic random variable

Linear regression (OLS)

Akaike information criterion for a regression
Linear regression (OLS) for large data sets
Observational diagnostics for a regression
Diagonal of the hat matrix

Durbin-Watson test statistic in a regression
Estimated generalized least squares (EGLS)
Generalized least squares (GLS)
Goldfeld-Quandt test statistic for a regression
Regression observation count and degrees of freedom
Partial correlation function in a regression
Residuals and predicted values in a regression
Autocorrelation coefficient in the errors of a regression
Ridge regression

Semi-partial correlation function in a regression
Schwarz information criterion for a regression
Likelihood ratio test in univariate or multivariate autoregression estimation
Variance inflation factor for a regression
Weighted least squares (WLS)

Mean absolute error

Mabhalanobis angle of a data matrix

Mean absolute percent error

Centering matrix of a specified dimension
Choleski factorization of an nx(n+p) matrix, ()
Cofactor of a square matrix

Correlation matrix

Covariance matrix

Median absolute percent error

Determinant of a square matrix

Diagonalize a vector or matrix

Squared Mahalanobis distance of two data matrices
Median average

Equicorrelation matrix of a specified dimension
Eigenvalues of a square matrix

Exponential power of a matrix

Generalized inverse of a matrix

Identity matrix

Inverse of a square matrix

Inner product of two matrices

Matrix of 1s

Kronecker multiply two matrices

Beta MLE of parameter(s)

Binomial MLE of parameter(s)

Double Exponential MLE of parameter(s)
Exponential MLE of parameter(s)

Gamma MLE of parameter(s)

Geometric MLE of parameter(s)

Logistic MLE of parameter(s)

Log-Log MLE of parameter(s)

Log-Logistic MLE of parameter(s)

Lognormal MLE of parameter(s)

Negative Binomial MLE of parameter(s)
Normal MLE of parameter(s)

Pareto MLE of parameter(s)

Poisson MLE of parameter(s)



MLEUNIFORM
MLEWEIB
MNORM
MOMBETA
MOMBINOM
MOMDEXPON
MOMEXPON
MOMGAMMA
MOMGEOM
MOMLOGISTIC
MOMLOGLOG

Uniform MLE of parameter(s)
Weibull MLE of parameter(s)
Norm of a matrix

Beta MOM of parameter(s)
Binomial MOM of parameter(s)
Double Exponential MOM of parameter(s)
Exponential MOM of parameter(s)
Gamma MOM of parameter(s)
Geometric MOM of parameter(s)
Logistic MOM of parameter(s)
Log-Log MOM of parameter(s)

MOMLOGLOGISTIC Log-Logistic MOM of parameter(s)

MOMLOGNORM
MOMNEGBIN

Lognormal MOM of parameter(s)
Negative Binomial MOM of parameter(s)

MOMNORMNormal MOM of parameter(s)

MOMPARETO
MOMPOISSON
MOMUNIFORM
MOMWEIB
MORTH
MOVAVG
MPROD
MRANK
MRECH
MRRECH

MSE

MSQRT
MSTACK
MSVD
MSWEEP
MTOEP
MTPNORM
MTPNORMDIST
MTRACE
MULTINOMDIST
MULTINOMINV
MULTSORT
MVCHT

MVCV

MVEMP
MVEMPIRICAL
MVEPANDIST
MVLOGNORM
MVNORM
MVNORMDIST
MVPDENSITY
MVTINV
NEGBINOMINV
NORM
NORMAD
NORMCHI
NORMCVM
NORMKS
NORMSW

OPT

PARETO
PARETODIST
PAUTOCORR
PDENSITY
PERTDIST
PERTINV
PNORM
PNORMDIST
POISSONINV

Pareto MOM of parameter(s)

Poisson MOM of parameter(s)

Uniform MOM of parameter(s)

Weibull MOM of parameter(s)

Orthoganalize a matrix

Moving average

Multiply two or more conformable matrices
Rank of a matrix

Row Echelon Form of a matrix

Reduced row echelon form of a matrix

Mean squared error

Factor a square, symmetric matrix

Stack two or more matrices

Singular value decomposition of a matrix

Sweep a square matrix on a diagonal element
Column vector to a Toeplitz matrix

Modified two-piece normal random variable
Modified two-piece normal distribution function
Trace of a square matrix

Multinomial distribution function

Multinomial random vector

Sort a matrix by a specified column

LRT for complete homogeneity of multiple data matrices
Multivariate coefficient of variation
Multivariate empirical random vector
Multivariate empirical random vector
Multivariate Epanechnikov distribution function
Multivariate lognormal random vector
Multivariate normal random vector

Multivariate normal distribution function
Percentile based on a multivariate kernel density estimator
Multivariate student's t random variable
Negative binomial random variable

Normal random variable

Anderson Darling statistic for test of normality
Chi-squared statistic for a test of normality
Cramer von Mises statistic for test of normality
Kolmogorov Smirnov statistic for test of normality
Shapiro-Wilks statistic for test of normality
Find an iterative optimum solution

Pareto random variable

Pareto distribution function

Partial autocorrelation function for a univariate time series
Percentile based on a Kernel density estimator

Project evaluation and review technique (PERT) distribution function
Project evaluation and review technique (PERT) random variable

Power normal random variable
Power normal distribution function
Poisson random variable
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PROBIT
QUANTILE
RANDSORT
RANDWALK
RANKCORREL
REVERSE
RINTEGRAL
RMSE

RUSD
SCENARIO
SEMICIRCDIST
SEMICIRCINV
SEQ
SIMETARCR
STRETCHIT
TEMPIRICAL
TGAMMADIST
TGAMMAINV
THEILU2
TNORM
TNORMDIST
TPNORM
TPNORMDIST
TRANS
TRIANGLE
TRIANGLEDIST
TSDECOMP
TWEIBDIST
TWEIBINV
TWOSLS
UNBOXCOX
UNIFORM
UNIFORMDIST
USND

UuUSsD
VARAIC
VAREST
VARLRT
VARRESID
VFORMULA
WAPE
WBNAME
WEIBDIST
WEIBINV
WILKSLDIST
WILKSLINV
WISHDIST
WISHINV
WSNAME

Probit binary response regression

Find the quantile of an empirical CDF given the probability
Randomly sort a vector

Generate a random walk series

Rank correlation of two data series
Reverse the order of a vector

Riemann integral of a bounded function
Root mean squared error

Rank correlation matrix

Return a value associated with different scenarios in a simulation
Semicircle distribution function
Semicircle random variable

Sequence of numbers

Returns copyright information for Simetar
Matrix to a vector

Truncated empirical random variable
Truncated gamma distribution function
Truncated gamma random variable
Theil’s U2 statistic for forecasts
Truncated normal random variable
Truncated normal distribution function
Two-piece normal random variable
Two-piece normal distribution function
Transpose a matrix

Triangle random variable

Triangle distribution function

Time series decomposition

Truncated Weibull distribution function
Truncated Weibull random variable

Two stage least squares (2SLS)

Convert a Box-Cox transformed value back to the original level
Uniform random variable

Uniform distribution function
Uncorrelated standard normal deviate
Uncorrelated uniform standard deviate

Akaike information criterion in univariate or multivariate autoregression models

Univariate or multivariate autoregression estimation function

Likelihood ratio test in univariate or multivariate autoregression estimation
Predictions & residuals in univariate or multivariate autoregression models

View the formula in the referenced cell

Weighted absolute percent error

Return the name of the workbook

Weibull distribution function

Weibull random variable

Approximate cdf of the Wilks' Lambda random variable
Wilks Lambda random variable

Wishart distribution function

Wishart random matrix

Return the name of the worksheet



21.0 Cross Reference of Functions and Demonstration Programs

Topic Demonstration Program Name
ANOVA Data Analysis Tools Demo.xls
ANOVA test Hypothesis Tests Demo.xls

AR and VAR models estimated

AR model dynamic probabilistic forecast
AR model estimation

AR model estimation

ARLAG function

ARSCHWARZ function

AUTOCORR function

Additive seasonal decomposition forecasting with cycle
Additive seasonal decomposition forecasting without cycle
Amortize land debts

Amortize loans with monthly payments
Augmented Dickie Fuller test
Autocorrelation coefficients
Autocorrelation coefficients
Autocorrelation coefficients
Autocorrelation test

BERNOULLI function application
BOXCOX function

BOXCOXEXP function

Bad (singular) correlation/covariance matrix
Bernoulli distribution

Bernoulli distribution

Bernoulli distribution

Bernoulli distribution parameter estimation
Beta distribution

Beta distribution

Beta distribution

Bingo

Binomial distribution

Binomial distribution

Boot strap simulation

Bootstrap for singular matrix

Bootstrap simulation

Bootstrapper distribution

Box plot chart of risky alternatives

Box's M test

Box-Cox transformation

Business model

Simplified Business model of net returns
CDF chart of random variables

CDFDEYV function

CDFs for 12 distributions

CV stationarity for Normal distributions
CV stationarity for empirical distributions
Capital Investment Analyzer ©

Cauchy distribution

Cauchy distribution

Cauchy distribution

Centering a matrix

Centering matrix of size n

Chi-Squared distribution

Chi-Squared distribution

Chi-Squared test

Choleski decomposition of a covariance matrix
Coin toss

Column vector to a matrix

Compare means and variance for multivariate distributions

Time Series Demo.xls

Time Series Forecasting Demo.xls

Time Series Functions Demo.xls

Time Series Analysis Tools Demo.xls

Time Series Functions Demo.xls

Time Series Functions Demo.xls

Time Series Functions Demo.xls

Seasonal Decomposition Forecasts Demo.xls
Seasonal Decomposition Forecasts Demo.xls
Farm Simulator Demo.xls

Monthly Payments Demo.xls

Time Series Functions Demo.xls

Time Series Forecasting Demo.xls

Time Series Analysis Tools Demo.xls

Time Series Demo.xls

Time Series Functions Demo.xls

Simulate Alternative Distributions Demo.xls
Data Analysis Tools Demo.xls

Data Analysis Tools Demo.xls

Bad Correlation Matrix Demo.xls

Conditional Probability Distributions Demo.xls
Probability Distribution Demo.xls

Probability Distributions Demo.xls

Trend Regression to Reduce Risk Demo.xls
Probability Distribution Demo.xls

Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Games of Chance Demo.xls

Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Simulate All Probability Distributions Demo.xls
Bad Correlation Matrix Demo.xls

Probability Distributions Demo.xls

Probability Distribution Demo.xls

Analysis of Simulation Results Demo.xls

Data Analysis Tools Demo.xls

Data Analysis Tools Demo.xls

Deterministic Demo.xls

Business Model with Risk Demo.xls

Analysis of Simulation Results Demo.xls
Univariate Parameter Estimator Demo.xls

Test Parameters Demo.xls

CV Stationarity Normal Demo.xlIs

CV Stationarity Empirical Demo.xls

Net Present Value Internal Rate of Return Demo.xls
Probability Distribution Demo.xls

Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Probability Distribution Demo.xls

Probability Distributions Demo.xls

Data Analysis Tools Demo.xls

Parameter Estimation Tools Demo.xls

Games of Chance Demo.xls

Matrix Operation Tools Demo.xls

Hypothesis Tests Demo.xls
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Compare means and variance for univariate distributions
Compare means for two distributions -- ANOVA
Compare means for two series

Compare two data series

Compare two multivariate distributions

Compare two tests -- t and F tests

Compare two univariate distributions

Complete Homogeneity test

Concatenate data from two locations

Concatenate two matrices

Conditional distribution for simulating sales bonus
Conditional probability distributions

Confidence interval for seasonal index
Confidence intervals for Multiple Regression forecasts
Convert a matrix to a vector

Convert a vector to a matrix

Corporate federal income taxes

Corporate income taxes

Correct for CV non-stationarity Normal distribution
Correlated standard normal deviates

Correlated uniform standard deviates

Correlating Normal, Empirical, Uniform in a MV distribution
Correlation matrix calculated

Correlation matrix t test of rho vs. zero
Correlation matrix test simulated vs. historical
Correlation matrix validation for MV distributions
Correlation significance test

Correlation test of MVE method

Cosine distribution

Cosine distribution

Cost of a project with risk

Covariance matrix calculated

Covariance matrix estimation

Covariance matrix estimation

Crop Insurance premium estimation

Cumulative distributions for ranking risky alternatives
Cycle length estimation

Cyclical decomposition of times series data
Cyclical decomposition of times series data
Cyclical index

Cyclical index

Cyclical index

Cyclical index

DELNUM function

DELTEXT function

DEMPIRICAL function application

DF Betas

DF function

DF function

Decomposition forecasting

Decomposition forecasts

Decomposition of a time series

Delivery time and inventory management
Determinant of a square matrix

Determinate of a square matrix

Deterministic farm model

Deterministic simulation NPV and IROR
Deterministic simulation model

Dice

Dickie Fuller (DF) test

Dickie Fuller test

Dickie Fuller test

Dickie Fuller test

Discrete empirical distribution

Hypothesis Tests Demo.xls

Hypothesis Tests Demo.xlIs

Data Analysis Tools Demo.xls

Analysis of Simulation Results Demo.xls
Validation Tests Demo.xls

Data Analysis Tools Demo.xls

Validation Tests Demo.xls

Data Analysis Tools Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Conditional Probability Distributions Demo.xls
Conditional Probability Distributions Demo.xls
Seasonal Analysis Demo.xls

Probabilistic OLS Forecasts Demo.xls
Matrices Demo.xls

Matrices Demo.xls

Income Tax Demo.xls

Farm Simulator Demo.xls

CV Stationarity Normal Demo.xlIs
Probability Distributions Demo.xls
Probability Distributions Demo.xls
Multivariate Mixed Probability Distribution Demo.xls
Data Analysis Tools Demo.xls

Data Analysis Tools Demo.xlIs

Data Analysis Tools Demo.xls

Validation Tests Demo.xls

Hypothesis Tests Demo.xls

Multivariate Empirical Distribution Demo.xls
Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Project Management Demo.xls

Data Analysis Tools Demo.xls

Parameter Estimation Tools Demo.xls
Matrix Operation Tools Demo.xls

Insurance Premium Demo.xls

Stochastic Dominance Demo.xls
Probabilistic Cycle Forecasts Demo.xls
Exponential Smoothing Demo.xls

Moving Average Demo.xls

Cyclical Analysis Tools Demo.xls
Exponential Smoothing Demo.xls

Moving Average Demo.xls

Seasonal Analysis Demo.xls

Data Analysis Tools Demo.xls

Data Analysis Tools Demo.xls

Simulate Alternative Distributions Demo.xls
Parameter Estimation Tools Demo.xls

Time Series Functions Demo.xls

Time Series Analysis Tools Demo.xls
Seasonal Decomposition Forecasts Demo.xlIs
Seasonal Index Forecasts Demo.xls

Cyclical Analysis Tools Demo.xlIs

Inventory Management Demo.xls

Matrices Demo.xls

Matrix Operation Tools Demo.xls
Deterministic Demo.xls

Net Present Value Internal Rate of Return Demo.xls
Cotton Model Demo.xls

Games of Chance Demo.xls

Time Series Functions Demo.xls

Time Series Forecasting Demo.xls

Time Series Analysis Tools Demo.xls

Time Series Demo.xls

Probability Distributions Demo.xls



Discrete uniform distribution

Discrete uniform distribution

Discrete uniform distribution -- numbers and names
Double exponential distribution

Dummy variables in Multiple Regression for seasonal analysis
Dynamic forecast of AR model

E Factors to control heteroskedasticy

EMP function

EMP function application

EMP icon for estimating parameters

Econometric model for soybeans

Econometric model for wheat

Econometric stochastic model

Econometric wheat model

Eigenvalues for a square matrix

Eigenvalues for a square matrix

Empirical distribution

Empirical distribution

Empirical distribution -- actual data

Empirical distribution -- actual data w/ CV stationary
Empirical distribution -- deviations from mean
Empirical distribution -- deviations from trend
Empirical distribution -- differences from mean
Empirical distribution -- general and direct
Empirical distribution -- percent deviates from mean
Empirical distribution parameter estimation
Empirical distribution using interpolation

Empirical distribution using inverse transform method
Empirical parameter estimation using actual data
Empirical parameter estimation using deviates from the mean
Empirical parameter estimation using deviates from trend
Empirical parameter estimation using differences from the mean
Equation editor to use Simetar functions
Equicorrelation matrix

Equicorrelation matrix

Equilibrium displacement model

Ethanol feasibility study

Excel's equation editor for using Simetar functions
Exponential distribution

Exponential distribution

Exponential distribution

Exponential smoothing Holt method

Exponential smoothing Holt-Winters method
Exponential smoothing for probabilistic forecasts
Exponential smoothing forecast

Exponential smoothing forecasts

Exponential smoothing probabilistic forecasts
Exponential smoothing trend only

Extreme value distribution

Extreme value distribution

F distribution

F distribution

F test of variances

Factor a correlation matrix for a MVE distribution
Factor a correlation matrix for a MVE distribution
Factor a square symmetric matrix

Fan graph of random variable over time

Farm simulator 3 crops

Feasibility of purchasing a business

Feasibility study for new business

Federal income taxes

Financial statements

Financial statements

Financial statements for a business

Probability Distribution Demo.xls

Simulate Alternative Distributions Demo.xls
Simulate All Probability Distributions Demo.xlIs
Simulate All Probability Distributions Demo.xls
Regression for Seasonal Forecasts Demo.xls
Time Series Forecasting Demo.xls
Heteroskedasticy Demo.xls

Empirical Distribution Demo.xls

Simulate Alternative Distributions Demo.xls
Multivariate Empirical Distribution Demo.xls
Soybean Model Demo.xls

Wheat Sim Solve Demo.xls

Soybean Model Demo.xls

Wheat Model Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Probability Distribution Demo.xls
Probability Distributions Demo.xls

Empirical Distribution Demo.xls

CV Stationarity Empirical Demo.xls
Empirical Distribution Demo.xls

Empirical Distribution Demo.xlIs

Empirical Distribution Demo.xls

Simulate All Probability Distributions Demo.xlIs
CV Stationarity Empirical Demo.xls

Trend Regression to Reduce Risk Demo.xls
Empirical Distribution Demo.xls

Inverse Transform Demo.xls

Parameter Estimation Tools Demo.xls
Parameter Estimation Tools Demo.xls
Parameter Estimation Tools Demo.xls
Parameter Estimation Tools Demo.xls
Equation Editor Demo.xls

Matrices Demo.xls

Matrix Operation Tools Demo.xls

Cotton Model Demo.xls

Project Feasibility Demo.xls

Equation Editor Demo.xls

Probability Distribution Demo.xls

Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls
Exponential Smoothing Forecasts Demo.xls
Exponential Smoothing Forecasts Demo.xls
Exponential Smoothing Demo.xls

Cyclical Analysis Tools Demo.xls
Exponential Smoothing Forecasts Demo.xls
Exponential Smoothing Forecasts Demo.xls
Exponential Smoothing Forecasts Demo.xls
Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Simulate All Probability Distributions Demo.xlIs
Probability Distributions Demo.xls

Data Analysis Tools Demo.xls

Parameter Estimation Tools Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Analysis of Simulation Results Demo.xls
Farm Simulator Demo.xlIs

Investment Management Demo.xls

Project Feasibility Demo.xls

Income Tax Demo.xls

Feedlot Demo.xls

Financial Risk Management Demo.xls
Business Demo.xls
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Financial statements for multiple enterprise business
Financial statements multi year business
Financial statements with risk

Financial statements with risk

First degree stochastic dominance
Forecasting with AR and VAR models
GRK and GRKS distributions

GRK distribution

GRK distribution

GRK distributions

GRK function application

GRKS distribution

GRKS distribution

GRKS distribution for sparse data
Games of chance

Gamma distribution

Gamma distribution

Generalized inverse of a square matrix
Generalized inverse of a square matrix

Generalized stochastic dominance for ranking risky alternatives

Generate random numbers

Geometric distribution

Geometric distribution

Harmonic regression for seasonal analysis
Hedging and options for risk management
Heteroskedasticy correction in simulation
Heteroskedasticy test

Histogram of a random variable

Hotelling T-Squared distribution
Hotelling T-squared distribution
Hypergeometric distribution
Hypergeometric distribution
Hypergeometric distribution

IROR simulated for a business

Identity matrix

Identity matrix

Inflation rates stochastic

Inner product of two matrices

Inner product of two matrices

Insurance premium estimation

Integrate a function

Integrate a function

Internal rate of return for a risky business
Interpolate function

Intra- and inter-temporal correlation
Inventory management with stochastic demand
Inverse Gaussian distribution

Inverse Gaussian distribution

Inverse transform method of simulating random variables

Invert a nonsingular square matrix

Invert a nonsingular square matrix
Investment analysis under risk

Iteration counter ITERATION function
Iteration counter function

Iteration number comparison

Iteration number comparison

Iteration number comparison

J Factor to correct for non-stationarity of CV
J-factor for CV stationarity Normal distribution
Jack knife a covariance matrix

Jack knife estimator for statistical functions
Jack knife summary statistics for distributions
Kernel density estimator

Kernel distribution

Investment Management Demo.xls
Deterministic Demo.xls
Farm Simulator Demo.xls
Project Feasibility Demo.xls
Stochastic Dominance Demo.xls
Time Series Functions Demo.xls

Probability Distributions Demo.xls

GRK Distribution Demo.xls

Simulate All Probability Distributions Demo.xlIs
Probability Distributions Demo.xls

Simulate Alternative Distributions Demo.xls
Probability Distributions Demo.xls

GRKS Distribution Demo.xls

Parameter Estimation Tools Demo.xls

Games of Chance Demo.xls

Probability Distribution Demo.xls

Simulate All Probability Distributions Demo.xls
Matrix Operation Tools Demo.xls

Matrices Demo.xls

Stochastic Dominance Demo.xls

Probability Distributions Demo.xls

Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Regression for Seasonal Forecasts Demo.xls
Financial Risk Management Demo.xls
Heteroskedasticy Demo.xls

Heteroskedasticy Demo.xls

Analysis of Simulation Results Demo.xls
Simulate All Probability Distributions Demo.xlIs
Probability Distributions Demo.xls

Probability Distribution Demo.xls

Simulate All Probability Distributions Demo.xlIs
Probability Distributions Demo.xls

Net Present Value Demo.xls

Matrices Demo.xls

Matrix Operation Tools Demo.xls

Farm Simulator Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Insurance Premium Demo.xls

Data Analysis Tools Demo.xls

Optimization Function Demo.xls

Net Present Value Demo.xls

Empirical Distribution Demo.xls

Complete Correlation Demo.xls

Inventory Management Demo.xls

Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Inverse Transform Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Project Evaluation Demo.xls

Simulate All Probability Distributions Demo.xlIs
Probability Distributions Demo.xls

Latin Hypercube vs Monte Carlo Demo.xls
Latin Hypercube Demo.xls

Business Model with Risk Demo.xls
Heteroskedasticy Demo.xls

CV Stationarity Normal Demo.xlIs

Jack Knife Demo.xls

Jack Knife Demo.xls

Jack Knife Demo.xls

Probability Distributions Demo.xls

Probability Distribution Demo.xls



Kernel distribution

Kernel distribution for 9 kernels

Kernel distribution simulation

Kronecker multiply two matrices

Kronecker product of two matrices

Latin hyper cube sampling method

Latin hyper cube sampling method

Latin hyper cube vs. Monte Carlo sampling method
Latin hyper cube vs. Monte Carlo sampling method
Likelihood ration test LRT function

Line graph with labels for points

Loan amortization

Log Normal distribution

Log normal distribution

Log normal distribution

Log-log distribution

Log-log distribution

Log-logistic distribution

Logistic distribution

Logistic distribution

Logit regression

Lottery

MAE

MAE -- Mean absolute error

MAPE

MAPE -- Mean absolute percent error

MLE and MOM to estimate distribution parameters
MLE for estimating distribution parameters
MLE for estimating distribution parameters
MOM for estimating distribution parameters
MOM for estimating distribution parameters
MPCI simulation

MSQRT function

MSQRT function to factor a square matrix
MVE distribution

MVE distribution

MVE distribution in one step

MVE distribution parameter estimation in detail
MVE distribution prices and costs

MVE in one step

MVE intra- and inter-temporal correlation
MVE with exogenous projected means

MVE with trend projected means

MVN distribution

MVN distribution in one step

MVN distribution parameter estimation in detail
MVN parameter estimation and simulation
MVN validation test

Marketing options simulation

Marketing strategies simulated

Matrix of 1s

Matrix of one's

Matrix to a vector

Maximum likelihood estimation for parameter estimation
Maximum likelihood estimation for parameter estimation
Maximum likelihood estimator for parameter estimation
Mean absolute error -- MAE

Mean absolute percent error -- MAPE
Mechanical repair costs/failure simulation
Method of Moments for parameterestimation
Method of moments for parameter estimation
Method of moments for parameter estimation
Model validation statistical tests

Modified two piece normal distribution
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Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Sparse Data Demo.xls

Matrices Demo.xls

Matrix Operation Tools Demo.xls

Latin Hypercube vs Monte Carlo Demo.xlIs
Latin Hypercube Demo.xls

Latin Hypercube vs Monte Carlo Demo.xlIs
Latin Hypercube Demo.xls

Time Series Analysis Tools Demo.xls

Analysis of Simulation Results Demo.xls
Feedlot Demo.xls

Probability Distribution Demo.xls

Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Simulate All Probability Distributions Demo.xlIs
Probability Distributions Demo.xls

Simulate All Probability Distributions Demo.xls
Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Probit and Logit Demo.xlIs

Games of Chance Demo.xls

Forecast Errors Demo.xls

Measuring Forecast Errors Demo.xls

Forecast Errors Demo.xls

Measuring Forecast Errors Demo.xls
Parameter Estimation Demo.xls

Parameter Estimation Tools Demo.xls
Univariate Parameter Estimator Demo.xls
Parameter Estimation Tools Demo.xls
Univariate Parameter Estimator Demo.xls

Crop Insurance Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Complete Correlation Demo.xls

Multivariate Empirical Distribution Demo.xls
Multivariate Empirical Distribution Demo.xls
Multivariate Empirical Distribution Demo.xls
Project Feasibility Demo.xls

Feedlot Demo.xls

Complete Correlation Demo.xls

Farm Simulator Demo.xls

Farm Simulator Demo.xls

Multivariate Normal Distribution Demo.xls
Multivariate Normal Distribution Demo.xls
Multivariate Normal Distribution Demo.xls
Multivariate Normal Distribution Demo.xls
Multivariate Normal Distribution Demo.xls
Futures and Options Demo.xls

Futures and Options Demo.xls

Matrices Demo.xls

Matrix Operation Tools Demo.xls

Matrix Operation Tools Demo.xls

Parameter Estimation Tools Demo.xls
Univariate Parameter Estimator Demo.xls
Parameter Estimation Demo.xls

Measuring Forecast Errors Demo.xls
Measuring Forecast Errors Demo.xlIs
Conditional Probability Distributions Demo.xls
Parameter Estimation Demo.xls

Parameter Estimation Tools Demo.xls
Univariate Parameter Estimator Demo.xls
Hypothesis Tests Demo.xls

Simulate All Probability Distributions Demo.xls
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Monte Carlo sampling method

Monte Carlo sampling method

Moving average forecast

Moving average forecast

Moving average forecasts

Moving average seasonal index

Multi peril crop insurance analyzer

Multinomial distribution

Multinomial distribution

Multiple Regression forecast stochastic w/ SE of predictions
Multiple Regression forecast stochastic w/ Std Dev
Multiple Regression forecast with stochastic betas

Multiple Regression harmonic and dummy variable regression
Multiple Regression linear trend regression

Multiple Regression multiple regression model

Multiple Regression non-linear trend regression

Multiple Regression probabilistic forecasting

Multiple Regression regression with restrictions

Multiple Regression to estimate risk for a random variable
Multiple enterprise business

Multiple enterprise business

Multiple enterprise business

Multiple regression

Multiple regression forecasting

Multiple regression model vs. trend model vs. mean model
Multiple regression to reduce risk

Multiple regression with probabilistic forecast

Multiple year financial statement

Multiplicative seasonal decomposition forecasting with cycle

Multiplicative seasonal decomposition forecasting without cycle

Multiply two matrices

Multiply two matrices

Multivariate Student's t distribution
Multivariate empirical distribution
Multivariate empirical distribution
Multivariate empirical distribution -- 1 and 2 steps
Multivariate lognormal distribution
Multivariate mixed distribution
Multivariate mixed distribution
Multivariate mixed distribution
Multivariate normal distribution
Multivariate normal distribution
Multivariate normal distribution -- 1 and 2 steps
Multivariate test of two distributions
NORMAL function application

NPV

NPV

NPV - Net Present Value

NPV and IROR simulated for 20 year investment
NPV for alternative discount rates
NPV optimization for a business
NPV simulated for a business
Negative binomial distribution
Negative binomial distribution
Negative binomial distribution
Negative ending cash reserves
Negative ending cash reserves

Net present value for a risky business
Net returns for one enterprise

Norm of a square matrix

Norm of a square matrix

Normal distribution

Normal distribution

Normal distribution

Latin Hypercube vs Monte Carlo Demo.xls
Latin Hypercube Demo.xls

Cyclical Analysis Tools Demo.xls

Moving Average Demo.xls

Moving Average Forecasts Demo.xls
Seasonal Index Forecasts Demo.xls

Crop Insurance Demo.xls

Simulate All Probability Distributions Demo.xlIs
Probability Distributions Demo.xls
Probabilistic OLS Forecasts Demo.xls
Probabilistic OLS Forecasts Demo.xls
Probabilistic OLS Forecasts Demo.xls
Regression for Seasonal Forecasts Demo.xls
Trend Forecasts Demo.xls

Parameter Estimation Tools Demo.xls

Trend Forecasts Demo.xls

Multiple Regression Forecasts Demo.xls
Parameter Estimation Tools Demo.xls
Multiple Regression to Reduce Risk Demo.xls
Business Demo.xls

Farm Simulator Demo.xlIs

Feedlot Demo.xls

Parameter Estimation Tools Demo.xls
Multiple Regression Forecasts Demo.xls
Multiple Regression to Reduce Risk Demo.xls
Trend Regression to Reduce Risk Demo.xls
Multiple Regression Demo.xls

Net Present Value Demo.xls

Seasonal Decomposition Forecasts Demo.xls
Seasonal Decomposition Forecasts Demo.xls
Matrix Operation Tools Demo.xls

Matrices Demo.xls

Probability Distributions Demo.xls
Multivariate Empirical Distribution Demo.xls
Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls
Probability Distributions Demo.xls

Multivariate Mixed Probability Distribution Demo.xls

Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Multivariate Normal Distribution Demo.xls
Simulate All Probability Distributions Demo.xlIs
Probability Distributions Demo.xls

Data Analysis Tools Demo.xls

Simulate Alternative Distributions Demo.xls
Farm Simulator Demo.xls

Project Feasibility Demo.xls

Investment Management Demo.xls

Net Present Value Internal Rate of Return Demo.xls

Feedlot Demo.xls

Deterministic Optimal Control Demo.xls
Net Present Value Demo.xls

Probability Distribution Demo.xls
Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls
Feedlot Demo.xls

Financial Risk Management Demo.xls
Net Present Value Demo.xls

Truncated Normal Distribution Demo.xls
Matrix Operation Tools Demo.xls
Matrices Demo.xls

Probability Distribution Demo.xls
Probability Distributions Demo.xls

Test Simetar Demo.xls



Normal distribution -- general and direct
Normal distribution using inverse transform method
Normality tests

Normality tests

Normality tests

Normality tests for random variable

Number of iterations

Number of iterations

Number of iterations test

Observational diagnostics -- DF Betas
Optimal control theory for a deterministic simulation model
Optimal control theory for crop mix decision
Optimal control theory for simulation model
Optimal control theory to maximize NPV
Optimal control theory to solve of equilibrium prices
Optimal number of lags ARLAG function
Optimize a function OPT

Optimize a non-linear function

Options and hedging for risk management
Options contracts simulated for market strategy
Orthoganalize a matrix

Orthoganalize a matrix

PDF chart of random variables

PDFs for 12 distributions

PERT distribution

PERT distribution -- general and direct
Parameter estimation for 16 distributions
Parameter estimation for 16 distributions
Parameter tests -- t and Chi-Square
Parametric distribution parameter estimator
Pareto distribution

Pareto distribution

Partial autocorrelation coefficients

Partial autocorrelation coefficients

Partial autocorrelation coefficients

Partial autocorrelation test

Percentiles with EDF function

Poisson distribution

Poisson distribution

Poisson distribution

Poker

Portfolio analysis

Power normal distribution

Power normal distribution

Premium calculation for term life insurance
Premium calculation for whole life insurance

Probabilistic forecast of Multiple Regression structural model

Probabilistic forecast of monthly data
Probabilistic forecast of time series model
Probabilistic forecast of time series model
Probabilistic forecasting of Multiple Regression equations
Probabilistic forecasting of cycles

Probabilistic forecasting of harmonic regression
Probabilistic forecasting of seasonal index
Probabilistic forecasting with Multiple Regression
Probabilistic forecasting with moving average
Probabilistic forecasts with exponential smoothing
Probabilistic linear and non-linear trend regression
Probabilistic moving average forecast

Probability annual cash flow deficits

Probability annual cash flow deficits

Probability losing real net worth

Probability losing real net worth

Probability of success
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Simulate All Probability Distributions Demo.xlIs
Inverse Transform Demo.xls

Conditional Probability Distributions Demo.xls
Data Analysis Tools Demo.xls

Hypothesis Tests Demo.xls

Validation Tests Demo.xls

Latin Hypercube vs Monte Carlo Demo.xls
Latin Hypercube Demo.xls

Business Model with Risk Demo.xls
Parameter Estimation Tools Demo.xls
Optimal Control Demo.xls

Deterministic Optimal Control Demo.xls
Deterministic Optimal Control Demo.xls
Deterministic Optimal Control Demo.xls
Wheat Model Demo.xls

Time Series Functions Demo.xls

Data Analysis Tools Demo.xls
Optimization Function Demo.xls

Financial Risk Management Demo.xls
Futures and Options Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Analysis of Simulation Results Demo.xls
Test Parameters Demo.xls

Probability Distributions Demo.xls
Simulate All Probability Distributions Demo.xls
Parameter Estimation Tools Demo.xls
Univariate Parameter Estimator Demo.xls
Data Analysis Tools Demo.xls

Parameter Estimation Demo.xls

Probability Distributions Demo.xls

Simulate All Probability Distributions Demo.xls
Time Series Forecasting Demo.xls

Time Series Analysis Tools Demo.xls

Time Series Demo.xls

Time Series Functions Demo.xls

Analysis of Simulation Results Demo.xls
Probability Distribution Demo.xls

Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Games of Chance Demo.xls

Portfolio Analysis Demo.xls

Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Life Insurance Demo.xls

Life Insurance Demo.xls

Multiple Regression Demo.xls

Seasonal Analysis Demo.xls

Time Series Forecasting Demo.xls

Time Series Analysis Tools Demo.xls
Multiple Regression Forecasts Demo.xls
Probabilistic Cycle Forecasts Demo.xls
Regression for Seasonal Forecasts Demo.xls
Regression for Seasonal Forecasts Demo.xls
Probabilistic OLS Forecasts Demo.xls
Moving Average Forecasts Demo.xls
Exponential Smoothing Demo.xls

Trend Forecasts Demo.xls

Moving Average Demo.xls

Farm Simulator Demo.xlIs

Project Feasibility Demo.xls

Farm Simulator Demo.xlIs

Project Feasibility Demo.xls

Feedlot Demo.xls
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Probability-Probability (PP) plot chart
Probit regression

Production function with risk

Production function with risk

Production insurance (MPCI)

Project management analysis

Project management and evaluation
QUANTILE function

Quantile-Quantile (QQ) plot chart
RANDSORT function application

RMSE

RMSE -- Root mean square error

Random sort of objects

Random walk distribution

Rank insurance strategies

Rank of a matrix

Rank of a matrix

Rank risky alternatives with SERF

Rank risky alternatives with SERF

Rank risky marketing strategies

Ranking alternative portfolios

Ranking risky alternatives based on NPV
Ranking risky alternatives with several methods
Ranking risky alternatives with several methods
Ranking risky marketing options

Ranking univariate distributions

Real rate of return to equity

Regression forecasting

Replacement of machinery compliment by item
Residuals from regression to measure risk
Restricted Multiple Regression estimations
Revenue insurance (CRC)

Reverse the order of a vector

Reverse the order of data in a vector

Risk premiums for ranking risky alternatives
Risk premiums for ranking risky alternatives
Risky cost of projects

Risky investment analysis

Root mean square error -- RMSE

Row echelon for of a matrix

Row echelon of a matrix

SCENARIO function

SDREF for ranking risky alternatives

SDRF ranking of risky alternatives

SERF and SDREF for ranking risky alternatives
SERF application

SERF ranking of risky alternatives
Sampling without replacement

Scatter matrix

Scenario analysis

Scenario analysis

Scenario analysis

Scenario analysis of a simple business
Scenario application to simple profit model
Scenario simulation

Scenario simulation and ranking

Schwarz criteria for number of lags

Schwarz criteria for number of lags

Schwarz criteria for number of lags

Schwarz test

Seasonal decomposition of monthly & quarterly data
Seasonal forecast of monthly & quarterly data
Seasonal index

Seasonal index

Analysis of Simulation Results Demo.xls
Probit and Logit Demo.xlIs

Production Function Demo.xlIs
Stochastic Production Function Demo.xls
Financial Risk Management Demo.xls
Project Management Demo.xls

Project Evaluation Demo.xls

Analysis of Simulation Results Demo.xls
Analysis of Simulation Results Demo.xls
Simulate Alternative Distributions Demo.xls
Forecast Errors Demo.xls

Measuring Forecast Errors Demo.xls
Probability Distributions Demo.xls
Probability Distributions Demo.xls
Financial Risk Management Demo.xls
Matrix Operation Tools Demo.xls
Matrices Demo.xls

SERF Analysis Demo.xls

Simulate Scenarios Demo.xls

Financial Risk Management Demo.xls
Portfolio Analysis Demo.xls

Net Present Value Demo.xls

SDRF and SERF Ranking Demo.xls
Analysis of Simulation Results Demo.xls
Futures and Options Demo.xls
Univariate Parameter Estimator Demo.xls
Investment Management Demo.xls
Probabilistic OLS Forecasts Demo.xls
Machinery Demo.xls

Multiple Regression to Reduce Risk Demo.xls
Parameter Estimation Tools Demo.xls
Financial Risk Management Demo.xls
Matrix Operation Tools Demo.xls
Matrices Demo.xls

SDRF and SERF Ranking Demo.xls
Analysis of Simulation Results Demo.xls
Project Management Demo.xls

Project Evaluation Demo.xls

Measuring Forecast Errors Demo.xlIs
Matrix Operation Tools Demo.xls
Matrices Demo.xls

Scenario Analysis Demo.xls

Stochastic Dominance Demo.xls

Crop Insurance Demo.xls

Portfolio Analysis Demo.xls

SERF Analysis Demo.xls

Crop Insurance Demo.xls

Probability Distributions Demo.xls
Matrix Operation Tools Demo.xls
Feedlot Demo.xls

Analysis of Simulation Results Demo.xls
Net Present Value Demo.xls

Simulate Scenarios Demo.xls

Scenario Analysis Demo.xls

Simulate All Probability Distributions Demo.xls
Simulate Scenarios Demo.xls

Time Series Forecasting Demo.xls

Time Series Analysis Tools Demo.xls
Time Series Demo.xls

Time Series Functions Demo.xls
Seasonal Analysis Demo.xls

Seasonal Analysis Demo.xls

Seasonal Index Forecasts Demo.xls
Cyclical Analysis Tools Demo.xls



Seasonal index

Seasonal index

Seasonal index

Second degree stochastic dominance

Seed for pseudo random number generator
Semicircle distribution

Semicircle distribution

Sensitivity analysis

Sensitivity analysis

Sensitivity analysis for an economic model
Sensitivity elasticities for testing models
Sequence of numbers

Sequence of numbers

SimSolver application

SimSolver application

Simple average seasonal index

Simple regression for multiple variables

Simple statistics for multiple variables

Simulate a VAR model

Simulate net returns model

Simulate simultaneous equation econometric model
Simulating risky cost to complete a project
Simulation engine for Simetar demonstrated
Simulation engine for Simetar demonstrated
Simulation example for a simple model
Simultaneous equation model with stochastic errors
Simultaneous equation simulation
Simultaneous equation stochastic model
Simultaneous equation stochastic model

Sin Cos in Multiple Regression for cycle estimation
Singular correlation matrix and MV distributions
Slot machine

Sole proprietor federal income taxes

Solve supply and demand model

Solver for optimal control

Solver for simultaneous equations

Solver to simulate simultaneous equation models
Solver to solve for equilibrium prices

Sort a matrix by a column

Sort a matrix by a column

Sort a matrix by a row or column

Sparse data distribution simulation

Sparse data distributions

Sparse data distributions using GRKS

Sparse data kernel distribution

Stationarity tests

Stationarity tests

Stationarity tests

Statistical tests for model validation

Stochastic chart

Stochastic dominance with respect to a function

Stochastic dominance with respect to a function (SDRF)
Stochastic dominance with respect to a function (SDRF)

Stochastic econometric model

Stochastic efficiency with respect to a function application
Stochastic efficiency with respect to a function (SERF)
Stochastic efficiency with respect to a function (SERF)

Stochastic futures and options prices
Stochastic production function

Stochastic production function

StopLight chart for ranking risky alternatives
StopLight chart of risky alternatives

Student t test of means

Student's t distribution

Exponential Smoothing Demo.xls

Moving Average Demo.xls

Seasonal Analysis Demo.xls

Stochastic Dominance Demo.xls

Pseudo Random Number Generator Demo.xls

Simulate All Probability Distributions Demo.xlIs

Probability Distributions Demo.xls

Simulate All Probability Distributions Demo.xls
Sensitivity Analysis Demo.xls

Simulate Sensitivity Elasticity Demo.xls

Simulate Sensitivity Elasticity Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Wheat Sim Solve Demo.xls

Demand Supply Model Sim Solve Demo.xls

Seasonal Index Forecasts Demo.xls

Parameter Estimation Tools Demo.xls

Parameter Estimation Tools Demo.xls

Probabilistic Forecasting a VAR Model Demo.xls

Analysis of Simulation Results Demo.xls

Sim Solve Demo.xls

Project Management Demo.xls

Simulation Demo.xls

Test Simetar Demo.xls

Simulation Demo.xls

Sim Solve Demo.xls

Simulate All Probability Distributions Demo.xlIs

Wheat Sim Solve Demo.xls

Demand Supply Model Sim Solve Demo.xls

Probabilistic Cycle Forecasts Demo.xls

Bad Correlation Matrix Demo.xls

Games of Chance Demo.xls

Income Tax Demo.xls

Demand Supply Model Sim Solve Demo.xls

Deterministic Optimal Control Demo.xls

Simulate All Probability Distributions Demo.xlIs

Sim Solve Demo.xls

Wheat Model Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Data Analysis Tools Demo.xls

Sparse Data Demo.xls

GRKS Distribution Demo.xls

Parameter Estimation Tools Demo.xls

Probability Distribution Demo.xls

Time Series Forecasting Demo.xls

Time Series Analysis Tools Demo.xls

Time Series Demo.xls

Hypothesis Tests Demo.xls

Stochastic Production Function Demo.xls

Stochastic Dominance Demo.xls

SDRF and SERF Ranking Demo.xls

Analysis of Simulation Results Demo.xls

Soybean Model Demo.xls

SERF Analysis Demo.xls

SDRF and SERF Ranking Demo.xls

Analysis of Simulation Results Demo.xls

Financial Risk Management Demo.xls

Production Function Demo.xls

Stochastic Production Function Demo.xls

Stochastic Dominance Demo.xls

Analysis of Simulation Results Demo.xls

Data Analysis Tools Demo.xls

Probability Distribution Demo.xls
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Student's t distribution

Student's t distribution

Summary statistics

Summary statistics

Supply and demand model

Supply and utilization model -- cotton
Sweep a square matrix

Sweep a square matrix

Symmetric covariance matrix

TNORM function

TNORM function

Test 12 distributions for empirical data

Test alternative distributions for empirical data
Test for presence of a trend

Test mean and standard deviation for a distribution
Test parameters for simulated variable

Tests means for two distribution -- ANOVA
Thiel U2

Thiel U2

Time series decomposition

Time series model VAR

Time to complete a project

Toeplitz matrix from an array

Toeplitz matrix from an array

Trace of a square matrix

Trace of a square matrix

Transpose a matrix

Transpose a matrix or vector of any size
Trend regression to reduce risk

Triangle distribution

Triangle distribution

Triangle distribution -- general and direct
Truncated Weibull distribution

Truncated empirical distribution

Truncated empirical distribution

Truncated gamma distribution

Truncated normal distribution

Truncated normal distribution

Truncated normal distribution

Truncated normal distribution -- general and direct
Truncated normal distribution application
Two Sample Hotelling T-Squared test

Two piece normal distribution
UNBOXCOX function

UNIFORM function

UNIFORM function application
UNIFORM vs. Excel's RAND function
Uniform distribution

Uniform distribution

Uniform distribution

Uniform distribution -- general and direct
Uniform distribution to simulate a Normal
Uniform distribution using inverse transform method
Univariate distribution parameter estimation
Univariate distribution parameter estimation
Univariate parameter estimation system
VAR model estimation

VAR model estimation

VAR model for two series

Validate correlation of random variables in MV distribution
Validation for MV distributions correlation matrix
Validation test of MVE

Validation test of MVN

Validation tests

Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls

Data Analysis Tools Demo.xls

Trend Regression to Reduce Risk Demo.xls
Demand Supply Model Sim Solve Demo.xls
Cotton Model Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Matrices Demo.xls

Truncated Normal Distribution Demo.xls
Simulate Alternative Distributions Demo.xls
View Distributions Demo.xls

View Distributions Demo.xls

Trend Regression to Reduce Risk Demo.xls
Hypothesis Tests Demo.xls

Validation Tests Demo.xls

Validation Tests Demo.xls

Forecast Errors Demo.xls

Measuring Forecast Errors Demo.xls

Cyclical Analysis Tools Demo.xls
Probabilistic Forecasting a VAR Model Demo.xls
Project Management Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Trend Regression to Reduce Risk Demo.xls
Probability Distribution Demo.xls

Probability Distributions Demo.xls

Simulate All Probability Distributions Demo.xlIs
Probability Distributions Demo.xls

Probability Distribution Demo.xls

Probability Distributions Demo.xls

Probability Distributions Demo.xls

Probability Distribution Demo.xls

Simulate Alternative Distributions Demo.xls
Probability Distributions Demo.xls

Simulate All Probability Distributions Demo.xlIs
Truncated Normal Distribution Demo.xls

Data Analysis Tools Demo.xls

Probability Distributions Demo.xls

Data Analysis Tools Demo.xls

Uniform Random Number Generator Demo.xls
Simulate Alternative Distributions Demo.xls
Uniform Random Number Generator Demo.xls
Probability Distribution Demo.xls

Probability Distributions Demo.xls

Test Simetar Demo.xls

Simulate All Probability Distributions Demo.xls
Uniform Random Number Generator Demo.xls
Inverse Transform Demo.xls

Univariate Parameter Estimator Demo.xls
Trend Regression to Reduce Risk Demo.xls
Parameter Estimation Demo.xls

Time Series Functions Demo.xls

Time Series Analysis Tools Demo.xls
Probabilistic Forecasting a VAR Model Demo.xls
Hypothesis Tests Demo.xls

Validation Tests Demo.xls

Multivariate Empirical Distribution Demo.xls
Multivariate Normal Distribution Demo.xls
Hypothesis Tests Demo.xls



Vector to a diagonal matrix

Vector to a diagonal matrix

View distributions as parameter change
WAPE

WAPE -- Weighted absolute percent error
Weibull distribution

Weibull distribution

Weibull distribution

Weighted absolute percent error -- WAPE
Wilk's Lambda distribution

Wilk's lambda distribution

Wishart distribution

Wishart distribution

Matrix Operation Tools Demo.xls

Matrices Demo.xls

Test Parameters Demo.xls

Forecast Errors Demo.xls

Measuring Forecast Errors Demo.xls
Probability Distribution Demo.xls

Simulate All Probability Distributions Demo.xlIs
Probability Distributions Demo.xls

Measuring Forecast Errors Demo.xls
Probability Distributions Demo.xls

Simulate All Probability Distributions Demo.xlIs
Simulate All Probability Distributions Demo.xls
Probability Distributions Demo.xls
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