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1.0 What is Simetar? 
 
Simetar© 2008 is a simulation language written for risk analysts to provide a transparent method 
for analyzing data, simulating the effects of risk, and presenting results in the user friendly 
environment of Microsoft® Excel1. Any Excel spreadsheet model can be made stochastic and 
simulated using Simetar functions. Simetar, an acronym for Simulation for Excel to Analyze 
Risk is an Excel add-in.  Simetar requires little additional memory and operates efficiently on 
most PCs running Excel XP, Excel 2000, Excel 2003, and Excel 2007.  Instructions for installing 
Simetar are provided in Section 1.1. 
 
Simetar consists of Menu Driven and User Defined Functions for Excel.  A common principle in 
Simetar, is that all functions are dynamic; so if changes are made to the original data most all 
parameters, hypothesis tests, regression models, and risk ranking strategies are automatically 
updated.  This feature of having Excel dynamically recalculate parameters offers significant 
efficiencies during the development, validation, verification, and application of stochastic 
simulation models. 
 
The more than 230 functions in Simetar can be categorized into six groups: (a) simulating 
random variables, (b) parameter estimation and statistical analyses, (c) graphical analysis, (d) 
ranking risky alternatives, (e) data manipulation and analysis, (f) multiple regression, and (g) 
probabilistic forecasting.  Simetar can be used to perform all of the steps for developing, 
simulating, and applying a stochastic model in Excel, namely:  estimate parameters for random 
variables, simulate stochastic variables, test the validity of the random variables, present the 
results graphically, and rank risky alternatives. 
  
The next section describes the procedure for installing Simetar.  After installing Simetar open the 
demonstration program to see learn how to apply the major functions in Simetar. More than 100 
demonstration programs will be installed on your computer at Start > Programs > Simetar > 
Demos.  Refer to these demonstration programs as you read the User’s Manual to learn how the 
functions are applied in working simulation and forecasting models.   

 
1.1 Installing Simetar 
 
The first step in installation is to set the macro security level for Excel to low.  (If you currently 
have Simetar installed be sure to uninstall Simetar and delete the C:\Program Files\Simetar 
folder.) After setting macro security to Low, close Excel and insert the Simetar CD in your 
computer’s CD drive. (If you are installing from a file downloaded from the Simetar website, 
copy the file to your computer’s hard drive and proceed with the installation.)  From the 
Windows Explorer, double click on the Simetar.exe file name and the Setup Wizard will open to 

                                                 
1 . Simetar© is copyrighted by the authors.  Microsoft, Excel, and Windows are either registered trademarks or 
trademarks of Microsoft Corporation in the United States and/or other countries. 
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Figure 1. Click the Next box to proceed with the installation.  The License Agreement is 
provided in the second screen of the Wizard (Figure 2).  Read the License Agreement and click 
on the I Agree box to proceed with installation.  

 
Enter the License Code provided on your CD or with the Download Instructions (Figure 3).  If 
you did not uninstall Simetar, a screen will appear that allows you uninstall using our unistaller. 
In the next screen select the “Typical” installation.  Figure 4 is provided so you can change your 
mind as to the type of installation. 

 
Enter your license code in Figure 5, make sure all letters are caps and the dashes are included. 
The installation will take 2-3 minutes as the files are transferred and the appropriate files are 
updated so Simetar can operate in the Microsoft environment.  The program will be stored in 
C:\Program Files\Simetar 2008. The last screen (Figure 6) indicates that Simetar has finished 
installing properly.  Open Excel and you will see the Simetar toolbar in Excel 2003.  For Excel 
2007 you must click Add-Ins and then click on the word Simetar to see the Toolbar presented 
below.  To test Simetar type the following command in cell A1  =NORM()  press Enter and then 
press F9.  You will see random draws of a standard normal random variable. 
 
 
The installation procedure will place the word “Simetar” on the toolbar and add the Simetar icon 

Figure 1.  Install Simetar. Figure 2.  License Agreement. 

Figure 3.  Type of Installation. Figure 4.  Final Chance to Change 
Your Installation Type. 
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toolbar below:    

 
 
 
2.0 Simulating Random Variables 
 
Simulating a stochastic model in Excel is accomplished by generating random values for each of 
the random variables, letting Excel update the model’s equations, and saving the results of key 
output variables (KOVs) for statistical analysis and presentation. Repeating this process a large 
number of times (iterations or trials) causes the model to be simulated for a wide range of 
possible combinations of the random variables. The resulting array of 100 or more simulated 
values for a KOV defines an empirical probability distribution for each of the output variables.  
Probability distributions for the output variables are analyzed to gain a better understanding of 
the risk for the system being modeled. An example of simulation with Simetar is provided in 
example program Simulation Demo.xls. 
 
2.1 Probability Distributions in Simetar 
 
Simetar includes functions for generating pseudo-random numbers from more than 50 
probability distributions plus six distributions included in Excel.  An alphabetical list of 
probability distributions simulated by Simetar is provided in page 4.  A detailed description of 
each Simetar function for simulating random numbers is provided in Section 3.  See the 
Probability Distributions Demo.xls workbook for examples of how the functions are used in 
Excel. Access the Simetar demonstration programs from the Start menu: 
 
Start > Programs > Simetar > Demos 

 

Figure 5.  Enter Your License Code. Figure 6. Final Installation Screen. 
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 Distribution  Function Name and Parameters for each Probability Distribution in Simetar   
Bernoulli =BERNOULLIDIST(ProbabilityofTrueOutcome) 
Binomial =BINOMINV(n,Prob,[USD]) 
Bootstrap =BOOTSTRAPPER(ListofPossibleOutcomes,RecalculationOff) 
Cauchy  =CAUCHY(Median,Sigma,[USD]) 
Cosine   =COSINV(Center,Radius,[USD],MaxIterations,Precision) 
Correlated SND =CSND(RangeCorrelationMatrix, [ISNDs]) 
Correlated USD =CUSD(RangeCorrelationMatrix,[ISNDs],[MatrixRow],[RankCorr]) 
Discrete Empirical =DEMPIRICAL(Values,[USD],[Probabilities of Values]) 
Double Exponential =DEXPONINV(Mu,Sigma,[USD]) 
Dirichlet  =DIRICHINV(Alphas,[USD],[MatrixRow]) 
Empirical =EMP(Values,Probabilities,[USD],[NormTails]) 
Empirical =EMPIRICAL(Values,Probabilities,[USD],[NormTails]) 
Exponential =EXPONINV(Beta,[USD]) 
Extreme value =EXTVALINV(Mu,Sigma,[USD]) 
Geometric =GEOMINV(Prob,[USD]) 
GRK  =GRK(MinValue,MidPoint,MaxValue,[USD]) 
GRKS  =GRKS(MinValue,MidPoint,MaxValue,[USD],[LowerSD],[UpperSD]) 
Hotelling T Sq =HOTELLTINV(P,Degrees_Freedom,[UniformRandonNumber]) 
Hypergeometric =HYPERGEOMINV(n,N1,S1,[USD]) 
Inverse Gaussian =INVGAUS(Mu,Sigma,[USD],[MaxIterations],[Precision]) 
Kernal Density  =KDEINV(DataRange,BandWidth,KernelEstimator,[USD],[MaxIter],[Prec]) 
Logistic  =LOGISTICINV(Mu,Sigma,[USD]) 
Log-Log  =LOGLOGINV(Mu,Sigma,[USD]) 
Log-Logistic =LOGLOGISTICINV(Alpha,Beta,[UUSD]) 
Modified 2 Piece Normal=MTPNORM(MinValue,MidPoint,MaxValue,[USD],[LowSD],[UpSD]) 
Multinomial =MULTINOMINV(NumTrials,Probs,[USDs]) 
Multivariate Empirical =MVEMPIRICAL(RandomValuesDataMatrix,[SND],[MatrixRow]) 
Multivariate Log Normal =MVLOGNORM(MeanVector,CovMatrix,[SNDs],[MatrixRow],[Moments]) 
Multivariate Normal =MVNORM(MeansVector,CovarianceMatrix,[SNDs],[MatrixRow]) 
Multivariate Students t =MVTINV(Student t,CovarianceMatrix,[DegreesFreefom],[SNDs],[MatrixRow]) 
Negative Binomial=NEGBINOMINV(k,Prob,[USD]) 
Normal  =NORM(Mean,StandardDeviation,[USD]) 
Pareto  =PARETO(Alpha,Beta,[UniformRandonNumber]) 
PERT  =PERTINV(A,B,C,[USD]) 
Power Normal =PNORM(Mean,StandardDeviation,P,[USD]) 
Poisson  =POISSONINV(Lambda,[USD]) 
Random Sorting =RANDSORT(InputRangeLocation,[RecalculationOff],[DataHorizontal]) 
RandomWalk =RANDWALK(Mean,StandDev,USD,Distribution,InitialVal,Coefficient) 
Semicircle =SEMICIRCDIST(X,Center,Radius,[Cumulative or Density]) 
Truncated Empirical =TEMPIRICAL(RandomValues,Probabilities,MinVal,MaxVal,[USD]) 
Truncated Gamma =TGAMMAINV(Alpha,Beta,AbsoluteMin,AbsoluteMax,[USD]) 
Truncated Normal =TNORM(Mean,StanDev,[Min],[Max],[USD],[StackTails]) 
Truncated Wiebull =TWEIBINV(Alpha,Beta,[Min],[Max],[USD]) 
2 Piece Normal =TPNORM(Mean,StandardDeviation1,StandardDevviation2,[USD]) 
Triangle  =TRIANGLE(A,B,C,[USD]) 
Uniform  =UNIFORM(LowerValue,UpperValue,[USD]) 
Uncorrelated SNDs =USND(CorrelationMatrixRange,CorrelatedNormalDeviatesRange) 
Uncorrelated USDs =UUSD(CorrelationMatrixRange,CorrelatedUniformDeviatesRange) 
Weibull  =WEIBINV(Alpha,Beta,[USD]) 
Wilk's Lambda =WILKSLINV(P,FirstDegrees of Freedom,SecondDegrees of Freedom) 
Wishart  =WISHINV(CovarianceMatrix,Degrees of Freedom) 

 Native Excel probability distributions can be simulated in Simetar  

Beta   =BETAINV(Uniform(),Alpha,Beta,Minimum,Maximum) 
Chi-Squared  =CHIINV(Uniform(),Degrees of Freedom) 
Gamma   =GAMMAINV(Uniform(),Alpha,Beta) 
Log Normal  =LOGINV(Uniform(),Mean,StandardDeviation) 
Students t  =TINV(Uniform(),Degrres of Freedom) 
F   =FINV(Uniform(),Degrees of Freedom1, Degrees of Freedom2)
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Simetar allows the user to specify the type of sampling procedure 
and the random number generator to use in generating random 
values. Three different random number generators are available: 
Mercene Twister, the Multiplicative Random Number Generator, or 
Excel’s native generator. Two different random number sampling 
procedures are available : Latin hypercube and Monte Carlo. These 
random number generators are pseudo random and thus are suitable 
for conducting scenario and sensitivity analyses. The user can select 
the random number generator and the sampling method by selecting 
the General Settings Options   icon and choosing the desired 
options in the Default User Settings menu (Figure 7).  
 
2.2 Simulation Engine in Simetar 

 
The dialog box in Figure 8 for simulating a 
stochastic Excel simulation model is accessed by the 
       icon on the Simetar toolbar.  Options specified 
in the dialog box are saved by selecting the Save or 
SIMULATE buttons. 
 
The user must specify one or more Output Variables 
(KOVs) for the statistical analysis of simulated 
results. The summary statistics and each simulated 
value (in iteration order) for each KOV are saved in 
the SimData worksheet. An output KOV can be any 
cell in the spreadsheet.  KOVs can be cells that 
contain random variables, intermediate calculations, 
and final answers.  
 
Add variables to the List of Output Variables box by clicking in the Select Output Variables for 
Analysis window, highlighting the spreadsheet cell or cells to include, and clicking the Add 
Output box.  Indicate where the variable’s label is located, as in the cell To The Left, in the cell 
Above, or None. Several hundred output variables can be handled by Simetar.  The sample menu 
in Figure 8 shows that the variables in B5, B6, and B7 are the output variables and their labels 
are To The Left.  To delete an output variable or several variables, highlight the variables in the 
dialog box and click the Delete Selected button.  Clicking on the Clear All Output Variables 
button will delete all of the output variables listed in the dialog box.  Clicking on an output 
variable in the List of Output Variables box causes Excel to highlight the particular variable in 
the workbook. Simetar updates the location of KOVs in the Output Variable table if the 
spreadsheet is modified by adding rows or columns.  Information in the Simulation Engine must 
be re-entered each time the workbook is opened. 
  
After specifying the output variable(s) click the SIMULATE button and Simetar will simulate the 
workbook and save the simulated values for the output variables in the SimData worksheet or in 
the worksheet specified by the user.  The statistics for each output variable are provided in rows 
3-7 of SimData and the simulated values for each variable, by iteration, start in row 9 (Figure 9).  
After the 100 or more simulated values there are 10 rows of pre-programmed equations to 
calculate the probability of the output variable being less than a specified target.  Type in a target 

Figure 7.  Setup Menu 
for User’s Settings.

Figure 8.  Simulation Dialog Box for Simetar. 
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value in a row labeled “xi - value” and the probability of the 
KOV being less than or equal to the value will appear in the next 
row labeled “Prob (X<=xi).”  For example, there is a 38.0 
percent chance that receipts will be less than $1,300 (see column 
D of Figure 9).   
 
The simulated variables in the SimData worksheet always 
appear in the order they were added to the List of Output 
Variables (Figures 8 and 9).  The rows of simulated values for 
the output variables correspond to the actual iterations as they 
were simulated, i.e., the iteration order is maintained across 
output variables in SimData.  The simulated values of each iteration for all output variables are 
provided so the user can analyze the results using Simetar functions, (for  hypothesis tests, charts 
for presenting simulation results, and ranking risky alternatives. 
 
2.3 Specifying Options in the Simulation Engine   
  
2.3.1 Variable Names.  The user must specify the 
name for a KOV before it is added to the List of 
Output Variables box (Figure 8).  The variable name 
will appear with the stochastic results in the SimData 
worksheet (Figure 9).  There are three options for 
specifying the variable names.  The first option is to 
use the text in the cell to the left of the KOV.  The 
second option is to use the text in the cell above the KOV and the third option is to not specify a 
name for the KOV.  The variable name can be a concatenation of the text in the cells to the left 
and above the KOV cell (Figure 10).  The user must specify the location of the label before 
adding the variable to the List of Output Variables table. 
 
2.3.2 Random Number Seed.  The user may specify the Random Number Seed, in place of the 
default seed, 31517, to insure the same starting point for the pseudo random number generator 
from one run to the next (Figure 8).  The default seed can be changed permanently in the Default 
User Settings menu (Figure 7). 
 
2.3.3 Number of Iterations.  The Number of Iterations to simulate the spreadsheet model can be 
set by the user (Figure 8).  The default number of iterations can be changed in the Default Users 
Settings menu (Figure 7).   
 
2.3.4 Output Worksheet.  Output results for a simulation are stored in the SimData worksheet 
of the current (or a new) workbook using the specified Output Location (Figure 8).   
 
2.3.5 Scenarios.  The Number of Scenarios defaults to 1 in the menu box (Figure 8).  If your 
model uses the =SCENARIO( ) function to simulate multiple scenarios, enter the number of 
scenarios.  See Section 7.0 to learn more about the Scenario feature. 
 
 
2.3.6 Conduct Sensitivity Elasticities Analysis.  This option causes Simetar to simulate the 
spreadsheet model once for the base situation and once for each variable listed in the Sensitivity 

Figure 9.  Example of Stochastic 
Results in the SimData 

Figure 10. Labels for Key Output Variables 
in Cells to the Left. 
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Variable Input window (Figure 11).  The elasticity is defined as the percentage change of the 
KOV to a one percent change in an exogenous variable.  The larger the elasticity, the greater the 
sensitivity of the KOV to the exogenous variable. See Section 9.0 to learn more about this 
option. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3.7  Conduct Sensitivity Analysis.  Any Excel spreadsheet model can be simulated using the 
sensitivity analysis option.  Numerous KOVs can be tested for percentage changes in one 
exogenous variable.  Three percentage change levels, say, ±5%, ±10%, and ±20%, can be 
specified by the user.  See Section 5.0 to learn more about this option.  Simetar also performs 
sensitivities by selecting the Conduct Sensitivity Analysis option.  (See Section 8.0 for details on 
simulating sensitivity analyses.)   
 
2.3.8 Incorporate Solver.  Simetar can stochastically simulate a simultaneous equation or linear 
programming model by selecting Incorporate Solver.  (See Section 10.0 for details on simulating 
with an optimizer.)   
 
2.3.9 Expected Value. Once stochastic variables have been incorporated into an Excel 
simulation model, all of the values (cells) update every time the sheet calculates or F9 is pressed. 
This feature in Excel is very useful for testing if stochastic variables are working correctly and if 
they have been linked to the proper equations in the model.  However, it is also very useful to 
have the stochastic values fixed at their means for equation verification. Clicking the Expected 
Value  icon sets all random variables to their means and un-clicking the icon causes Excel to 
calculate values for the stochastic variables.  During simulation Simetar overrides the Expected 
Value button’s setting and simulates stochastic values for all of the random variables. 
 
2.4 User Defined Settings 
 
The user may specify his/her preferred settings for the type of random number generator, 
sampling method, number of iterations, number of scenarios, random number seed, precision for 
MLE parameter estimation, and the maximum number of iterations for MLE and other iterative 
solution functions.  The user defined settings are specified in the dialog box associated with the 

 icon (Figure 7). 
3.0 Probability Distributions Simulated in Simetar  
 

Figure 11.  Simulation Menu Expanded to Estimate Sensitivity 
Elasticities for Variables in B6 – B8. 
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Simetar is capable of simulating univariate and multivariate random numbers from more than 50 
probability distributions.  Each probability distribution is described in detail in this section. 
Univariate probability distributions are treated first followed by multivariate probability 
distributions.  Examples of how to simulate univariate the probability distributions are provided 
in Probability Distributions Demo.xls.  Section numbers in the text are used to organize and 
identify the distributions in the demonstration workbook. 
 
3.1. Uniform Probability Distribution   
 
Uniformly distributed random numbers are the basis for all random numbers and are simulated 
by Simetar using the =UNIFORM() function.  The function can be programmed three different 
ways: 
 
 = UNIFORM (Min, Max, [CUSD or USD]) 
 = UNIFORM (B8, B9) 
 = UNIFORM ( ) 
 
where: Min is the minimum value for the distribution or a cell reference,  
 Max is the maximum value for the distribution or a cell reference, and 
 CUSD is an optional input value reserved for a correlated USD (or uniform standard 

deviate) required for correlating non-normal distributions.  See Section 3.9.2 for 
simulating CUSDs. 

 
The =UNIFORM( ) function defaults to a uniform standard deviate (USD) distributed between   
0 and 1 if it is programmed as =UNIFORM( ).  This form of the function is an essential input in 
the other Simetar random number generators, particularly for simulating the native Excel 
probability distribution functions.  Three examples of the UNIFORM function are provided 
below and in 3.1.1 of Probability Distribution Demo.xls. 
 
 
 
 
 
 
 
3.2 Normal Related Probability Distributions 
 
3.2.1 Normal.  A normally distributed random number is simulated using the =NORM( ) 
function.  The =NORM( ) function defaults to a standard normal deviate (SND) generator when 
no parameters are provided, as =NORM( ).  A SND is a normally distributed random variable 
with a mean of zero and standard deviation of one.  The function is programmed using one of the 
following forms of the command: 
 
 = NORM (Mean, Std Dev, [USD]) 
 = NORM (B35, B36, D13) 
 = NORM (B35, B36) 
 = NORM ( ) 
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where: Mean is the mean of the distribution (or a cell reference, as B35), 
 Std Dev is the standard deviation of the distribution (or a cell reference as B36), and  
  USD is an optional uniform standard deviate.  When a USD is not provided, Simetar 

generates its own uniform standard deviate.  This optional variable is included so 
Simetar can simulate multivariate normal distributions. 

 
 
 
 
 
 
 
 
3.2.2 Truncated Normal.  A truncated normal distribution uses the =TNORM() function.  The 
function is programmed as follows: 
 
 = TNORM (Mean, Std Dev, [Min], [Max], [USD]) 
 = TNORM (B47, B48, B49, B50, D13) 
 
where: Mean is the mean for the distribution entered as a number or stored in a cell as B47, 
 Std Dev is the standard deviation for the distribution as B48, 
 Min is the absolute minimum value as B49 and is optional, 
 Max is the absolute maximum value as B50 and is optional, and  
 USD is the optional uniform standard deviate generated by =UNIFORM( ). 
 
To simulate a truncated normal with a truncated minimum, use the function as: 
 
 = TNORM (Mean, Std Dev, Min,    , [USD]) 
 
To simulate a truncated normal distribution with a truncated maximum, use the function as:  
 
 = TNORM (Mean, Std Dev,  , Max, [USD]) 
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3.2.3  Two-Piece Normal.  The two-piece normal distribution combines half of the densities for 
two normal distributions with the same mean and possibly different standard deviations.  The 
distribution is simulated as: 
 
 =TPNORM(Mean, SD Lower, SD Upper, [USD] 
 
where: Mean is the middle value for the distribution, 
 SD Lower is the standard deviation for distribution less than the Mean, 
 SD Upper is the standard deviation for distribution greater than the Mean, and 
 USD is an optional uniform standard deviate. 
 
3.2.4 Modified Two-Piece Normal.  The two piece normal distribution is fully defined by 
specifying the minimum, middle point, the maximum and the standard deviations for the two 
sides.  The =MTPNORM( ) is specified as: 
 
 =MTPNORM(Min, Mid, Max, [USD], [Lower SD], [Upper SD]) 
 
where: Min is the minimum value for the random variable on the number scale (default -1), 
 Mid is the middle value for the random variable (default 0), 
 Max is the maximum value for the random variable on the number scale (default 1), 
 USD is an optional uniform standard deviate,  
 Lower SD is the number of standard deviations in the lower tail (default of 2 means the 

minimum value is two standard deviations below the middle value), and 
 Upper SD is the number of standard deviations in the upper tail (default of 2 means the 

maximum value is two standard deviations above the middle value). 
 
3.2.5 Student’s-t (Excel’s).  The student’s t-distribution is native to Excel but can be simulated 
using Simetar by providing a USD generated by =UNIFORM().  The probability distribution is 
simulated as: 

 
 =TINV (USD, Degrees of Freedom) 
 
where: USD is a uniform standard deviate generated by =UNIFORM( ), and  
 Degrees of Freedom is self explanatory. 
 
 
 
 
 
 
 
3.2.6 F (Excel’s).   The F distribution, an Excel function, is simulated as: 

 
 =FINV (USD, Degrees of Freedom1, Degrees of Freedom 2) 

 
where: USD is a uniform standard deviate generated by =UNIFORM( ), and  
 Degrees of Freedom 1 and 2 are self explanatory. 
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3.2.7 Chi-Squared (Excel’s).  The chi-squared distribution, an Excel function, is simulated as: 
 

 =CHIINV (USD, Mean) 
 

where: USD is a uniform standard deviate generated by =UNIFORM ( ), and 
 Mean is the average for the distribution. 
 
3.2.8 Log Normal (Excel’s).  The log normal distribution, an Excel function, is used to simulate 
quantities like a normal distribution. The distribution is simulated as: 
 
 =LOGINV (USD, Mean, Std Dev) 
 
where: USD is a uniform standard deviate generated by =UNIFORM ( ), 

 Mean is the average, and 
 Std Dev is the standard deviation for the distribution. 

 
The simulated values from =LOGINV( ) are in “natural log” form so take the anti-log of the 
stochastic values using the Excel function =LN( ).   
 
3.2.9 Power Normal.  The power normal distribution is simulated in Simetar using the 
=PNORM( ) function as: 
 
 =PNORM(Mean, Sigma, Exp P, [USD]) 
 
where: Mean is a real number and indicates the central tendency parameter for the distribution, 
 Sigma is a number greater than zero that represents the variance for the distribution, 
 Exp P is a value greater than zero, the exponent parameter for the distribution, and 
 USD is an optional uniform standard deviate. 
 
3.2.10 Inverse Gaussian.  The inverse Gaussian distribution is simulated using an iterative 
solution procedure.  The =INVGAUS( ) function is programmed as: 
 
 =INVGAUS (Mu, Sigma, [USD], [Max Iter], [Precision]) 
 
where: Mu is a positive real number representing the first parameter of the distribution, 
 Sigma is a number greater than zero that indicates the shape parameter for the 

distribution, 
 USD is an optional uniform standard deviate, 
 Max Iter is an optional maximum iterations used to find the stochastic value, and 
 Precision is an optional term to specify the precision of the answer. 
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3.3 Continuous Probability Distributions 
 
3.3.1 Gamma (Excel’s).  The gamma distribution, an Excel function, can be used to simulate the 
length of time to complete a task.  The distribution is specified as: 

 
 =GAMMAINV (USD, Alpha, Beta) 
 
where: USD is a uniform standard deviate generated by =UNIFORM ( ), 
 Alpha is the first parameter for the gamma distribution, and  
 Beta is the second parameter for the gamma distribution. 

 
3.3.2 Truncated Gamma.  The gamma distribution can be truncated at the lower or upper end 
with the =TGAMMAINV( ) function.  The function is used as: 
 
 =TGAMMAINV (Alpha, Beta, [Min], [Max], [USD]) 
 
where: Alpha is the first parameter for the gamma distribution and must be greater than zero, 
 Beta is the second parameter for the gamma distribution and must be greater than zero, 
 Min is the optional value for the absolute minimum (0 < min < max), 
 Max is the optional value for the absolute maximum (min < max < ∞), and 
 USD is an optional uniform standard deviate. 
 
3.3.3 Exponential.  The exponential distribution can be used to simulate times between 
independent events that occur at a constant rate, such as arrivals at a service center.  The 
distribution is simulated as: 
 
 = EXPONINV (Beta, [USD]) 
 
where: Beta is the only parameter for the exponential distribution, and 
  USD is an optional uniform standard deviate. 
 
3.3.4 Double Exponential.  The double exponential distribution can be used to simulate times 
between independent events that occur at a constant rate, such as arrivals at a service center.  The 
distribution is simulated as: 

 
 = DEXPONINV (Beta, [USD]) 
 
where: Beta is the only parameter for the double exponential distribution, and 
  USD is an optional uniform standard deviate generated by =UNIFORM( ). 
 
3.3.5 Weibull.  The Weibull distribution is often used to simulate reliability or lifetimes for 
machinery.  The distribution is simulated as: 
 
 = WEIBINV (Alpha, Beta, [USD]) 
 
where: Alpha is the first parameter for the Weibull distribution and must be greater than zero,  
  Beta, the second parameter for the Weibull distribution, must be greater than zero, and 
 USD is an optional uniform standard deviate generated by =UNIFORM( ). 
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3.3.6 Truncated Weibull.  The Weibull distribution can be simulated with a finite minimum 
and/or maximum as: 
 
 =TWEIBINV (Alpha, Beta, [Min], [Max], [USD]) 
 
where: Alpha is the first parameter of the Weibull distribution and must be greater than zero,  
  Beta is the second parameter of the Weibull distribution and must be greater than zero,  
  Min is the absolute minimum (0 < min < max), 
  Max is the absolute maximum (min < max < ∞), and 
  USD is an optional uniform standard deviate. 
 
3.3.7 Cauchy.  The Cauchy distribution is a symmetrical distribution about its parameter theta 
( ).θ   If median and sigma parameters are not provided the function defaults to a 
=CAUCHY(0,1) random variable.  The distribution can be simulated in Simetar as: 
 
 =CAUCHY ([Median], [Sigma], [USD]) 
 
where: Median is an optional value for the mid point of the distribution, 
 Sigma is an optional term to indicate the shape of the distribution, and    
 USD is an optional uniform standard deviate. 
 
3.3.8 Logistic.  A logistic distribution can be simulated using the =LOGISTICINV() function as: 
 
 =LOGISTICINV(Mu, Sigma, [USD]) 
 
where: Mu is the first parameter for the logistic distribution and it must be a real value, 
 Sigma is the second parameter for the distribution and must be greater than zero, and 
 USD is an optional uniform standard deviate. 
 
3.3.9 Log-Log.  The log-log distribution is simulated as: 
 
 =LOGLOGINV (Mu, Sigma, [USD]) 
 
where: Mu is any real value indicating the position of the distribution on the number scale,  
 Sigma is a value greater than zero indicating the scale parameter, and 
 USD is an optional uniform standard deviate. 
 
3.3.10 Log-Logistic.  The log-logistic distribution is simulated as: 
 
 =LOGLOGISTICINV (Alpha, Beta, [USD]) 
 
where: Alpha is a value greater than zero which represents the shape parameter, 
 Beta is the scale parameter and must be greater than zero, and 
 USD is an optional uniform standard deviate. 
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3.3.11 Extreme Value.  An extreme value distribution can be simulated as: 
 
 =EXTVALINV (Mu, Sigma, [USD]) 
 
where: Mu is the real value indicating the location parameter for the extreme value distribution. 
 Sigma any value greater than zero indicating the scale parameter of the distribution, and 
 USD is an optional uniform standard deviate generated by =UNIFORM( ). 
 
3.3.12 Pareto.  A Pareto distribution can be simulated using the =PARETO() function as: 
 
 =PARETO(Alpha, Beta, [USD]) 
 
where: Alpha is the first parameter for a Pareto distribution and it must be greater than zero, 
 Beta is the second parameter for the distribution and it must be greater than zero, and 
 USD is an optional uniform standard deviate. 
 
3.4 Finite-Range Continuous Probability Distributions 
 
3.4.1 Triangle.  The triangle distribution is defined by the minimum, mode, and maximum.  The 
distribution can be simulated as: 
 
 =TRIANGLE (Min, Mode, Max, [USD]) 
 =TRIANGLE (A95, A96, A97) 
 
where: Min is the minimum for the distribution, 
 Mode is the mode for the distribution,  
 Max is the maximum for the distribution, and 
 USD is an optional uniform standard deviate. 
 
 
 
 
 
 
 
3.4.2 Beta (Excel’s).  The beta distribution, an Excel function, can be used to simulate the 
proportion of defective items in a shipment or time to complete a task.  The distribution is 
simulated as: 

 
 =BETAINV (USD, Alpha, Beta, [Min], [Max]) 
 =BETAINV (UNIFORM ( ), Alpha, Beta) 
 
where: USD is a uniform standard deviate generated by =UNIFORM ( ), 

 Alpha is the first parameter for the distribution, 
 Beta is the second parameter for a beta, 
 Min is an optional value for truncating the minimum of the distribution, and 
 Max is an optional value for truncating the maximum of the distribution. 
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3.4.3 PERT Distribution.  A PERT distribution can be simulated by Simetar using the 
=PERTINV() function as: 
  
 =PERTINV(Min, Middle, Max, [USD]) 
 
where: Min is a lower bound parameter, 
 Middle is a middle parameter with min < middle < max,  
 Max is an upper bound parameter, and  
 USD is an optional uniform standard deviate. 
 
3.4.4 Cosine.  The cosine distribution is simulated by Simetar using an iterative solution 
procedure.  The =COSINV( ) function is programmed as: 
 
 =COSINV(Center, Radius, [USD], [Max Iter], [Precision]) 
 
where: Center is a real number that represents the first parameter for a cosine distribution, 
 Radius is a positive value that represents the second parameter, 
 USD is an optional uniform standard deviate, 
 Max Iter is the maximum number of iterations used to find the stochastic value, and 
 Precision is an optional term to specify the precision of the answer. 
 
3.4.5 Semicircle.  The semicircle distribution is simulated as: 
 
 =SEMICIRCINV(Center, Radius, [USD], Max Iter, Precision) 
 
where: Center is a real number that indicates the first parameter of the distribution, 
 Radius is the second parameter for the distribution and must be greater than zero, 
 USD is an optional uniform standard deviate, 
 Max Iter is the maximum number of iterations to find the value (max > 0), and 
 Precision is a positive value to specify how precise the optimum answer should be.  If an 

optimum answer is not found within the precision level in the maximum number of 
iterations, #VALUE1 error is returned. 

 
3.5 Analogs to Finite Range Probability Distributions 
 
3.5.1 GRK.  The GRK distribution is an empirical substitute for the triangle distribution and is 
similar to a two piece normal distribution.  The GRK distribution simulates values less than the 
minimum about two percent of the time.  Values greater than the maximum are observed about 
two percent of the time.  A GRK distribution can be simulated as: 
 
 = GRK (Min, Middle, Max, [USD]) 
 = GRK (A95, A96, A97) 
 
where: Min is the value for the minimum, 
 Middle is the value for the mid point of the distribution,  
 Max is the value (or cell) for the maximum, and 

 USD is an optional uniform standard deviate. 
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3.5.2 GRKS.  The GRKS distribution is a continuous probability distribution for sampling from 
a minimum data population.  Given a minimum, middle value and a maximum to describe the 
population the =GRKS( ) function is a continuous distribution substitute for the triangle 
distribution.  The LSD and USD parameters indicate the number of standard deviations below 
and above the middle value that the distribution can extend.  An LSD of 2 implies the minimum 
is at approximately the 2nd percentile and a LSD of 3 implies sampling with a minimum at 
approximately the 0.5 percentile.  Program =GRKS( ) as follows: 
 
 =GRKS (Min, Middle, Max, [USD], [LSD], [USD]) 
 =GRKS (C250, C251, C252, C253, C259, C260) 
 
where: Min is the value for the minimum, 
 Middle is the value for the mid point of the distribution,  
 Max is the value (or cell) for the maximum,  
 USD is an optional uniform standard deviate, 
 LSD optional number of standard deviations below the middle, as D97, and 

 USD optional upper number of standard deviations above the maximum, as D98. 
 

 
 
 
 
 
 
 
 
 
3.6 Discrete Probability Distributions 
 
3.6.1 Bernoulli.  A Bernoulli distribution can be used to simulate the occurrence of an event, 
such as a machine failure during a given time period.  Simulate a Bernoulli distribution as: 
 
 = BERNOULLI (P) 
 = BERNOULLI (A10) 
 
where: P is the probability (0 < P < 1), of the variable or condition being true (or 1).   
 
 
 
 
 
 
3.6.2 Binomial.  The binomial distribution is a discrete distribution for simulating the number of 
successes in N independent Bernoulli trials each having a probability P of success.  Other 
applications are to simulate the number of units demanded in a given time period.  Simulate the 
binomial distribution as: 
 =BINOMINV (N, P, [USD]) 
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where: N is the number of trials, 
 P is the probability of a positive success, and 
 USD is an optional uniform standard deviate. 
 
3.6.3 Negative Binomial.  The negative binomial distribution simulates the number of failures 
before the Nth success in a sequence of independent Bernoulli trials each having a probability P 
of success.  Simulate the negative binomial distribution as: 
 
 =NEGBINOMINV (N, P, [USD]) 
 
where: N is a positive integer representing the number of failures before the next success, 
 P is the probability of success, and 
 USD is an optional uniform standard deviate. 
 
3.6.4 Multinomial.  The multinomial probability distribution returns either an array of values or 
a scalar, depending upon how it is used.  If the probabilities (Probs) are entered as an array the 
function returns an array, but if Probs is a scalar it returns a scalar.  An example of the 
multinomial distribution in Step 3.6.4 of Probability Distributions Demo.xls demonstrates how 
the function can be used both ways. 
 
 =MULTINOMINV(No. Trials, Probs, [USD]) 
 
where: No. Trials is the sample size (integer greater than zero) used in the distribution, 
 Probs is a vector of cell probabilities associated with each cell’s random variable.  

Individual values are between zero and one and must sum to one.  If a single value is 
entered for Probs the function returns a binomial random variable. 

 USD is an optional univariate standard deviation. 
 
3.6.5 Poisson.  The Poisson distribution simulates the number of events that occur in an interval 
of time, such as arrivals at a service point.  The distribution can also be used to simulate random 
quantities demanded during an interval of time.  Simulate the Poisson distribution as: 
 
 =POISSONINV (L, [USD]) 
 
where: L, the only parameter for a Poisson, must be positive and is generally an integer, and 
 USD is an optional uniform standard deviate. 
 
3.6.6 Geometric.  The geometric distribution simulates the number of failures before the first 
success in a sequence of independent Bernoulli trials each with a P probability.  Also this 
distribution can simulate the number of items demanded in a given period.  The geometric 
distribution is simulated as: 
 
 =GEOMINV (P, [USD]) 
 
where: P is the probability of each independent Bernoulli trial, and 
 USD is an optional uniform standard deviate. 
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3.6.7 Hypergeometric.  The Hypergeometric distribution is used to simulate the number of units 
that are acceptable in a sample of size K taken from a population of size N when it is known that 
M of the units in the population are acceptable.  This is a sample without replacement problem 
made famous by the urn with N balls, m of which are green, (N-M are red), and a sample of K  
balls are drawn.  The Hypergeometric function returns the number of red balls in the sample of 
K. Simulate the Hypergeometric distribution as: 
 
 =HYPERGEOMINV (N, M, K, [USD]) 
 
where: N is the population size, 
 M is the number of units in the population with the desired characteristic, 
 K is the sample size, and 
 USD is an optional uniform standard deviate 
 
3.7 Sample Based Probability Distributions 
 
3.7.1 Empirical.  An empirical distribution can be simulated by Simetar using the 
=EMPIRICAL( ) or the =EMP() function.  The function assumes a continuous distribution so it 
interpolates between the specified points on the distribution (Si) using the cumulative 
distribution probabilities (F(Si)).  The most direct form of the function is =EMPIRICAL(Si) or 
=EMP(Si) which causes Simetar to calculate the F(Si) and USD values for the distribution.  The 
function is programmed as follows: 
 
 = EMPIRICAL(Si, F(Si), [USD], [Normal Tails]) 
 = EMP(B75:B89, A75:A89, D13) 
 
where: Si represents an array of N sorted random values including the min and max,   
 F(Si) cumulative probabilities for the Si values, including the end points of zero and one,  
 USD is an optional uniform standard deviate generated by =UNIFORM(), and   
 Normal tails is an optional term to extend the tails of the distribution beyond the end of 

the data (enter a 1) or to truncate the distribution with the default value of 0. 
 
Note: i = 1 to n for the Si and F(Si) parameters denotes that these are ranges and not individual 
values. 
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3.7.2 Truncated Empirical.  A truncated empirical distribution is the same as an empirical 
distribution but with a defined minimum and maximum.  The distribution is simulated as: 
 
 =TEMPIRICAL((Si, F(Si), Min, Max, [USD]) 
  
where: Si represents an array of N sorted random values including the min and max,   
 F(Si) cumulative probabilities for the Si values, including the end points of zero and one,  
 USD is an optional uniform standard deviate generated by =UNIFORM(),  
 Min is the minimum for the distribution, and 
 Max is the maximum for the distribution.  
 
3.7.3 Discrete Empirical.  When it is not appropriate to interpolate between the Si points on the 
empirical distribution, then the data are said to be distributed discrete empirical.  This 
distribution is applicable if the data can only take on set values.  Each value is assumed to have 
an equal chance of being selected.  The function is programmed in Simetar as follows: 
 
 =DEMPIRICAL (Si, [USD]) 
 =DEMPIRICAL (B75:B89, D13) 
 
where: Si represents an array of n random values; the values do not have to be sorted, and   
 USD is an optional uniform standard deviate. 

 
3.7.4 Kernel Density Estimated Random Variable.  The =KDEINV( ) function uses Parzen 
type kernel density estimators to evaluate a smoothed value that represents a point on a 
cumulative distribution function (CDF).  Eleven alternative kernel density estimators can be used  
to smooth an empirical distribution and simulate random values in Simetar.  A graphical 
representation of the kernel density smoothed function can be developed using the smoothing 
option in the CDF chart tool (see Section 6.2 for the CDF chart function).  The kernel density 
estimated random variable function is simulated as: 
 
 =KDEINV(Data Range,[BW], [KE], [USD], [Max Iter], [Precision]) 
 
where: Data range is the location for data series for the empirical distribution to simulate, 
 BW is an optional bandwidth to use in estimating the influence of each data point on the 

CDF estimation,  
 KE is an optional term to specify the kernel estimation type used to estimate the CDF. 

The KE types are: Gaussian (0 or 1), Uniform (2), Casinus (3), Triangle (4), Triweight 
(5), Epanechnikow (6), Quartic (7), Cauchy (8), Double Exponential (9), Histogram 
(10), and Parzen (11), 

 USD is an optional uniform standard deviate,  
 Max Iter is the maximum number of iterations to use to find the result, and 
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 Precision is an optional term to specify how precise the final solution should be.  If an 
optimal answer is not found #VALUE! will appear in the cell. 

 
 
 
 
 
 
 
 
 
 
 
 
3.7.5 Discrete Uniform.  A discrete uniform random variable can take on only certain values, 
each with an equal probability.  For example, a fair die can take on one of six values (1, 2, 3, 4, 
5, 6) with an equal probability. To simulate a discrete uniform random variable use the 
=RANDSORT( ) function.  For example, if the random values to define a distribution are 1, 2, 3, 
4, 5, 6, and are stored in cells A1:A6, simulate a random value, by typing the following 
command in a cell: 
 
 =RANDSORT(A1:A6) 
 
3.7.6 Random Sorting.  The array form of the =RANDSORT( ) function can be used to simulate 
(sample) random draws of a list of names or objects or numbers without replacement.  For 
example, if five names Jim, Joe, Sam, John, and Bill are to be randomly sorted (shuffled), enter  
the names in an array and use =RANDSORT( ) as an array function.  Assume the five names are 
in A1:A5 and the random sample is to appear in B1:B5; type the following command in B1 after 
highlighting array B1:B5: 
 
 =RANDSORT(A1:A5) 
 
Press Control Shift Enter, rather than Enter after typing the function, because this is the array 
form of the function. Press F9 to “resort” the data for a second iteration or sample.   
 
 
 
 
 
 
 
3.7.7 Bootstrapping (Random Sampling with Replacement).  Bootstrap sampling techniques 
are used for advanced simulation problems and assume that past deviates or errors can be re-
sampled an infinite number of times. This method of sampling can be accomplished using the 
=BOOTSTRAPPER( ) function which samples from a known distribution with replacement.  An 
example of the function is provided below and in Step 3.7.7 in Probability Distributions 
Demo.xls. 
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 =BOOTSTRAPPER (Array of Random Values, [Preserve Rows]) 
 =BOOTSTRAPPER (A27:A31, 1) 
 
where: Array of random values is the location for the array of random values to be sampled 

during simulation, and 
 Preserve Rows the optional term to retain the order of the values in rows, if the array of 

random variables is a matrix.  

 
3.8 Time Series Probability Distributions 
 
3.8.1 Random Walk.  The =RANDWALK( ) function generates a random variable that is 
characteristic of a random walk.  A random walk distribution for xt is characterized as 

t t-1 tX  = X  + e%  where te%  is normally distributed.  Simulating a variable for N iterations will result 
in a sample of length N.  The function is used as: 
 
 =RANDWALK (Mean, Std Dev, [USD], [Distribution], [Initial Value], [Coefficient]) 
 
where: Mean is the expected value for the random variable,  
 Std Dev is the standard deviation for the variable and is greater than zero, 
 USD is an optional uniform standard deviate, 
 Distribution is an optional code for the distribution for generating random changes as:  

normal (0 or 1), uniform (2), cosine (3), Cauchy (8), double exponential (9), logistic 
(12), extreme value (13), exponential (14), and log normal (15), 

 Initial Value is an optional initial value to start the random sequence; the default is zero, 
 Coefficient is an optional value on the lag variable as t t-1 tin X  =  X  + e .α α %  
 
 
 
 
 
 
 
3.9 Multivariate Distributions 
 
3.9.1 Correlated Standard Normal Deviates. Correlated standard normal deviates (CSND’s) 
are generated in Simetar using the =CSND( ) function.  An array of correlated standard normal 
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deviates can be used to simulate multivariate normal (MVN) probability distributions in a two 
step procedure.  An array of CSNDs is simulated as: 
 
 
 = CSND (Correlation Matrix Range, [Optional Range of Independent SNDs]) 
 = CSND (B152:G157) 
 = CSND (B152:G157, B161:B166) 
 
where: Correlation Matrix Range specifies the location of a non-singular NxN correlation 

matrix. Calculate the correlation matrix using the function described in Section 12.3. 
 Optional Range of Independent SND’s (ISND’s) is an Nx1 array of SND’s generated 

using =NORM( ) in N cells. 
 
As an array function =CSND( ) must be used as follows:  highlight the output location for N 
cells and type the command =CSND (correlation matrix location, optional range of ISNDs) and 
press the Control Shift Enter keys.   
 
 
 
 
 
 
 
 
 
 
 
3.9.2 Correlated Uniform Standard Deviates.  Correlated uniform standard deviates (CUSDs) 
are used to simulate multivariate non-normal (e.g., empirical) probability distributions in a two 
step process.  An array of CUSDs is simulated as: 
 
 =CUSD (Correlation Matrix Range, [Optional Range of Independent SNDs]) 
 =CUSD (B152:G157) 
 =CUSD (B152:G157, B161:B166) 
 
where: Correlation Matrix Range specifies location of a non-singular NxN correlation matrix.  
 Calculate the correlation matrix using the function described in Section 12.3. 
 Optional Range of Independent SNDs is an Nx1 array of SNDs generated using 

=NORM( ) in N cells. 
 
As an array function =CUSD( ) must be used as follows:  highlight the output location for N 
cells and type the command =CSND (correlation matrix location, optional range of ISNDs), and 
press the Control Shift Enter keys. 
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3.9.3 Multivariate Normal (MVN) Distribution in One Step 
 
Simetar provides a one step function for simulating a MVN distribution.  The =MVNORM( ) 
function uses an Nx1 array of means and an NxN covariance matrix to generate correlated 
random values that are distributed multivariate normal.  The array function is entered as follows: 
 
 =MVNORM (Means Vector, Covariance Matrix, [Array of ISNDs]) 
 
where: Means Vector is an Nx1 array of the averages to use for simulating MVN values, and 
 Covariance Matrix is an NxN covariance matrix for the N random variables. 
 Array of ISNDs is an optional Nx1 array of independent standard normal deviates 

generated with n cells of =NORM( ). 
 
To use the array function, first highlight the number of cells equal to the number of means at the 
output location, second type =MVNORM (location for the array of means, location of 
covariance matrix), and press the Control Shift Enter keys.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.9.4 Multivariate Normal Distribution in Two Steps.  A general formula for simulating a 
multivariate normal distribution is accomplished by first generating a vector of CSNDs and then 
using the CSNDs in the formula for a normal distribution.  In step 1 an Nx1 array of CSNDs is 
generated using =CSND( ), see Section 3.9.1.  The example provided here is for a three variable 
model so N equals 3.  Assume the non-singular covariance matrix is in A1:C3, the three means 
are in cells B7:B9, and the three standard deviations are in cells C7:C9. 
 
 Step 1: In A4:A6  = CSND (A1:C3) 
 
 Step 2: In A7   = B7 + C7 * A4 
   In A8   = B8 + C8 * A5 
   In A9   = B9 + C9 * A6 
 
These three Excel statements can be repeated for N variables.  The three random variables will 
be appropriately correlated within each period but will be independent across periods. 
 
An alternative two step procedure for simulating a multivariate normal distribution uses a vector 
of CUSDs.  In step 1 an Nx1 array of CUSDs is generated using =CUSD( ), see Section 3.9.2. In 
step 2 use the =NORM( ) function to simulate the random values.  The example provided here is 
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for a three variable model so N equals 3.  Assume the non-singular correlation matrix is in 
A1:C3, the three means are in cells B7:B9, and the three standard deviations are in cells C7:C9. 
 
 Step 1: In A4:A6  = CUSD (A1:C3) 
 
 Step 2: In A7   = NORM(B7, C7, A4) 
   In A8   = NORM(B8, C8, A5) 
   In A9   = NORM(B9, C9, A6) 
 
These three Simetar statements can be repeated for N variables.  The three random variables will 
be appropriately correlated within each period but will be independent across periods. 
 
3.9.5 Multivariate Empirical (MVE) in One Step 
 
Simetar provides a one step function for simulating a MVE distribution.  The  
=MVEMPIRICAL( ) function uses as input the MxN matrix of the M observations for the N 
random variables.  The result is an Nx1 array of MVE correlated random values for the N  
variables.  Program the function as: 
 
 =MVEMPIRICAL (Range for Random Variables ,,,, [Vector of Means], [Type]) 
 
where: Range for Random Variables is an MxN matrix of the M observed values for the N 

random variables,  
 Vector of Means is an array of forecasted means for the N random variables, and 
 Type is a option code for the type data transformation used to generate the forecasted 

means for the MVE:  (0) for actual data, (1) for percent deviations from mean, (2) for 
percent deviations from trend, and (3) is for differences from the mean. 

  
The =MVEMPIRICAL( ) function is an array function so highlight an Nx1 array at the output 
location and type the function, followed by pressing the Control Shift Enter keys.  An example 
of using the one step =MVEMPIRICAL( ) function is provided below for a MVE distribution 
with 6 (N) variables and 13 (M) observations. 
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3.9.6 Multivariate Empirical (MVE) Distribution in Two Steps 
 
Multivariate empirical distributions can be simulated in two steps using the =EMP( ) function 
and an array of correlated uniform standard deviates or CUSDs generated using the =CUSD( )  
function described in Section 3.9.2.  An example of the two step MVE is provided for a three 
variable model, assuming the correlation matrix is in H1:J3, the forecasted means are in cells 
A1:A3, the fractional deviations i(S )  from the mean are in cells C1:E12, and the three variables 
the probabilities for the deviates i(F(S ))  are in B1:B12. 
 
 Step 1: In A14:A16  = CUSD (H1:J3) 
 
 Step 2: In C14   = A1 + A1 * EMP(C1:C12, B1:B12, A14)) 
    In C15   = A2 + A2 * EMP (D1:D12, B1:B12, A15)) 
    In C16   = A3 + A3 * EMP (E1:E12, B1:B12, A16)) 
 
The values in cells C14:C16 are appropriately correlated based on the correlation matrix in cells 
H1:J3 and are distributed empirical about the respective forecasted means in cells A1:A3.  The 
formulas in cells A14:A16 and C14:C16 can be repeated for as many periods (years) as the 
model simulates.  Simulated MVE values will be correlated within each period but will be 
independent across periods. 
 
3.9.7 Multivariate Mixed Distribution 
 
Simetar can simulate a multivariate mixed distribution (MVM) which has correlated variables 
that are distributed differently.  For example a MVM could include variables that are distributed 
uniform, empirical, normal, and beta.  To simulate a MVM, use the =CUSD( ) function to 
simulate an Nx1 vector of correlated uniform standard deviates, one CUSD for each variable.  
Use each of the CUSDs in the appropriate Simetar function to simulate the random variables.   
Using an example of a four variable MVM with the variables distributed uniform, empirical, 
normal and beta, respectively, use the following functions: 
 
 Step 1: =CUSD(Correlation Matrix Range) 
 
 Step 2: =UNIFORM(Min, Max, CUSD1) 
  =EMP(Si, F(Si), CUSD2) 
  =NORM(Mean, Std, Dev, CUSD3) 
  =BETAINV(CUSD4, Alpha, Beta, [Min], [Max]) 
 
where:  CUSDi values refer to the ith correlated uniform standard deviate simulated in the Nx1 

CUSD array.   
 
The simulated random variables will be appropriately correlated based on the correlation matrix.  
 
3.9.8 Multivariate Log Normal.  A log normally distributed series of random variables can be 
simulated multivariate using the =MVLOGNORM( ) array function.  The function is used as: 
 
 =MVLOGNORM (Mean Vector, Covariance, [Array of ISNDs], [Matrix Row], [Moments]) 
 =MVLOGNORM (A1:A4, B1:E4, F1:F4, 1, TRUE) 
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where: Means Vector is the location of the Nx1 vector of means.  If the Moments switch is true, 
each mean must be greater than zero.  If the Moments is false, mean are reals. 

 Covariance is an NxN covariance matrix for the series,  
 Array of ISND is an optional nx1 array of independent standard normal deviates 

generated with N cells of =NORM( ). 
 Matrix Row is an optional term for the ith variable if the function is to return only the 

random value for the ith variable (Leaving this value blank makes the function return n 
values so treat it as an array function with Control Shift Enter.), and  

 Moments is an optional switch to use the function two ways:  if the term is TRUE (‘1’) 
the function is for the moments of a log normal vector, and FALSE (‘0’) indicates the 
moments are for a transformed normal distribution. 

 
3.9.9 Multivariate Student’s t.  A distribution of N variables can be simulated multivariate 
Student’s t using the =MVTINV( ) array function as: 
 
 =MVTINV (Means Vector, Covariance Matrix, [Array of ISND], [Matrix Row]) 
 =MVTINV (A1:A4, B1:E4, F1:F4, 1,) 
 =MVTINV (A1:A4, B1:E4, F1:F4) 
   
where: Means Vector is the location of the Nx1 vector of means, 
 Covariance Matrix is the location of the NxN covariance matrix for the series, 
 Array of ISND is an optional Nx1 array of N cells with =NORM( ) SNDs, and 
 Matrix Row is the optional ith variable if only the random number for the ith series is to 

be simulated.  Leaving this value blank makes the function return N values so treat it as 
an array function with Control Shift Enter.  

 
3.9.10 Hotelling T-Squared.  The Hotelling T2 distribution is a multivariate analog to the 
univariate Student’s t distribution.  If x is a Px1 random vector distributed as multivariate normal 
with a zero mean vector and an identity covariance matrix and W is a PxP random matrix 
distributed as Wishart with an identity covariance matrix and m degrees of freedom.  And x and 
W are independent, then the variable T2 = m xT W-1 x is distributed as a Hotelling T2 random 
variable.  A special case is the Hotelling T2 random variable with 1 and M degrees of freedom 
which is an F distribution with 1 and M degrees of freedom.  The parameters for the Hotelling T2 
function, which produces a Hotelling T2 random variable, are p and df = M.  Simulate Hotelling 
T-Squared distribution as: 
 
 =HOTELLTINV(P, DF, [USD]) 
 
where: P is an integer indicating the dimension of the PxP covariance or identity matrix for a 

Wishart distribution,  
 DF is the degrees of freedom or the number of observations in the MxP data matrix for a 

Wishart distribution, and 
 USD is an optional uniform standard deviate. 
 
3.9.11 Wishart.  The Wishart distribution is a matrix generalization of the univariate chi square 
distribution.  The Wishart array function produces a matrix of random values that are distributed 
Wishart.  The distribution is derived from an MxP matrix X of normally distributed independent 
vectors with mean zero and covariance matrix C.  The PxP matrix of X’X has a Wishart 
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distribution and is simulated as: 
 
 =WISHINV(C, DF) 
 
where: C is a PxP covariance matrix that is positive definite, and 
 DF is the degrees of freedom or the number of rows in an MxP data matrix of values 

used to calculate C. 
 
The Wishart function is an array function so highlight a PxP block of cells, type the function, 
and end by pressing the Control Shift Enter  keys. 
 
3.9.12 Wilks’ Lambda.  If two independent random matrices, X and Y, are distributed as 
Wishart, both with a PxP identity covariance matrix and N1 and N2 degrees of freedom, 
respectively, then the scalar |X|/|X+Y| has the Wilks’ lambda distribution with P, N1, and N2 
degrees of freedom.  This distribution is found in several likelihood ratio tests in multivariate 
testing settings.  Simulate Wilks’ lambda distribution as: 
 
 =WILKSLINV(P, N1, N2) 
 
where: P is an integer representing the dimension of the Wishart random matrix PxP 
 N1 is the integer value for the degrees of freedom in the random Wishart matrix X, and 
 N2 is the integer value for the degrees of freedom in the random Wishart matrix Y. 
 
3.9.13 Dirichlet.  A Dirichlet series of correlated random variables can be simulated using the 
Dirichlet array function as: 
 
 =DIRICHINV(Alpha Array, [Array of IUSD], [Matrix Row]) 
 
where: Alpha Array is the location of an Nx1 array of parameter values for the Dirichlet 

distribution; each value is greater than zero, 
 Array of IUSD is the location of an optional nx1 array of independent uniform standard 

deviates simulated =UNIFORM( ), and 
 Matrix Row is the ith variable of the random series if the function is to return only the 

ith series.  Leaving this value blank makes the function return n values so treat it as an 
array function with Control Shift Enter. 

 
3.9.14 Uncorrelating Random Deviates (USD and SND).  In advanced simulation applications 
it is useful to uncorrelate random values.  Simetar provides a function to calculate the implicit 
independent deviates from a vector of CUSDs.  The uncorrelated standard normal deviates 
function, =USND( ), converts a vector of CSNDs to a vector of independent SNDs.  The function 
is programmed as: 
 
 =USND (Correlation Matrix, CSND Array) 
 
where: Correlation Matrix is the cell reference location for the correlation matrix used to 

generate the CSNDs, and 
 CSND Array is the cell reference location for the array of CSNDs to be converted to 

independent SNDs. 
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The uncorrelated uniform standard deviates function, =UUSD( ), converts correlated uniform 
standard deviates (CUSDs) to uncorrelated USDs.  The function is programmed as follows: 
 
       =UUSD (Correlation Matrix, CUSD Array) 
 
3.10 Iteration Counter   
 
For advanced simulation applications it is useful to use the iteration number to key a simulation 
model to perform certain calculations.  For example a table lookup function can be used to draw 
values from a table where the rows correspond to the iterations for previously generated and 
tested random values.  The iteration number function in Simetar is =ITERATION() and returns 
the iteration number from 1 to N, where N represents the number of iterations.  As indicated in 
the example below, the function returns “1” until the workbook is simulated.  Selecting the cell 
with =ITERATION( ) as a KOV for simulation will produce a series of values: 1, 2, 3, … , 500  
for a stochastic simulation with 500 iterations. 
 
 =ITERATION ( ) 
  
 
 
 
4.0 Parameter Estimation for Probability Distributions 
 
4.1 Parametric Probability Distributions 
 
A univariate parameter estimator in Simetar estimates the 
parameters for simulating a random variable for 16 parametric 
probability distributions.  The univariate parameter estimator 
is activated by using the  icon.  The Simetar menu for the 
univariate parameter estimator requires the user to specify the 
historical data series for the random variable and the method 
for estimating the parameters:  method of moments or 
maximum likelihood estimator (Figure 12).  If a variable is not 
consistent with a distribution, its parameter cells will be blank 
rather than contain a value.   
Simetar also prepares the equations for simulating the random 
variable using the calculated distribution parameters in the 
Formulas column of the example above.  The formulas in the 
Formulas column can be simulated to test how well the 
different assumed distributions simulate the random variable.  
The =CDFDEV( ) function can be used to calculate a test 
scalar to determine which distribution is best for simulating 
the random variable.  See Section 5.7 for an explanation of =CDFDEV( ).  An example of the 
parameter estimation is provided in Parameter Estimation Demo.xls. The =CDFDEV( ) scalar in 
the example above indicates that the Beta distribution fits the data better than the other 
distributions tested. 
 

Figure 12. Univariate Parameter 
Estimator 
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4.2 Empirical Probability Distributions 
 
The parameters for an empirical probability distribution are 
estimated using a Simetar function activated by the  icon. The 
Select Input Ranges window indicates the data to be used for 
defining the probability distribution (Figure 13).  Be sure to 
select the Labels in First Cell box when there is a name in the 
first cell (row or column) of the Selected Input Ranges.  Four 
examples of using the Empirical Parameter estimation dialog 
box are provided in the Empirical Demo.xls workbook program. 
 
The dialog box (Figure 13) allows the user to estimate the 
parameters for one empirical distribution or for numerous 
distributions at once.  The only restriction for using this function 
is that all of the data series must have the same number of 
observations.  The dialog box allows estimation of the 
parameters four different ways: 
 

– Use actual data (no transformations) for the distribution,  
– Convert the actual data to differences (residuals) from 

the mean prior to estimating the parameters,  
– Convert the actual data to deviations (residuals divided 

by the mean) from the mean prior to estimating the 
parameters, and 

– Convert the actual data to deviations (residuals 
divided by the trend values) from a linear trend line 
prior to estimating the parameters. 

 
The empirical distribution parameter estimation output 
includes the random data (residuals from trend or mean), 

Figure 13.  Parameter 
Estimation for the 
Empirical Distribution 
Dialog Box. 
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summary statistics, correlation matrix if more than one variable is specified, and the sorted 
random values with cumulative distribution probabilities. The sorted deviations required by 
=EMP( ) to simulate an empirical distribution are demonstrated in the example output to the 
right. Once the Empirical distribution parameters are estimated, they can be simulated using the 
=EMP (Si, F(Si)) function (see Section 3.7.1). 
 
4.3 Multivariate Probability Distributions  
 
Correlation and covariance matrices are both parameters for multivariate probability 
distributions.  Correlation and covariance matrices can be calculated using the Correlation 
Matrix dialog box activated by the   icon.  This Simetar dialog box calculates the upper right 
triangle correlation matrix of size NxN when the user specifies N variables.  The first step to 
using the dialog box is to specify the location for placing the upper left hand corner of the 
generated correlation matrix by indicating the Output Range in the menu (Figure 14).  Next, 
specify whether the data to correlate are in columns or rows. The first cell of each column (or 
row) indicated in the Selected Arrays box should have a label so the output matrix is easier to 
read.   
 
The Correlation Matrix dialog box calculates either the 
Pearson’s (standard) correlation coefficient matrix or the rank 
correlation matrix.  The default is the Pearson’s correlation 
coefficient matrix.  The rank correlation coefficient matrix is 
calculated when the Rank Correlation radio button is selected. 
 
The statistical significance of each correlation coefficient can be 
tested by Simetar.  Student’s-t values for the correlation 
coefficients greater than the t-critical value indicate whether the 
correlation coefficient is statistically different from zero and are 
displayed in bold.  See Complete Correlation Demo.xls for 
examples of using the correlation matrix dialog box. 
 
A covariance matrix can be calculated using the Correlation 
Matrix dialog box (Figure 14).  The upper triangle covariance 
matrix is calculated by selecting the Covariance Matrix radio 
button after specifying the arrays to include in the matrix.  The 
Full Symmetric covariance matrix is calculated by selecting this 
option in the dialog box and the Covariance Matrix.  See the  
demonstration program Complete Correlation Demo.xls for examples of estimating covariance 
matrices. 

Figure 14.  Correlation Matrix 
Dialog Box. 
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4.4 GRKS Probability Distribution 
 
Parameters for the GRKS probability distribution can be 
estimated using the dialog box in Figure 15.  The GRKS 
distribution dialog box is accessed via the toolbar Simetar 
drop down menu – GRKS Distribution.  The GRKS pdf is 
defined by three values:  Minimum, Middle Value, and 
Maximum.  Simetar places the parameters on the 
worksheet starting in the designated Output Range.  The 
parameters are presented as values and their associated 
probabilities (see GRKS Distribution Demo.xls). Simetar 
also generates a chart of the distribution and that displays 
how the shape of the distribution changes as the 
minimum, middle, and maximum values change.  Test 
this feature by changing the three parameters and 
observing their affects on the GRKS distribution figure.  
The GRKS pdf parameters can be simulated using the 
=GRKS( ) function in Section 3.5.2. 
 
 

Figure 15.  Parameter Estimation 
for the GRK Distribution. 
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5.0 Statistical Tests for Model Validation 
 
Model validation must be done prior to application of a simulation model for decision making. 
Validation can utilize graphs, such as PDFs and CDFs, but statistical testing of the simulated 
distributions is required to determine whether the stochastic variables in the model are  
statistically from the same distribution as the historical data.  To facilitate the validation process 
several hypothesis tests have been included in Simetar.  The tests are organized using 5 tabs in 
the Hypothesis Testing for Data dialog box opened by the    icon (Figure 16). Examples of the 
validation tests described in this section are available in Hypothesis Tests Demo.xls. 
 
5.1 Univariate Distribution Tests for Model Validation 
 
The means and variances for two distributions (or 
series) can be compared by using the Compare Two 
Series tab for the Hypothesis Testing dialog box 
(Figure 16).  The mean and variance tests are 
univariate as they only test the difference between 
two variables.  This type of hypothesis testing is 
useful in validation for comparing the simulated 
distribution to the historical distribution.  The null 
hypotheses are that the simulated mean equals the 
historical mean and the simulated variance equals 
the historical variance.  As demonstrated in the 
example below, it is useful to statistically test if the 
simulated data have the same mean and variance as 
the historical data series.  
 
The statistical tests are performed when the Compare Two Series tab in Figure 16 is selected and 
you specify the two distributions (data series) to compare.  A two sample, Student-t test is used 
to allow comparison of means from distributions with an un-equal number of observations (see 
example below).  See Step 4 in Hypothesis Tests Demo.xls for an example of comparing two 
distributions. 

 
5.2 Multivariate Distribution Tests for Model Validation 
 
Means and variances for multivariate (MV) probability distributions can be statistically tested 
against the distribution’s historical data in one step by selecting the Compare Two Series tab in 
the Hypothesis Testing for Data dialog box and specifying matrices as the input Figure 17.   
 

Figure 16.  Univariate and Multivariate 
Distribution Tests. 
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The first MV test uses the two-sample Hotelling T2 test which tests whether two data matrices 
(the historical data MxN and the simulation results PxN) statistically have equivalent mean 
vectors and covariance matrices.  Assume historical data are arranged in an MxN matrix and the 
simulated data are in a PxN matrix, where P is the number of iterations, then the means can be 
tested with the Hotelling T2 test procedure. The 
Hotelling T2 test is analogous to a Student’s-t test 
of two means in a two-sample univariate case. 
 
The second MV test calculated for this statistical 
test, Box’s M, tests the equality of the covariance 
matrices with dimensions MxM and PxN, 
respectively, using a large sample likelihood ratio 
testing procedure.  The Box’s M test of 
homogeneity of covariances is used to test 
whether the covariance matrices of two or more 
data series, with n columns each, are equal.  The 
assumptions under this test are that the data 
matrices are MV normal and that the sample is 
large enough for the asymptotic, or central Chi-
Squared, distribution under the null hypothesis to 
be used. 
 

 
 
The third MV test is the Complete Homogeneity test.  This statistical test simultaneously tests 
the mean vectors and the covariance matrices for two distributions.  The historical data’s mean 
vector and covariance matrix are tested against the simulated sample’s mean vector and 
covariance matrix.  If the test fails to reject that the means and covariance are statistically equal, 
then one can assume that the multivariate distribution in the historical series is being simulated 
appropriately.  An example of this test is provided above and in Step 4 of Hypothesis Tests 
Demo.xls. 
 
5.3 Test Correlation  
 
Another multivariate distribution validation 
test in Simetar is a test to compare the 
correlation matrix implicit in the simulated 
output to the input (assumed) correlation 
matrix.  This test is useful for validating 
multivariate probability distributions, 
particularly the non-normal multivariate 
distributions.  Selecting the Check Correlation 

Figure 17.  Multivariate Hypothesis Tests 
for Six Variables. 

Figure 18.  Test Correlation of MV Distribution 
Simulation Results. 
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tab in the Hypothesis Testing for Data dialog box (Figure 18) calculates the Student’s-t test 
statistics for comparing the corresponding correlation coefficients in two matrices.  The dialog 
box requires information for the location of the simulated series (a PxN matrix) and the location 
of the NxN correlation matrix used to simulate the multivariate distribution (or the correlation 
matrix implicit in the historical data for the distribution).   
 
The confidence level for the resulting Student’s-t test defaults to a value greater than 0.95 but 
can be changed by the user after the test has been performed. An example of this test is provided 
in Step 6 of Hypothesis Tests Demo.xls.  If a correlation coefficient for two simulated variables 
is statistically different from the respective historical correlation coefficient, the Student’s t-test 
statistic will exceed the Critical Value and its respective statistic will be displayed as a bold 
value.  If the test shows several bold values check the formulas used to simulate the multivariate 
distribution to insure the distribution is modeled correctly. 
 
 
 
 
 
 
 
 
 
5.4 Test Mean and Standard Deviation  
 
The mean and standard deviation for any data series 
(e.g., simulated data) can be compared to a 
specified mean and standard deviation using the 
Test Parameters tab in Figure 19. The Student’s-t 
test is used to compare the user specified mean to 
the observed mean of any distribution (or series) as 
demonstrated in Figure 19.  A Chi-Squared test is 
used to test a user specified standard deviation 
against the standard deviation for any distribution.  
The null hypothesis is that the statistic for the series 
equals the user’s specified values.  An example of 
testing the historical data for a variable against a 
specified mean and standard deviation is provided 
below and in Hypothesis Tests Demo.xls.   

 
 

Figure 19.  Test Mean and Standard 
Deviation for a Univariate Distribution. 
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5.5 Univariate Tests for Normality 
 
Five different tests for normality can be 
performed by selecting the Test for Normality tab 
after the   icon is selected (Figure 20).  The 
normality tests are: Kolmogornov-Smirnoff, Chi-
Squared, Cramer-von Mises, Anderson-Darling, 
and Shapiro-Wilks.  The Chi-Squared test requires 
the number of bins (or intervals); 20 or more 
intervals appear to work for most data series.  In 
addition to the normality tests this option 
calculates the skewness and kurtosis, relative to a 
normal distribution (not shown in the example 
below).  See an example of these normality tests 
in Hypothesis Tests Demo.xls.  
 

 
5.6 Multivariate Tests for Normality 
 
A multivariate distribution test for normality 
can be performed on any data matrix of PxN. 
 The MV normality test can be performed by 
specifying a PxN matrix in the Data Series 
box for the Test for Normality tab in the 
Hypothesis Testing dialog box (Figure 21).  
The MV normality tests are:  skewness 
criterion, kurtosis criterion, and Chi-Squared 
quantile correlation.  Simetar reports the test 
statistics, critical value, and p-value for the 
first two tests and the test statistic for the 
third test.  The null hypothesis is that the data 
matrix is distributed MV normal.  See the 
example output for this test below and in 
Hypothesis Tests Demo.xls. 

Figure 20.  Univariate Normality Test. 

Figure 21.  Multivariate Normality Tests Dialog 
Box.
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5.7 Compare Means (ANOVA) 
 
The Hypothesis Testing for Data dialog box 
includes a means test (ANOVA) capability 
(Figure 22). Selecting the Compare Means tab in 
the Hypothesis Testing for Data dialog box 
produces a menu for specifying the two series to 
compare.  For this test the user must specify the 
two distributions (or series) using the Select Data 
Series to compare window and the Add button to 
list the series in the window at the bottom.  The 
confidence level defaults to 0.95 and must be 
specified before clicking the OK button.  The 
results of the ANOVA test are the sum of squares, 
mean square error, F-statistic and its p-value.  A 
sample ANOVA test is demonstrated below and is 
provided in Hypothesis Tests Demo.xls. 
 
 
 
 
 
 
 
5.8 Compare Two Cumulative Distribution Functions (CDFs) 
 
A scalar measure to compare the difference between two cumulative distribution functions 
(CDFs) is calculated by the =CDFDEV( ) Simetar function.  The function calculates the sum of 
the squared differences between two CDFs with an added penalty for differences in the tails.  
The scalar is calculated for two CDFs, F(x) and G(x) as: 
 

 
N

2
(i) (i) i

i=1
CDFDEV =  (F(x ) - G(x ))  + w∑  

 
where: wi is a penalty function that applies more weight to deviations in the tails than values 

around the mean. 
 
If the G(x) distribution is the same as the F(x) distribution, then the CDFDEV value equals zero. 
The CDFDEV measure is programmed to compare a historical series Nx1 to a simulated series 
Px1 as follows:  
 

=CDFDEV(Range for Historical Series, Range for Simulated Series) 
 
where: Range for Historical Series is the location for the historical data, such as B1:B10, and 
 Range for Simulated Series is the location for the simulated values, such as B9:B109.  
 

Figure 22.  Compare Means Test Dialog Box 
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The =CDFDEV( ) function is useful when testing the ability of different assumed probability 
distributions to simulate a random variable.  In this case, the =CDFDEV( ) measure is calculated 
using the simulated values for each of the alternative probability distributions.  The probability 
distribution associated with the lowest =CDFDEV( ) scalar is the “best” distribution for 
simulating the random variable. See Parameter Estimation Demo.xls for an example. 
 
 
 
 
 
 
 
6.0 Graphical Tools for Analyzing Simulation Results 
 
Simetar provides nine graphics tools for displaying the results of stochastic simulations and for 
analysis of data.  These graphics tools utilize the charting capabilities of Excel so all charts and 
graphs can be edited and enhanced using standard Excel charting tools. Simetar charts and 
graphs are developed using menus which allow the user to easily specify the data, titles, and 
labels for charts that are used frequently for simulation.  An example of Simetar’s charts is 
provided in Charts Demo.xls. 
 
6.1 Line Graph 
 
Any series of numbers can be graphed on an X-
Y axis as a line graph using this option.  The 
icon to access line graphs is   .  The Line 
Graph menu (Figure 23) requires that you 
specify the values for the X axis (such as, 
years) and the Y values (such as, prices) in the 
X and Y-Range boxes.  Labels for these 
variables are optional and are entered in the Y 
and X-Axis Label boxes.  The Chart Title is 
optional.  You may include a label in the first 
cells (row or column) indicated for each Y 
variable, if you select the box for Series Labels 
in First Cell. 
 
The chart can have more than one line by using 
the Add Y’s button and indicating multiple Y 
series in the Select Y-Axis Range, one at a time 
or all at once if the variables are contiguous.  
Once the graph is drawn by Excel, it can be 
edited using Excel chart commands.   
 
The Line Graph dialog box allows the user to label the points on line graphs.  For example, a 
price/quantity chart can be developed with year labels on the individual data points to show 

Figure 23.  Dialog Box for Developing a Line 
Chart. 
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years when structural changes took place.  To use this option indicate the column or row of 
labels in the Data Labels box, being sure to have the same number of labels as there are rows (or 
columns) of data to graph.  The result of the chart specified in Figure 18 is presented below and 
in Charts Demo.xls. 
 
   
 
 
 
 
 
 
 
 
 
 
6.2 CDF Graph 
 
Cumulative distribution function (CDF) charts of 
individual or multiple variables (simulated values) 
can be developed using Simetar.  CDF graphs are 
initiated by selecting the   icon.  Identify the 
variables to graph by highlighting the column(s), 
after first clicking in the Select Range to Graph 
box (Figure 24).  Include names in the first cell of 
the variable range, so the chart will include names 
for the individual lines.  (Be sure the variable 
names begin with a letter.) The chart can be placed 
on the current worksheet or in a new chart sheet.  
Use Excel’s chart commands to format the scale for 
the X axis and to make changes to the title.  
 
CDF graphs developed using Simetar are dynamic 
so when the values referenced for the chart change, 
the CDF graph is automatically updated by Excel.  
This feature is particularly useful for simulation.  
Each time the simulation results are updated in 
SimData, the CDF graphs will be updated. 
 
The Smoothing option in the CDF menu utilizes kernel density functions to smooth the observed 
values and develop smoothed CDF charts.  In addition to the CDF charts, the output for this 
option includes a text box with a drop down menu to allow the user to select the kernel.  The 
default kernel is the Gaussian, but ten more are provided.  The kernel smoothed CDF for a 
historical series depicts the probability distribution Simetar would use if the series was simulated 
using =KDEINV( ), see Section 3.7.4. 
 
 

Figure 24.  CDF Chart Dialog Box. 
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The CDF graph option is useful for comparing simulated values of a random variable to the 
variable’s historical data.  This is possible in Simetar even though the two series have a different 
number of observations.  See the example below and in Charts Demo.xls. 
 
 
 
 
 
 
 
 
 
 
 
 
6.3 PDF Graph 

 
Probability distribution function (PDF) graphs of 
individual or multiple variables can be estimated 
using the   icon.  Identify the variables to 
include in the PDF graph by selecting the 
variables in the Select Range to Graph box and the 
Add button if the variables are not in continuous 
columns (or rows) (Figure 25).  The PDF graph 
function uses kernel estimators to smooth the data 
rather than just using line segments to connect the 
dots.  Eleven kernels are available to develop the 
PDF graphs:  Gaussian, Cauchy, Cosinus, Double 
Exp., Epanechnikov, Histogram, Parzen, Quartic, 
Triangle, Triweight, and Uniform. Once the graph 
is drawn you can change the kernel by editing the 
output range in the worksheet. 
 
If the data series have names in the first cell 
indicate this on the menu, otherwise unselect the 
Labels in First Cell option.  Multiple PDFs can 
appear on the same axis so the simulated values 
and their historical values can both be graphed on 
the same axis.  This feature is possible because the data series being graphed do not have to be 
the same lengths. 
 
PDF graphs developed using Simetar are dynamic so when the values in the Selected Range to 
Graph, change the graph is instantly updated.  This feature is useful when displaying simulation 
results using PDFs.  The mean of the variables in a PDF is included in the chart.  Confidence 
intervals at the alpha equal 5 percent level can be added by selecting the Plot Quantiles.  The 
quantiles can be redrawn by changing the Alpha equal 0.9 to 0.10 in the seventh row of the PDF 
Graph output table.  The title can be changed by editing the first line of the PDF Graph output.  

Figure 25.  PDF Chart  Dialog Box. 
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See the example below of a PDF chart developed for a simulated series in Charts Demo.xls. 
 
 
 
 
 
 
 
 
 
 
 
6.4 Histograms  
 
Histograms of individual variables (simulated output) 
can be developed using the Simetar menu. The 
histogram icon   activates this option.  Indicate the 
variable to graph by clicking the Select Range to 
Graph box in the dialog box (Figure 26) and 
highlighting the variable in the worksheet.  Specify 
the Number of Bins (intervals) and select OK.  The 
more bins the smoother the histogram.  The 
maximum number of bins is the number of 
observations minus one.  Experiment with the number 
of bins to find the number which best suits the data.  
An added feature of the histogram option in Simetar 
is to display data as a cumulative distribution with the 
bins growing in height from zero to one as the X 
value gets large.   
 
 

 
 
 
 
 
 
 

 
 
 
 

Figure 26.  Histogram Dialog Box. 
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Figure 27.  Fan Graph Dialog Box. 

6.5 Fan Graph 
 
A Fan Graph consists of multiple lines in the Y axis 
for multiple scenarios (or multiple years of one 
variable) graphed in the X axis.  The variables 
graphed in the X axis can be successive years for a 
simulated output variable.  Alternatively, the variables 
on the X axis can be the same simulated variable but 
for different scenarios.  The purpose of a Fan Graph is 
to show the effect of risk on a variable over time or 
across scenarios. 
 
A Fan Graph showing the simulated mean and 
percentiles or confidence interval lines about the mean 
can be developed using the  icon in Simetar.  The 
range of variables to be graphed on the X axis must be 
specified in the Select Ranges to Graph box (Figure 
27).  The variables (scenarios or years) must be 
specified in the order they appear in the graph.  For 
example, if the graph is for 10 years of a probabilistic 
forecast, specify the 10 variables across the, say, 500 
iterations as the selected range to graph.  If the 
variables are not contiguous, they can be specified one at a time using the Add box. 
The Fan Graph dialog box (Figure 27) provides boxes to specify up to six percentile or 
confidence lines about the mean.  The individual lines to add to the Fan Graph must be specified 
as fractions, such as 0.05 and 0.95 would result in a graph with 3 lines:  the mean, the 5 
percentile and the 95 percentile lines.  Once the Fan Graph has been developed, you can 
dynamically change the graph by editing the percentile values in the output table.  For example, 
if the 5% and 95% lines need to be changed to 1% and 99%, simply change the 0.05 to 0.01 and 
the 0.95 to 0.99 in the Fan Graph output table.  Changing the percentile causes Excel to re-draw 
the graph.  An example of a fan graph developed to show the relative risk between three 
distributions is provided below.   
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42

6.6 StopLight Chart 
 
The StopLight chart compares the target probabilities 
for one or more risky alternatives and is activated by 
selecting the    icon.  The user must specify two 
probability targets (Lower Target and an Upper 
Target) for the StopLight and the alternative scenarios 
to compare (Figure 28).  The StopLight function 
calculates the probabilities of: (a) exceeding the upper 
target (green), (b) being less than the lower target 
(red), and (c) observing values between the targets 
(yellow).  An example is provided below. 
 
 
 
 
 
 
 
 
 
 
 
 
6.7 Probability Plots  
 
Three types of probability plots can be generated by 
selecting the probability plot icon   .  The 
probability plot function develops Normal 
Probability (or NP), Quantile–Quantile (or Q–Q) 
Plots and Probability–Probability (or P–P) Plots 
(Figure 29).  See Charts Demo.xls for an example of 
all three types of probability plots. 
 
The Normal Plot is a method for checking how 
close to normal a random variable is distributed.  A 
Normal Plot compares the ordered data to the 
standard normal distribution’s percentiles.  If a 
variable is normally distributed the sorted data 
values will be entirely on a straight line with the 
only deviations from the line due to sampling error. 
  
A Quantile-Quantile (Q-Q) Plot can be used to 
compare two distributions.  If the two random 
variables have the same distribution, their paired 
observations lie on a 45° line.  If the two random 

Figure 28.  StopLight Dialog Box. 
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variables are in the same family of distributions, their paired observations tend to be linear 
although they may not lie on the 45° line.  A P-P Plot consists of a graph of the percentiles for 
the sorted values of two variables graphed on one axis.  If the two random variables have the 
same distribution (shape) the observations for a P-P Plot will be on a 45° line. 
 
6.8 Box Plots  
 
Box plots of one or more variables can be prepared by selecting the    icon.  The Box Plot 
dialog box (Figure 30) indicates the information required for this function.  The Box Plot is a 
quartile summary of a random variable in graphical form that indicates whether a variable is 
skewed to the left or right.  The names and values of the Box Plot are best defined in a chart: 
 
where: IQR = [75th Quartile – 25th Quartile] 
 
Fifty percent of the observed values fall within the box (25th to 75th quartile).  If the distribution 
is skewed to the right then the bottom line segment is longer than the top line segment, and vice 
versa if the distribution is skewed left.  Values that lie outside the extreme lines are likely to be 
outliers.  The median and mean will show up as one line for symmetrical distributions. 
 

 
 
6.9 Scatter Matrix Graph 
 
A scatter matrix of multiple univariate data series can 
be created using the scatter matrix icon  (Figure 
31). The scatter matrix is an array of individual 
graphs of several univariate data series.  Each series 
is plotted against each of the other series, one at a 
time, like a correlation matrix (see the example 
below).  The graphs show the linear relationships 
between individual series and can be useful in 
multiple regression to determine collinearity and for 
identifying linear relationships between variables for 
a multivariate probability distribution.  See Charts 
Demo.xls for an example of a scatter matrix.   
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Figure 31.  Scatter Matrix Dialog Box. 
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7.0 Scenario Analysis 
 
Simulation models are most useful when used to 
simulate alternative scenarios.  Scenario analysis 
involves specifying different values for several 
exogenous or management control variables and 
simulating the model for the different scenarios.  
The Simetar Simulation Engine dialog box (Figure 
32) provides an input field for entering the 
Number of Scenarios.  When the number of 
scenarios exceeds 1, Simetar executes the 
=SCENARIO( ) functions in the model. 
 
A separate =SCENARIO( ) function must be 
specified for each variable to be systematically 
changed for the alternative scenarios.  The 
=SCENARIO( ) function specifies the values the variable can take on for each scenario.  For 
example, simulating three input variables for example, Hours Producti for five scenarios (see the 
example below) is programmed using three =SCENARIO( ) functions as follows: 
 
 In B21:D25     enter the values for 3 variables for the exogenous variables 
 In B27 = SCENARIO (B21:B25) 
 In C27 = SCENARIO (C21:C25) 
 In D27 = SCENARIO (D21:D25) 
 

Figure 32.  Scenario Analysis Dialog Box. 
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The values for the first scenario in cells B21:D21 appear in the =SCENARIO( ) after the 
functions have been entered.  During simulation the subsequent scenario values of Hours Productij 
(values in rows 22-25) are used, when the Simulation dialog box (Figure 32) is set to simulate 5 
scenarios. If the Number of Scenarios cell in Figure 32 is set to 1, only the values for the first 
scenario are used in simulation.  The cells containing the =SCENARIO( ) function must be used 
in the equations of the model for the multiple scenario option to work.  For example B27 is used 
in B30 and B32 below.  See Simulate Scenarios Demo.xls for the example provided below. 
 

 
The results of a scenario simulation can be reported to SimData two ways using the Group Output 
option in the Simulation Dialog Box (Figure 32).  Grouping the results by Variable causes 
Simetar to present the results in SimData as:  Scenario 1-M for Variable 1, then Scenario 1-M for 
Variable 2, and so on for K output variables.  Grouping the results by Scenario causes Simetar to  
present the results as:  Variables 1-K for Scenario 1, then Variables 1-K for Scenario 2, and so on 
for M scenarios.  Both formats have their own advantage, use the one which best suits your 
purpose.  It is recommended when using the Scenario option that the List of Output Variables 
include the cells associated with the =SCENARIO( ) functions.  This will facilitate verifying that 
the values in the Scenario Table were appropriately used in the simulation.  
 
The benefit of using the =SCENARIO function is that Simetar runs the model multiple times 
using exactly the same random deviates (risk) for each scenario.  Thus the analysis guarantees 
that each scenario was simulated using the same risk and the only difference is due to the 
differences in the scenario variables.  The results can be presented as charts and used in risk 
ranking analyses. 
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Figure 34.  Estimate Sensitivity Elasticity Option.   

8.0 Sensitivity Analysis 
 

When the Conduct Sensitivity Analysis 
option in the Simulation Engine dialog box 
is selected, the Simulation Engine dialog 
box expands to add the sensitivity options 
in Figure 33.  Simetar systematically 
manipulates one exogenous variable at a 
time to quantify the sensitivity of the 
output variables. The Select Input Variable 
to Manipulate cell can refer to any cell in 
the Excel workbook.  The variable to 
manipulate can be either a constant or a 
formula.  In either case, Simetar uses the 
initial value as the base and simulates the model using fractional deviations about the base value. 
 
The range of test values for the manipulated input variable are specified using the three 
Sensitivity Ranges.  If you are interested in testing the effects of +/- 5, 10, and 15 percent 
changes in the selected input variable, type these values in the Sensitivity Range boxes and 
simulate the model.  If further investigation shows that the ranges could be +/- 3, 6, and 9 
percent, then type in these values and re-simulate the model.   
 
Results of sensitivity analyses are summarized in the SimData worksheet.  The results are 
presented, by output variable, in the following order:  the Base value for the Input Variable to 
Manipulate (or IVM) is 1.0 * IVM, the smallest IMV (say, 0.85 * IVM), the next larger IMV 
(say, 0.9 * IVM), and so on until the seventh value which is the largest IMV tested (say, 1.15 * 
IVM).  This organization of results facilitates direct comparison of the impacts of the IMV on 
each of the Output Variables using a Fan Graph. 
 
It is recommended that when sensitivity analyses are being simulated, the list of Output 
Variables in the Simulation Engine should include the Input Variable to Manipulate.  Using this 
convention, one can easily verify that the Input variable indeed took on the intended values.  
 
 9.0 Sensitivity Elasticity Analysis 
 
The sensitivity of a key output variable 
(KOV) in a simulation model to 
changes in several exogenous variables 
can be measured using sensitivity 
elasticities i(SE ).   A iSE  is like an 
elasticity, but it quantifies the average 
percentage change in a KOV to a one 
percent change in the exogenous 
variable X.  Simetar calculates iSE  
values by simulating the model for the 
base value of each iX  exogenous variable to be tested.  Next Simetar changes one iX  at a time 

Figure 33.  Simulation Sensitivity Dialog Box. 
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by a specified percentage change and simulates the model.  The iSE  values are calculated for 
each iX  value across all iterations and the mean and standard deviation of the iSE  are reported in 
worksheet SEDATA.  
 
A chart of the iSE  values is provided so 
the analyst can see which iX  variable has 
the greatest impact on the KOV.  The 
standard deviation for the iSE 's  is 
displayed in the SE chart as well.  To 
simulate SE values for stochastic 
simulation model in Excel, select the 
Calculate Sensitivity Elasticities button in 
the Simulation Engine (Figure 34).  This 
action causes Simetar to expand the Simulation Engine menu to include the inputs for SEs.  
Select the one KOV to be used for the analysis and select the exogenous variables for which 
SE’s are to be estimated.  Specify the percentage change to use for estimating the SE’s; 5 percent 
is usually adequate for this purpose.  Simulate the model and review the simulated results in the 
SimData and SEData worksheets.  Edit the SE chart using the Excel chart commands. An 
example Sensitivity Elasticity chart is presented in Simulate Sensitivity Elasticities Demo.xls. 
 
10.0 Simulating and Optimization 
 
Stochastic simulation and optimization of a model is complicated because it requires iteratively 
simulating random shocks to the equations and then optimizing the system.  For example, in a two 
equation supply and demand model with 
stochastic shocks we would solve for the price 
that makes demand equal supply or: 
 
QS  = a + b Price + cX + (Std Dev * SND)  
QD = a + b Price + cY + (Std Dev * SND) 
E  =  Q  -  QS S D   
 
If the stochastic shock is zero (SND = 0.0) we 
simply use Excel’s Solver (Figure 35) to solve for 
the price where ending stocks (E )S  equals zero. 
See the Sim Solve Demo.xls for an example.  Sim 

Solve Demo.xls demonstrates how a 
simultaneous equation system can be simulated 
using the Incorporate Solver option in Simetar 
(Figure 36).   
 
The first step in simulating a stochastic 
simultaneous equation model is to use Excel’s 
Solver (Tools > Solver) to specify the change 
variable (price, in the example) and the target 
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variable (stocks or ES, in the example).  An example of Excel’s Solver dialog box is provided in 
Figure 35.  While the spreadsheet is set to Expected Value, solve the model using Solver, after 
specifying the Solver parameters, and then open the Simetar Simulation Engine.  In the 
Simulation Engine dialog box select the Incorporate Solver option and specify the output 
variables and simulate the model as usual (Figure 36).  It is recommended that the Output 
Variables include the control variable and the target value which Solver is programmed to 
optimize. This pair of output variables allows one to check Solver’s results for each iteration.  As 
should be expected the Incorporate Solver option is slow.  The reason being that Excel is solving 
an optimal control problem 100 or more times.  Sim-Solver option works well for small models 
but will not be efficient for large simulation models with numerous (10 or more) simultaneous 
equations.  See the example in Sim Solve Demo.xls. 
 
11.0 Numerical Methods for Ranking Risky Alternatives 
 
The results of a Simetar simulation are written to the SimData 
worksheet.  The results can be analyzed many different ways to 
help the decision maker determine the most preferred alternative. 
 Functions in Simetar to facilitate analysis of simulation results 
are described in this section.   
 
11.1 Stochastic Dominance (SD) 
 
11.1.1 First Degree Stochastic Dominance.  First degree SD is 
the least discriminating stochastic dominance method for ranking 
risky alternatives.  However, if the CDFs for the risky alternatives 
do not cross, this is the preferred method for ranking alternatives. 
 First degree SD can be accessed in Simetar by selecting the  
icon.  Select the 1st and 2nd Degree Dominance Table option 
Simetar will develop first degree stochastic dominance table 
(Figure 37). The Stochastic Dominance dialog box (Figure 35) 
requires the analyst enter the location for the simulated values of 
the risk alternatives (or scenarios) specify the risk aversion 
coefficients (RACs). The first degree SD table will be placed in 
the SD1 spreadsheet.  See the example below and in Stochastic 
Dominance Demo.xls.  
 
11.1.2 Second Degree Stochastic Dominance.  Second degree SD assumes the decision maker 
is risk averse so the RACs must be positive.  The  icon causes Simetar to open the Stochastic 
Dominance menu (Figure 37) which asks for the simulated values for the risky alternatives and 
the RACs  (say  -0.0001 and 0.0001).  By selecting the 1st and 2nd Degree Dominance Table 
option Simetar will develop a second degree SD output table in the SD1 worksheet.  The results 
for a second degree SD analysis are generally inconclusive.  See the example below and in 
Stochastic Dominance Demo.xls. 

Figure 37.  Stochastic 
Dominance Dialog Box. 
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11.1.3 Generalized Stochastic Dominance with Respect to a Function (SDRF).  The SDRF 
option is initiated by selecting the    icon which opens the dialog box depicted in Figure 37.  
When specifying the simulation results in Select Arrays to Compare, be sure to highlight the 
label in row one and all of the rows (simulated values) and columns (scenarios or alternatives) to 
compare. Use the Add button to add scenarios that are not adjacent to the first scenario added in 
the Select Array window.  All of the scenarios must have the same number of observations. 
The SDRF comparison of risky alternatives uses the Lower and Upper Risk Aversion 
Coefficients (RACs) the user specifies in the dialog boxes (Figure 37).  The lower RAC must be 
less than the upper RAC . No scaling takes place with the user’s RAC values. If a RAC is too 
large in absolute terms (relative to the series to analyze), the STODOM ranking results will show 
“#VALUE!” rather than ranking each scenario.  This result comes about because an exponent 
overflow is caused by excessively large RACs. 
 
The SDRF results table are written to worksheet SDRF1 (see the example below).  The SDRF 
results table is dynamic so the user can systematically change the RACs in the stochastic 
dominance results table and observe the effect on scenario rankings.  When the SDRF table uses 
simulation results in the SimData worksheet, the SDRF table will be updated automatically each 
time Simetar simulates the model.   
 
 
 
 
 
 
 
 
 
11.2 Stochastic Efficiency with Respect to a Function (SERF)  
 
SERF is a new procedure for ranking risky alternatives based on 
their certainty equivalents (CE) for alternative absolute risk aversion 
coefficients (ARACs).  The CEs for risky alternatives are calculated 
and the results are presented in a table and a chart by selecting the 
SERF option in the Simetar toolbar,  .  The SERF icon opens the 
SERF Analyzer dialog box (Figure 38).  The SERF table and chart 
are placed in a worksheet named SERFTbl1.  The CE values in the 
table and chart are dynamic so the lower and/or upper ARACs and 
the utility function can be changed after the dialog box has been run. 
 The SERF procedure defaults to the Exponential Utility Function, 
yet six more utility functions are available in cell D4 of SERFTbl1.  
The SERF table values and chart can be calculated assuming a Power 
Utility Function by 
typing a “2” in place 
of the “1” in cell D4.  
The rule for ranking 
risky alternatives is 
that at any given 
ARAC value, the 

Figure 38.  SERF Dialog Box. 
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preferred alternative is the one which is the highest on the Y (or CE) axis.  An example of the 
SERF analysis is available in SERF Analysis Demo.xls. 
 
11.3 Risk Premiums 
 
The confidence premium (or the conviction level) 
with which a decision maker would prefer one 
alternative over another is visually displayed in 
the SERF Chart as the vertical distance between 
the CE lines at each RAC.  The SERF analysis 
also produces a certainty equivalents risk 
premium (RP) table and chart in the SERFTbl1 
worksheet.  The RP table compares the absolute 
differences in the CE’s for a base alternative with 
the other alternatives across RAC values.  A chart 
of the RP’s displays the relative position of each 
alternative to the base over the range of the 
RACs.  The user can change the lower and upper 
RACs and the alternative designated as the base.  
An example of the RP analysis is presented here and in SERF Analysis Demo.xls. The dynamic 
nature of the SERF option will degrade execution time if the model is re-simulated.  If this is a 
problem, delete the SERFTbl1 Worksheet before re-simulating the model.   
 
11.4 Target Probabilities for Ranking Risky Alternatives  
 
The probability of a variable taking on a value less than or equal to a specified target value for a 
simulated distribution can be calculated using the =EDF( ) function in Simetar.  Risky 
alternatives can be ranked with respect to their probabilities exceeding target vales.  The     
=EDF( ) function is programmed as follows: 
 
 = EDF (Array Location, Target Value) 
 = EDF (B8:B108, B110) 
 
where: Array Location is the location for the distribution (simulation results) to analyze, and  
 Target Value is the location for the target value or an actual number. 
 
An example of how the =EDF( ) function can be used is to first simulate net returns for a business. 
The probabilities of observing net returns less than particular target values are calculated using 
=EDF( ).  Alternative target values for net returns can be specified by the decision maker.  See the 
Stoplight chart in Section 6.6 for a graphical means of calculating and displaying target 
probabilities.  An sample table of EDF values is presented below from the Simulate Scenarios 
Demo.xls workbook. 
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11.5 Target Quantiles for Ranking Risky Alternatives 
 
Instead of ranking risky alternatives based on their probability of exceeding a target, some decision 
makers want to know the target value which has a particular probability of being true, or the 
quantile for their KOV.  This method can be implemented by calculating the value of the key 
output variable at, say, the 25 percentile.  The =QUANTILE( ) function returns the value of a 
series that is associated with a specified probability.  If =QUANTILE( ) is given a series of values, 
such as, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and asked to locate the 35th quantile, then the function returns 
the value of 3.5 as the 35th quantile value.  The array of values to evaluate does not have to be 
sorted from low to high.  An sample table of QUANTILE values is presented above from the 
Simulate Scenarios Demo.xls workbook.  The function is used as: 
 
 =QUANTILE (Array Location, Percentile) 
 =QUANTILE(B9:B108,0.56) 
   
where: Array Location is the cell reference for the distribution to be evaluated, and  
 Percentile is the percentile to evaluate and is a fraction, such as 0.56. 
 

12.0 Tools for Data Analysis and Manipulation 
 
The Simetar functions developed to facilitate data analysis and manipulation are described in this 
section.  All of the Simetar functions in this section are dynamic so if the historical data for a 
model or its stochastic variables change, the parameters are automatically updated.  This feature 
is particularly useful when developing simulation models that can use different input data from 
one application to another.  Another feature of Simetar functions is that the formulas are cell 
locked so the formulas can generally be copied and pasted or dragged to new locations to speed 
up the data analysis process 
 
12.1 Matrix Operations 
 
Most data in an Excel workbook can be thought of as a matrix.  Thirty-three Simetar functions 
that facilitate the manipulation and analysis of data matrices can be accessed by clicking the  
icon (Figure 39).  The Simetar functions are programmed in C++ and therefore not constrained 
to Excel’s restrictions on array size. The matrix functions are in alphabetical order in the Matrix 
Operations dialog box: 
 
 Center Matrix of a Specified Dimension 
 Choleski Factorization of a Matrix 
 Cofactor of a Square Matrix  
 Column Vector to a Diagonal Matrix 
 Column Vector to a Matrix 
 Column Vector to a Toeplitz Matrix 
 Concatenate Two Matrices 
 Determinant of a Square Matrix 
 Eigenvalues of a Square Matrix 
 Eigenvectors of a Square, Symmetric Matrix 
 Equicorrelation Matrix of a Specified Dimension 
 Exponential Power of a Matrix 
 Factor a Square, Symmetric Matrix 
 Generalized Inverse of a Matrix 
 Inner Product of Two Matrices Figure 39.  Matrix Operation Menu. 
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Figure 40.  Dialog Box for Changing a  
Vector to a Matrix. 

 Invert a Nonsingular Square Matrix 
 Kronecker Multiply Two Matrices 
 Mahalanobis Distance of Two Data Matrices 
 Matrix of 1s 
 Matrix to a Vector 
 Multiply Two Matrices 
 Norm of a Matrix 
 Orthoganalize a Matrix 
 Rank of a Matrix 
 Reduced Row Echelon Form of a Matrix 
 Reverse a Column or Row of Values 
 Row Echelon Form of a Matrix 
 Sequence of Numbers 
 Sort a Matrix by a Specified Column 
 Sweep a Square Matrix on a Diagonal Element 
 Trace of a Square Matrix 
 Transpose a Matrix 
 Wishart Matrix of Random Variables 
 
The most frequently used matrix functions are described in detail in this section.  The Simetar 
Matrix and array functions are dynamic so changes made to the data are automatically observed 
in the output functions.  For example, changes to the input data will change the associated 
correlation matrix, the Choleski decomposition matrix of the correlation matrix, and subsequent 
calculations for parameter estimation and stochastic simulation.  The matrix functions described 
in Section 12.0 are demonstrated in the Excel workbook Matrix Operation Functions.xls.   
 
12.1.1 Column Vector to a Matrix.  The Matrix Operations dialog box accessed by selecting 
the  icon contains a function to Change a Column Vector to a Matrix (Figure 40).  The 
function is dynamic so changes in the original vector are observed in the matrix.   
 
12.1.2 Reverse a Column or Row of Values.  A vector of values can be reversed by selecting 
the Reverse a Column or Row of Values in the Matrix Operations menu.  The function outputs 
the data as a column if a column of input is provided and as a row if the input is in a row.   

 
12.1.3 Convert a Matrix to a Vector.  The task of converting a matrix of weekly, monthly, or 
quarterly data to a vector for time series analysis is simplified with the Matrix to a Vector 
function.  To use this function indicate the matrix to operate on and the output location for the 
vector.   
 
12.1.4 Sort a Matrix.  An array or a matrix can be sorted 
in Simetar using the Sort a Matrix by a Specified Column 
in the Matrix Operations menu.  The user must specify the 
Column to Sort By as well as the location for the matrix.  
The sort is dynamic so as the values in the original data 
matrix change, the values in the sorted matrix will be 
updated. 
 
12.1.5 Factor a Square Matrix.  Simetar can factor a 
covariance or correlation matrix for simulating a 
multivariate probability distribution by either the Square 
Root method or the Choleski method. Both of these Figure 41.  Factor a Square Matrix 

Dialog Box. 
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methods are accessed via the  icon for matrix functions (Figure 41).   
12.1.6 Transpose a Matrix (Excel).  A matrix can be transposed by selecting the Transpose a 
Matrix option in the Matrix Operations dialog box, specifying the matrix to transpose and the 
upper-left hand cell to anchor the output matrix.  This procedure simplifies Excel’s transpose 
function by eliminating the need to block the area for the transposed matrix and avoids array size 
limitations in Excel.   
12.1.7 Generalized Inverse of a Rectangular Matrix.  The Generalized Inverse of a Matrix 
function in the Matrix Operations dialog box uses Simetar’s function.  Select this option and 
specify the input matrix (highlight only the numbers) and the output range for the upper left hand 
value, then select OK.  The inverse of the input matrix will appear in the worksheet without 
row/column names.  Copy and paste in the names if needed.   

 
12.1.8 Invert a Nonsingular Square Matrix (Excel).  The Invert a Nonsingular Square Matrix 
option in the Matrix Operations dialog box is demonstrated in Figure 42.  (Simetar uses Excel’s 
function but provides an easy to use menu.) Select this option and then specify the input matrix 
(highlight only the numbers) and the output range for the 
upper left hand value, then click OK.  The inverse of the 
input matrix will appear in the worksheet without 
row/column names.  Copy and paste in the names if needed. 
  
 
12.1.9 Multiply Two Matrices (Excel).  Excel’s matrix 
multiplication, MMULT, function is made easier by 
selecting the Multiply Two Matrices option in the Matrix 
Operations dialog box. An additional feature is that 
Simetar’s matrix multiplication will handle larger matrices 
than the Excel function MMULT. 
 
12.1.10 Concatenate Two Matrices.  A new matrix of data 
can be developed by concatenating the data from two 
locations in the workbook.  The Concatenate Two Matrices 
option in the Matrix Operations menu requires as input the location of the two input arrays or 
matrices and the output location. 
 
12.1.11 Convert a Vector to a Diagonal Matrix.  In simulation it is useful to convert a vector 
of standard deviations to a diagonal matrix.  The Simetar function =MDIAG( ) can be used to 
convert an array to a diagonal matrix using the Column Vector to a Matrix option in the Matrix 
Operations dialog box.   
 
12.1.12 Find the Determinant of a Square Matrix.  The determinant of a square matrix can be 
calculated by selecting the Determinant of a Square Matrix option in the Matrix Operations 
dialog box.  The Excel function =MDETERM (square matrix) is used for this calculation.   
 

Figure 42.  Invert a Square Matrix 
Dialog Box. 
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12.2 Data Manipulation 
 
Data often comes in the wrong format or orientation.  Data may be in an array when we need it 
in a matrix or vice versa.  Sometimes we need to reverse the order of the data or concatenate 
arrays from different places in the worksheet.  Functions to make these data manipulations easy 
have been included in Simetar and can be accessed by selecting the  icon.  Additional data 
manipulation functions are also presented in this section. 
 
12.2.1 Create an Identity Matrix.  An indemnity matrix of dimension NxN can be generated 
using the =MIDEN( ) function in Simetar.  The format for the function is =MIDEN (dimension) 
where dimension is a scalar to specify the number of rows in the square identity matrix.   

 
11.2.2 Create a Sequence of Numbers.  A sequence of numbers in an array can be created 
using the =SEQ( ) function.  The =SEQ( ) returns a column of numbers that follow any sequence 
you specify.  The function is programmed as: 
 
 =SEQ(No. of Values, Starting Value, Interval or Increment) 
 
where: No. of Values is the number of cells to be highlighted, 
 Starting Value is the first value in the sequence, and  
 Interval or Increment is the interval between each value. 
 
For example the sequence of number for 10, 20, 30, …, 200 is generated by programming the 
function as =SEQ(20,10,10) and a sequence of 2, 4, 6, …, 20 is generated by programming the 
function as =SEQ(10, 2, 2).   

 
11.2.3 Create a Matrix of Ones.  In statistics a J matrix is an array or matrix with a 1.0 in each 
cell.  The Simetar function =MJ( ) is used to create a J matrix.  To create a 10x1 array of 1.0s 
highlight 10 cells in column and type the function =MJ(10).  To create a 10x10 matrix of 1.0s, 
highlight a 10 cells in 10 columns and type =MJ(10,10).  Be sure to hit the Control Shift, Enter 
keys after typing the =MJ( ) function as it is an array function.   
 
11.2.4 Create a Centering Matrix.  The =MCENTER() array function that creates an NxN 
centering matrix when n is specified as the dimension.   
 
11.2.5 Create an Equicorrelation Matrix.  The =MEQCORR() array function generates an 
NxN equicorrelation matrix using any specified correlation coefficient.  The =MEQCORR( ) 
function is an array function so you must highlight the cells for the square equicorrelation matrix 
and end the function by hitting Control Shift Enter.  The function is programmed as 
=MEQCORR( Rho), where Rho is the correlation coefficient.   
 
11.2.6 Create a Toeplitz Matrix.  The =MTOEP() array function creates a square symmetric 
Toeplitz matrix given a column or row of data.  To create a Toeplitz matrix of an array in A1:A4, 
highlight a 4X4 array and type the function as =MTOEP(A1:A4).  Be sure to press Control Shift 
Enter as this is an array function.    
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12.3 Box-Cox Transformation   
 
The =BOXCOX() function can be used to transform the data for a skewed distribution to make it 
approximately normally distributed.  The function uses a user specified exponent to transform 
the data.  The =BOXCOXEXP() function is provided to estimate an appropriate exponent.  The 
format for the Box Cox transformation functions are: 
 
 =BOXCOX( Data Array, Power Value, [Shift to Plus])  
 
where: Data Array refers to the location of the Nx1 data series to be transformed, 
 Power Value is the exponent for the transformation, and 
 Shift to Plus is an optional term if the data are to be shifted to positive values enter 

‘TRUE or 1’, otherwise enter ‘FALSE or 0’. 
 
The =BOXCOX( ) function is an array function so highlight the appropriate number of cells and 
type the function and press Control Shift Enter.  See Data Analysis Demo.xls for an example.  
Once a model has been estimated using a Box-Cox transformation, the =UNBOXCOX() function 
can be used to transform the forecast values back to original data.  The reverse Box-Cox 
transformer function is: 
 
 =UNBOXCOX (Data Array, Power Value, Original Data Array, [Shift to Plus]) 
 
where: Data Array is the location for the Nx1 array transform back to the original data,  
 Power Value is the exponent for the transformation, 
 Original Data Array is the location for the original data Nx1 array, and 
 Shift to Plus is an optional term if the data are to be shifted to positive values enter 

‘TRUE or 1’, otherwise enter ‘FALSE or 0’. 
 
The maximum likelihood estimation of the Box-Cox transformation exponent function can be 
calculated using the following function: 
 
 =BOXCOXEXP( Data Array, [Shift to Plus], [Lower], [Upper], [Max Iter]) 
 
where: Data Array refers to the location of the data n-1 array to be transformed, 
 Shift to Plus is an optional term if the data are to be shifted to positive values, 
 Lower is an optional minimum for the search routine, -2 is the default, 
 Upper is an optional maximum for the search routine, +2 is the default, and 
 Max Iter is an optional parameter for the search routine.   
 
12.4 Workbook Documentation   
 
12.4.1 Delete Numbers in a Cell. When a cell has both numbers and text, to extract only the 
text, use the =DELNUM( ) function.  See Data Analysis Demo.xls for an example.  If cell A1 
contains the string “1013 Sycamore Street” and we want the text in cell A2, then in A2 type: 
 
 =DELNUM(A1) 
 
12.4.2 Delete Text in a Cell. Often times the numbers in a cell are needed even though the cell 
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contains both numbers and text.  For example, the worksheet may have an address in a cell as 
“1013 Sycamore Street” and we want the number without the text.  Rather than re-typing the 
numbers to a new cell or editing the existing cell use the =DELTEXT( ) function.  See Data 
Analysis Demo.xls for an example.  Say the cell A1 has the string “1013 Sycamore Street” and 
you want just the number to appear in cell B1, then in B1 type: 
 
 =DELTEXT (A1) 
 
12.4.3 View Cell Formulas.  To show the formula typed in a particular cell use   
=VFORMULA( ).  An advantage of using this function is that you can both see the formula for a 
cell, say B24, and you can see the value in B24.  The =VFORMULA( ) function is dynamic and 
changes (updates itself) as rows and columns are added to or removed from the worksheet.  The 
Simetar function to view the formula in cell B24 can be typed into any cell (say, C24) as follows: 
 
 = VFORMULA (B24) 
 
12.4.4 View All Formulas.  In the process of writing and documenting simulation models in 
Excel we often write formulas that need to be printed.  Simetar provides a function to easily view 
every cell in the worksheet as a formula, and then switch the worksheet back to values.  This 
function can be accessed by clicking the  icon in the Simetar toolbar.  Click the  icon a 
second time and the worksheet will return to the normal view.   
  
12.4.5 Workbook and Worksheet Name.  Functions in Simetar have been provided to 
dynamically show the name of the workbook or the worksheet in a cell.  These functions are 
useful for documenting a model.  The workbook name is shown in any cell that contains the 
following command: 
 
 =WBNAME( ) 
 
The worksheet name is shown in any cell that contains the following command: 
 
 =WSNAME( ) 
 
If you rename the workbook or the worksheet, the function updates the text in the cell after 
pressing F5. 
 
13.0 Regression Analysis 
 
Simple and multiple regression (ordinary least square (OLS), Probit, Logit, GLS, Ridge, 2SLS, 
and GLS) capabilities are included in Simetar to facilitate estimating parameters for simulation 
models.  Not only are the regression coefficients (beta-hats) useful, but in simulation the 
residuals are used to quantify the unexplained risk for a random variable.  The regression 
functions in Simetar take advantage of Excel’s ability to recalculate all cells when a related value 
is changed.  Thus when an observed X or Y value is changed the betas are recalculated.  Also, 
multiple regression models can be instantly re-estimated for different combinations of the X 
variables by using restriction switches to ignore individual variables. 
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13.1 Simple Regression  
 
The parameters for a simple OLS regression are calculated when you select the  icon.  The 
simple regression icon opens the dialog box depicted in Figure 43 so the X and Y variables can 
be specified.  The intercept (a) and slope (b)$ $  parameters for the equation:    
 
 $ $ $Y  =   a  +   b X  
 
are estimated and placed in the worksheet starting where the Output Range specifies.  The names 
of the estimated parameters appear in the column to the left of the parameters.  The R2, F-Ratio, 
Student’s -t test statistics, and residuals are calculated if you select the appropriate boxes.   

 
Be sure that X and Y have the same number of observations when you specify their ranges in the 
Simple Regression dialog box.  This Simetar function is useful for checking the presence of a 
trend in a random variable Y.  In this case, create a column of X values that increment from 1, 2, 
3, ..., N and then use Simetar to estimate the regression parameters.  A feature to this function is 
that the coordinates for the X variable are cell reference locked (fixed) so the formula cells can 
be copied and pasted across the spreadsheet to estimate simple regressions for numerous Y’s 
using a common X or trend variable.  An example of the simple regression function in Simetar is 
provided below and in the Data Analysis Demo.xls workbook.  
 
13.2 Multiple Regression  
 
The Multiple Regression option is accessed through the    icon.  Multiple regression estimates 
the least squares $ $a and bi parameters for: 
$ $ $ $ $Y  =   a +  b  X   +   b  X   +  .  .  .   +  b  X1 1 2 2 n n  

The Multiple Regression dialog box (Figure 44) allows the user to specify the Y and X variables, 
and the type of output for seven different multiple regression models.  
 
A sample output for a multiple regression is provided below to show the format for the first part 
of the results. The name of an X variable and its beta are in bold if the variable is statistically 

Figure 43.  Simple Regression Dialog Box. 
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significant at the indicated one minus alpha level (e.g., X1, 
X2, X3, and X4 in the example). Standard errors for the betas, 
the t-test statistics and the probability (p) value of the t-
statistics are provided for each explanatory variable.  The 
elasticity at the mean for each independent variable as well 
as the partial and semi-partial correlations for these variables 
is provided as well.  The variance inflation factor is reported 
for each X variable to indicate the degree of multicolinearity 
of Xi to other variables in the model.  See Multiple 
Regression Demo.xls for the example presented in this 
section. 
 
The Restriction row in the parameter block of output values 
allows the user to interactively experiment with various 
combinations of X variables.  After the initial parameter 
estimation the Restriction coefficients are all blank, meaning 
that every X variable is included in the unrestricted model.  
The user can interactively drop and re-include a variable by 
changing its restriction coefficient from blank to 0.  
Compare the results in the first example to those in the 
second example where X5 was restricted out of the model.  
The exclusion of X5 improves the F –test (61.5 vs. 79.2).  
Three test statistics (F, R2 and R

2
) for the Unrestricted 

Model are provided and remain fixed while testing alternative specifications of the model’s 
variables. This is done to facilitate the comparison to the original unrestricted model to the 
restricted models.  If you type a non-zero number in the restriction row, the value becomes the 
beta-hat coefficient for a restricted regression. 

 
In addition to the ability to exclude and 
re-include variables in the model, 
Simetar’s multiple regression function 
allows the analyst to make corrections to 
the data for the actual observations of the 
X and Y values, without having to re-run 
the regression.  The Simetar multiple 
regression routine is not limited in the 
number of exogenous variables that can 
be included in the model.  Regression 

Figure 44.  Multiple Regression 
Dialog Box. 
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models with 5000 observations and 250 X variables can be estimated with Simetar. 
 
If the analyst specifies more observations for the X variables than for the Y variable, Simetar 
will forecast the Y values.  The forecast values in the “Predicted Y” column of the output uses 
the betas for the regression and the additional Xs.  Probabilistic forecasts of the Y variable are 
provided as bold values in the Actual Y column of the output.  For the example, there are five 
extra X values indicated for the regression dialog box (Figure 44) so Simetar calculated the 
deterministic forecast values in column B and the probabilistic forecast values in column A, 
starting in row 91 (see the output above).  Probabilistic forecasts are calculated assuming 
normality, the mean equals the deterministic forecast, and the standard deviation is the standard 
error of the predicted Y in column E for the example.   Press F9 to make Excel simulate the 
probabilistic forecasts.  The probabilistic forecasts can be used in a stochastic simulation model. 
  
Residuals for the regression are also 
included in the example output. The 
residuals for the regression are 
calculated as i i i

ˆê  = Y  - Y  for each 
observation i and represent the 
unexplained risk for the dependent Y 
variable.  The standard error for the 
mean predicted value (SE mean 
predicted) is provided for each 
observation i.  In addition the SE of the 
Predicted Y for each observation is 
provided in column E of the example 
output.  As indicated in the example 
output, the SE Predicted Values increase as the forecasted period gets longer.  Prediction and 
confidence intervals for the model are provided in the table (above) and graphically (below) for 
the alpha equal 5 percent level.  The alpha level can be changed by changing the value in line 47 
of the output example from 95% to, say, 90% or 99%. 
 
The observed and predicted Y values can be viewed graphically along with the confidence and 
prediction intervals.  For the example program five more Xs than Ys were used to estimate the 
model, as a result the last five values in the Observed line to the right are the probabilistic 
forecast values and will change each time the F9 function key is pressed. 
 
The covariance matrix for the betas is an optional output for multiple regressions.  The beta 
covariance matrix is used in simulation when the model is assumed to have stochastic betas. The 
beta covariance matrix is provided when specified as an option in the multiple regression dialog 
box (Figure 44). 

Observed and Predicted Values for Y

5.25
5.30
5.35
5.40
5.45
5.50
5.55
5.60

Predicted Observed
Lower 95% Predict. Interval Upper 95% Predict. Interval
Lower 95% Conf. Interval Upper 95% Conf. Interval
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If requested in the regression dialog box (Figure 44), observational diagnostics are calculated 
and reported for the unrestricted model (see the example to the right).  The column of 1’s in the 
DFBetas Restriction column indicate that the unrestricted model was fit using all of the observed 
data.   
 
If you change a DFBetas Restriction to 0 for a particular row the model is instantly updated 
using a dummy variable to ignore the effects for that row of X’s and Y.  The rule for excluding 
an observation is if its Studentized Residual is greater than 2 (is bold).  This is the case for 
observation 24 in the sample output.  Setting the Restriction value to 0 for observation 24 causes 
the F statistic to increase from 88 to 107, given that X5 has not been excluded from the model.  
The R2 increases to 96.1 from 96.9 (see Multiple Regression Demo.xls).  This result suggests 
that observation 24 is either an outlier or should be handled with a dummy variable.  A priori 
justification should be used when handling observations in this manner.   
 
 
 
 
 
 
 
 
 
 
 
13.3 Bivariate Response Regression 
 
13.3.1 Probit Analysis.   The PROBIT regression function estimates a logistic regression given 
dependent and independent variables.  Probit regression models can be estimated by using the 
multiple regression icon  and selecting the Probit option in the menu, see Figure 44 for the 
menu.  The PROBIT function allows for independent variables to be restricted from the complete 
model (enter ‘0’ in place of the ‘1’).  In addition, individual observations can be restricted from 
the regression (enter ‘0’ in place of ‘1’).  The PROBIT Function uses an iteratively re-weighted 
least squares technique to estimate the model parameters.  A sample Probit output for Simetar 
from the Probit and Logit Demo.xls is summarized below. 
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13.3.2 Logit Analysis.  The LOGIT function estimates a logistic regression given dependent and 
independent variables.  Logit regression models can be estimated by using the multiple 
regression icon  and selecting the Logit option in the menu, see Figure 44 for the menu.  The 
LOGIT function allows for independent variables to be restricted from the complete model.  In 
addition, individual observations can be restricted from the regression.  The LOGIT function 
uses an iteratively re-weighted least squares technique to estimate the model parameters.  A 
sample Logit output for Simetar is presented below from the Probit and Logit Demo.xls. 
 

 
14.0 Cyclical Analysis and Exponential Forecasting 
 
Functions to facilitate analysis of seasonal and cyclical data 
are included in Simetar.  Seasonal indices and moving average 
analysis of cyclical data are described in this section.  Three 
different procedures for developing exponential forecasts 
included in Simetar are described as well.  
 
14.1 Seasonal Index 
 
A seasonal index of any array can be calculated by Simetar 
using the Forecasting and Cyclical Data icon  and clicking 
on the Seasonal Indexing tab.  The Seasonal or Cyclical 
Indexing dialog box (Figure 45) allows the user to specify the 
data series to analyze and the number of periods in the cycle, 
(say, 4 or 8 or 12).  A sample output table is presented below 
and in Seasonal Analysis Demo.xls.  
  
When the input data are months and the Number of Periods in 
the Cycle is 12 the result will be a 12 month seasonal index.  
The quarterly index in the example below is developed from 
five years of quarterly sales to calculate a seasonal sales 
index.  
 
A seasonal index can be calculated one of two ways, namely:  simple average or centered 
moving average.  The simple average index is a more reliable indicator of the seasonal pattern if 
the data has no trend.  If the data series has an underlying trend the Centered Moving Average 
will remove a portion of the variability caused by the trend.  The Seasonal and Cyclical Indexing 

Figure 45.  Seasonal or 
Cyclical Indexing Dialog Box. 
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dialog box (Figure 45) assumes the user wants a simple average index.   
 
 
 
 
 
 
 
 
 
 
 
14.2 Seasonal Decomposition Forecasting 
 
A Seasonal Decomposition forecast of a data series can be 
calculated by Simetar using the Forecasting and Cyclical 
Data icon  and clicking on the Seasonal Indexing tab 
(Figure 46).  After indicating where the data series is 
located and the number of periods in the cycle, click on 
the last box in the menu to Include Seasonal 
Decomposition with Forecast Periods.  This will cause 
Simetar to calculate the parameters for a seasonal 
decomposition forecast for the number of periods 
indicated in the last window of the dialog box, four for the 
example presented below. 
 
The output for the seasonal decomposition forecast 
contains two switches that allow the user to alter the type 
of decomposition model that best fits the data series being 
forecasted.  The options are Additive and Cycle (see the 
example output below).  The default value for the 
ADDITIVE option, “TRUE”, is for an additive model 
which assumes the seasonal component is additive. If the 
seasonal effects are multiplicative, use the “FALSE” 
setting for the ADDITIVE option.  The second option, 
CYCLE, defaults to “TRUE” assuming the series has an 
underlying cycle. If a cycle is not present change this option to “FALSE”.   
 
The user’s requested forecast values are presented in the charts, the trend component forecast is 
the series of dashes on the linear trend line.  The cyclical and seasonal forecasts are the dashes 
on their respective lines.  The composite forecast is the dashes on the actual data line (Sales in 
the example).  The values for these forecast components are indicated in the table after the 
historical values, the last four values for the example below and in Seasonal Analysis Demo.xls. 
 
 
 

Figure 46.  Seasonal 
Decomposition  Forecasting.
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14.3 Moving Average Forecast 
 
A moving average of any series can be calculated by selecting 
the forecasting icon  and selecting the Moving Average tab 
(Figure 47).  The Moving Average dialog box requires 
information on the number of periods to include in the moving 
average and the number of periods to forecast. 
 
Once Simetar has completed the analysis you can change the 
number of periods for the moving average using the sliding scale 
to observe how the number of periods affects the goodness of fit 
measures. The MAPE, WAPE, Thiel U2, RMSE, and MAE are 
included in the output so you can experiment with different 
moving average lengths and observe the affects on forecast 
error.  A graph of the historical and predicted values is provided 
as well. The example of a moving average forecast below comes 
from the Moving Average Demo.xls workbook. 
 
 
 
 
 

Figure 47.  Moving Average 
Forecast Dialog Box. 
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14.4 Exponential Smoothing Forecast 
 
An exponential smoothing forecast for any data series can be developed using the forecasting 
icon  and selecting the Exponential Smoothing tab (Figure 48).  Before running the 
Exponential Smoothing option, open Solver to make Excel activate Solver in the worksheet 
where you want the forecast model to appear.  Solver can be opened and closed by clicking on 
Tools > Solver > Close  
 
Simetar provides three different exponential smoothing estimator/forecasts tools:   

• Single exponential smoothing estimates one parameter alpha (Dampening Factor).   
• Double exponential smoothing or Holt’s method estimates parameters for two parameters 

alpha and beta (Optional Trend Factor).   
• Triple exponential smoothing or Holt-Winter’s method estimates three parameters alpha, 

beta, and gamma (Optional Seasonal Factor).   
Additionally, Simetar estimates the parameters for the exponential smoothing model with 
different assumptions about the trend and seasonal component.  The options are: 

• Holt Method Trend with 
o No trend 
o Dampened additive trend 
o Dampened multiplicative trend 

• Holt Winters Seasonal with 
o No seasonal component 
o Additive seasonal component 
o Multiplicative seasonal component 

These alternative specifications are effected by changing the Trend Method and the Trend 
Method options from 0 to 1 or 2 in the output.  Re-run Solver after changing any option. 
 
Simetar estimates and forecasts the requested model based on the 
non-zero initial guesses the user provides in the dialog box or by 
using SOLVER to optimize the parameters by selecting 
parameters that minimize the MAPE (Figure 48). Probabilistic 
forecasts of the exponential smoothing model can be observed by 
setting the Stochastic Forecast option to “TRUE”. The 
probabilistic forecast values appear at the bottom of the second 
column of the results. See Exponential Smoothing Demo.xls for 
the example presented below.   
 
After Simetar estimates the initial model, you can experiment 
with alternative parameters by using the slide scales for the Level 
Smoothing Constant, the Trend Smoothing Constant, the Season 
Smoothing Constant, and the Dampening Parameter, to see what 
they do to the MAPE,  
RMSE, MAE, etc.  
 
 
 
 Figure 48.  Exponential 

Smoothing Forecast Dialog Box. 
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14.5 Measuring Forecast Errors 
 
Five functions are included in Simetar for quantifying forecast errors.  The functions are found in 
most statistics books so the equations are not presented here.  An example of the five forecast 
error statistics is available below and in Forecast Errors Demo.xls. 
 

− Mean Absolute Percent Error function is: 
=MAPE (Array of Residuals, Array of History) 

− Weighted Absolute Percent function is: 
=WAPE (Array of Residuals, Array of History) 

− Mean Absolute Error function is: 
=MAE (Array of Residuals) 

− Root Mean Square Error function is: 
=RMSE (Array of Residuals) 

 
− Theil U2 statistic function is: 

=THEILU2 (Array of Residuals, Array of History, Change) 

where: Array of Residuals is the cell reference for the array of errors or residuals, 
 Array of History is the cell reference for the array of historical data that was used to 

generate the residuals, and 
 Change is an optional term to indicate if the statistic is to be calculated in the given 

levels of the data or as a function of the changes in forecast.  FALSE returns the statistic 
based on levels; TRUE returns the statistic based on changes.  The default value is 
FALSE. 
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15.0 Time Series Analysis and Forecasting 
 
Functions for estimating and forecasting time series models in Simetar are presented in this 
section.  Functions used to test for stationarity and number of lags are described first, followed 
by a general autoregressive model menu for estimating autoregressive (AR) and vector 
autoregressive (VAR) models.  The time series analysis functions facilitate parameter estimation 
and forecasting with both AR and VAR models to aid in developing probabilistic forecasts for 
simulation.  The time series capabilities of Simetar are demonstrated in Time Series Demo.xls. 
 
15.1 Tests for Stationarity 
 
Time series models should only be estimated for data series that are stationary.  A series can 
generally be made stationary by differencing.  An accepted test for determining if a series is 
stationary is the Dickey-Fuller test.  The Dickey-Fuller Test can be calculated using the Simetar 
function =DF ( ).  The =DF( ) function allows the user to test for alternative combinations of 
differences in an efficient manner to find the combination of adjustments necessary to make a 
series stationary.  The equation used to calculate the DF statistic is: 

 Δ ΔY   =   B   +   B Y   +   B  T   +     Yt 0 1 t-1

Dickey-Fuller Test

3 t
i=1

n

i t-i

Augmented Dickey-Fuller Test

1 24444 34444
1 2444444444 3444444444

∑ σ  

 
where: ΔYt  is the first difference of the data series Y, 
 B0  is the intercept, 
 B1  is the slope parameter estimated for the lagged Y variable (Y ),t-1  
 B3 is the slope parameters estimated for the trend variable (T), and 
 σ i  is the parameter for the ΔYt-i  for different lengths of higher order lags (i), such as 

first, second, third, … order lags. 
 
The Dickey-Fuller Test uses the first two components of the above equation and tests for the 
presence of nonstationarity, in the absence of trend.  The Augmented Dickey-Fuller Test 
includes the third and/or the fourth components of the equation to test for the presence of a trend 
in the series and for higher order differences.  The Simetar function to calculate the Dickey-
Fuller Tests on a series of data is: 
 
 [ ] [ ] [ ]( )=DF Y Values Range, Time Trend , No. of Lag Diffs , No. of Diff.  
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where: Y Values Range is the location of the data series to be tested (this is all that is necessary 

for the basic Dickey-Fuller Test), 
 Time Trend is a true or false switch to indicate whether a trend is to be included in the 

Augmented Test:  “False or 0” for no trend and “True or 1” for a trend,   
 No. of Lag Diffs is the number of higher order lags to use for the Augmented Test, 

usually 0, (this is the value for n in the ΔYt-i summation), and 
 No. of Diff is the number of differences for the original data series Y.  This parameter 

can be used to test for nonstationarity of a specified number of differences, say 2. 
 

Examples of using the =DF( ) function are provided below and in Time Series Demo.xls to 
demonstrate how it can be used.  The basic Dickey-Fuller Test is entered as: 
 =DF(Y Values Range) 
The Augmented Dickey-Fuller Test that includes a trend is entered as : 
 =DF(Y Values Range, 1) 
The Augmented Dickey-Fuller Test that has no trend and tests for the presence of a second order 
autocorrelation lag is entered as: 
 =DF(Y Values Range, 0, 2) 
The Augmented Dickey-Fuller Test that includes trend and tests for the presence of a second 
order autocorrelation lag is entered as: 
 =DF(Y Values Range, 1, 2) 
 
The null hypothesis for the Dickey-Fuller 
Tests is:  H0:  data series is nonstationary.  
The critical test statistic for the Dickey-
Fuller Test, based on large sample theory, 
is approximately -2.9 at the 5% level.  The 
null hypothesis is rejected if the DF statistic 
is less than the -2.9 critical value.  The 
Dickey-Fuller test demonstrated above is in 
the Tests worksheet of Time Series 
Demo.xls workbook.  The Dickey-Fuller 
tests for the data are reported for alternative 
lags, differences, and trend show how the 
function can help identify the combination of differences, trend, and lags necessary to make the 
raw data series stationary.   
 
15.2 Number of Lags 
 
For time series analysis it is necessary to determine the optimal number of lags for the AR model 
after determining the number of differences necessary to make the series stationary.  The 
=ARLAG() function in Simetar suggests the optimal number of lags to use for the AR model.  
The =ARLAG( ) function returns the number of lags that minimizes the Schwarz criterion given 
a particular number of differences.  The function is programmed as: 
 
 =ARLAG (Y Values Range, [Constant], [No. of Diff]) 
 
where: Y Values Range is the range of the time series data to be evaluated,  
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 Constant is an optional term if the AR model is expected to have a constant term (true or 
1) or has no constant (false or 0).  The default is to use a constant term (true) if the 
value is omitted, and 

 No. of Diff is the optional number of differences of the original data series Y assumed to 
make the series stationary. 

 
The =ARLAG( ) function bases its suggestion for the number of lags on the Schwarz criterion 
test.  The test statistic for the Schwarz criterion can be calculated using the following Simetar 
function 
 
 =ARSCHWARZ (Y Values Range, [Constant], [No. of Diff]) 
 
where: All parameters are defined the same as the ARLAG function.   
 
A table for implementing the =ARLAG( ) and =ARSCHWARZ( ) functions is demonstrated 
above.  In Excel these functions are dynamic, so you can change the number of differences or the 
presence of a constant and observe the change in the test statistics.  An example of how the 
=ARLAG( ) and the =ARSCHWARZ( ) functions are used is provided in the Tests worksheet of 
Time Series Demo.xls workbook.  Both tests are demonstrated for 1-4 differences, with and 
without the constant term.  Use the =ARSCHWARZ( ) function to test alternative differences 
and select the lag structure that minimizes the Schwarz test statistic. 
 
15.3 Sample Autocorrelation Coefficients 
 
In time series modeling it is useful to estimate the sample autocorrelation coefficients and the 
sample partial autocorrelation coefficients.  These coefficients are calculated using the Simetar 
functions =AUTOCORR( )  and  =PAUTOCORR( ).  The functions are programmed as: 
 
 =AUTOCORR (Y Values Range, No. of Lags, No. of Diff) 
 and 
 =PAUTOCORR (Y Values Range, No. of Lags, No. of Diff) 
 
where: Y Values Range is the range of the time series data to be evaluated, 
 No. of Lags is the number of higher order lags to test, and  
 No. of Diff is the number of differences of the original data series Y to test. 
 
Both of these functions can be used as 
“scalar” or “array” functions.  When used 
as a scalar, the functions return a single 
value in the cell which is highlighted.  The 
value returned is the correlation coefficient 
or the partial autocorrelation coefficient.  
To use these functions in their array form, 
highlight three cells in a 3x1 or 1x3 
pattern, enter the function name and 
parameters indicated above, and then press 
the Control Shift Enter keys.  Three values 
will be calculated and placed in the 
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highlighted array.  The first value (top or left most) is the autocorrelation or partial 
autocorrelation coefficient.  The next (middle) value is the Student’s -t statistic for the 
coefficient.  The last value is the standard error for the coefficient.  In the array form these 
functions can be used to develop tables showing the autocorrelation coefficients and their levels 
of statistical significance for alternative numbers of lags and differences. 
 
The example on the right demonstrates 
using the two functions to estimate 
sample autocorrelation and partial 
autocorrelation coefficients.  The 
example comes from the Tests 
worksheet of the Time Series Demo.xls 
workbook.  Four different lags and first 
and second differences were tested for 
the data series.  Both autocorrelation 
functions are demonstrated in array form 
and the partial autocorrelation 
coefficient function is demonstrated as a 
scaler to develop a table of test statistics. 
 
15.4 Maximum Likelihood Ratio Test 
 
A maximum likelihood ratio test (LRT) is included as a function in Simetar to facilitate 
estimation of the number of lags for an unrestricted vector autoregressive (VAR) model.  The 
LRT is estimated for alternative possible lags using the following function: 
 
 =LRT (Y Values Range, No. of Lags, Constant, No. of Diff, Error Correction) 
 
where: Y Values Range is the range of the time series data to be evaluated for potential 

inclusion in a VAR.  Two or more data series must be identified. 
 No. of Lags is the number of lags to test, 
 Constant is a switch as to whether a constant term (True or 1) is to be included or not 

(False or 0), 
 No. of Diff is the number of differences of the original data series to test, and 
 Error Correction is whether to perform an error correction (True or 1) on the data or not 

(False or 0). 
 
The =LRT( ) is demonstrated in the Tests worksheet of the Time Series Demo.xls workbook.  
Two data series were tested for 7 different lags assuming three differences, a constant, and error 
correction. The parameters for the =LRT( ) are displayed in a table below the LRTs so one can 
easily change a parameter and observe the changes in the LRTs. 
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15.5 Estimating and Forecasting Autoregressive (AR) Models 
 
The Time Series Analysis menu (Figure 49) provides the 
mechanism to program the information necessary to 
estimate and forecast an auto-regressive (AR) model.  The 
Time Series Analysis menu is activated by selecting the 

  icon.  If you specify the data to analyze as a single 
variable (column of data) in the Data Series window, the 
Time Series Analyzer will estimate an AR model.  
(Specifying two or more columns causes Simetar to 
estimate a VAR model.)  The Number of Lags and 
Number of Differences for the original data must be 
specified for the AR model.  In addition, provisions are 
available in the dialog box to indicate whether or not the 
Constant is Zero.  The number of Forecast Periods to 
project using the estimated model is also specified in the 
dialog box.  It is recommended that the Time Series menu 
be programmed to:  (a) calculate the residuals, (b) graph 
the historical and projected values, and (c) graph the 
impulse response function (see example below). 
 
The results of estimating an AR model with four lags and 
one difference or an AR (4,1) model is presented below 
and in the AR worksheet of the Time Series Demo.xls 
workbook.  Several supporting tests are provided along with the coefficients, namely, the 
Schwarz test, and two Dickey-Fuller tests.  The forecast values for the AR model are provided 
for 10 periods, as programmed in the dialog box, and are labeled “Forecast.”  “Impulse 
Response” values are provided for each forecast period (see th example below).  Student-t 
statistics for the sample and partial autocorrelation coefficients are provided for the 10 periods of 
forecast output.   

 
The time series output generated by Simetar is dynamic meaning that the beta coefficients in the 
AR model will update if you change the values in the original data or replace the input data array 
with another series of data.  An added feature is the capability to impose restrictions on the 
initial AR model by dropping out/re-entering lags in real time.  The Restriction Matrix has 1’s 

Figure 49.  Time Series 
Analysis Dialog Box. 
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beneath each lags’ coefficient.  When the restriction value of 1 is changed to 0 the model is re-
estimated without that particular variable or lag.  The example AR model in DemoSimetar-Ar 
was run with 4 lags so the user can experiment with deleting unnecessary lags using the 
Restriction Matrix.  When the 2nd, 3rd and 4th lags are restricted out the standard deviation for the 
residuals increases slightly from 2.86 to 3.06.  As these higher order lags are removed the MAPE 
increases only about 1.3 percentage points.  The AIC is minimized when lags 3 and 4 are 
removed. 
 
Note that the initial number of lags and differences specified for the AR model determines the 
number of observations used to estimate the coefficients.  When an AR model of 1st differenced 
data is estimated with four lags initially but the 3rd and 4th lags are restricted out, the resulting 
coefficients will not equal those for an AR(1) model estimated with two lags.  The reason the 
coefficients are slightly different is that the latter model uses two more observations to estimate 
the parameters.  It is recommended that the restricted AR model be re-estimated using the exact 
number of lags once the restricted model is acceptable. 
 
As the restrictions on the lags are imposed on the unrestricted model the following test statistics 
do not change:  Dickey-Fuller Test, Augmented Dickey-Fuller Test, and Schwarz Test (see 
example above).  These statistics do not change because they reflect the number of differences 
specified for the unrestricted model.  For example, the Dickey-Fuller Test statistic for an 
AR(4,1) model is calculated as =DF(data,,,1) and for an AR(4,2) model it is =DF(data,,,2).  The 
Schwarz Test statistic is based on the number of differences [=ARSCHWARZ(data,,No. of 
Differences)] and does not change as the number of lags is restricted. 
 
 It is possible to interactively analyze the impact of changing the number of differences to 
the data in the AR model.  In the second row of the Restriction Matrix (see the example above) is 
the word Differences followed by a value, in this case 1.  The 1 in the Difference row means the 
data have been differenced once.  To “re-run” the model with second differenced data, type a 2 
into the restriction matrix in place of the 1.  This change causes Simetar to re-estimate all of the 
parameters and update the goodness of fit test statistics. 
 
The predicted values over the historical period and their residuals are provided for the AR 
model. The residuals are also expressed as a fraction of the predicted data.  The predicted values 
and the residuals begin with observation 6, for this example, because the lag/difference structure 
of an AR(4,1) model uses the first 5 observations. 
 
A graph of the historical and predicted values for the data series is generated by the Time Series 
function.  The thin line represents the original data while the bold line represents the predicted 
values.  Projections beyond the historical data in the graph correspond to the 10 period forecast 
requested in the dialog box (Figure 43). 
 
A graph of the Impulse Response Function is also included in the forecast.  The impulse 
response values are included in the output, but they are easier to see in the graph.  A stationary 
model will exhibit continuously decreasing impulse responses to a 1 unit change at the outset of 
the period, as depicted by the graph in the AR Worksheet.  The Impulse Response Function 
graph changes as the lags in the model are restricted out.  Not shown in example above are the 
autocorrelation and partial autocorrelation function graphs for the AR model. 
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15.6 Estimating and Forecasting Vector Autoregressive (VAR) Models 
 
The Time Series Analysis Engine dialog box (Figure 50) 
can be used to estimate and forecast VAR models.  VAR 
model analyses begin by selecting the   icon on the 
Simetar toolbar.  To estimate a VAR model, take all the 
steps used to estimate an AR model with one exception, 
specify two or more adjacent series in the Data Series 
menu (Figure 50).  When two or more data series are 
specified, Simetar uses the more general estimation 
procedure for a VAR.  The number of lags and differences 
should be specified based on prior analyses and tests. 
 
The results of estimating and forecasting a two variable 
unrestricted VAR model are presented in the VAR 
worksheet of the Time Series Demo.xls Workbook and 
below.  The Time Series function estimated the parameters 
for the VAR model using 4 lags and 1 difference with a 
constant, so 18 parameters are presented in the results. 
Various time series tests statistics for the model are 
presented below the parameters.   
 
The first and second rows of the Restriction Matrix 
contain 1’s indicating all lags are initially in the model.  
These restriction values can be changed to 0’s to re-fit the VAR in real time by selectively 
deleting lags for one or both of the variables (see the example below).  Changing the 1’s to 0’s 
and observing the change in the test statistics will enable the user to instantly experiment with a 
large number of model specifications.  The interaction among the variables and their lags can be 
tested interactively using this feature in the Simetar VAR.  The third row in the Restriction 
Matrix provides the switch to re-fit the VAR model with alternative numbers of differences, in 
real time. 
 

 
 

Figure 50.  Time Series 
Analysis Dialog Box for a VAR 
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Forecasted values for both of the data series are provided in the output section.  Impulse 
responses for the system of variables are also provided.  These impulse response values are also 
summarized in a graph when requested. 
 
Actual and predicted values over the historical period are presented in the top chart.  Numbers 
behind the predicted values over the historical period are provided, beginning with period 6.  The 
forecast values have a label with the word “Pred” following the variables name.  Residuals for 
the VAR predicted values are also included in the output. 
 
The residuals from the historical data can be used to simulate the unexplained variability or 
stochastic components of the random variables.  Use the residuals to estimate the standard 
deviation about the forecasted values.  Also use the residuals to estimate the correlation matrix 
for correlating random values about the forecasts.   
 
16.0 Other Statistical and Data Analysis Functions  
 
16.1 Summary Statistics  
 
The dialog box used to calculate summary statistics for a variable 
(Figure 45) appears when the Summary Statistics menu item or 
icon   is selected.  Select in the Select Range box and highlight 
the range (column or row) to analyze.  Next click in the Output 
Range box and click the cell where the results are to be placed.  
All of the statistics and their names (mean, standard deviation, 
coefficient of variation, minimum, maximum, lower and upper 
confidence interval, and sum) will be placed in the worksheet 
starting with the Output Range cell if the Add Output Labels 
button is clicked.  The standard deviation can be calculated using 
either the population or the sample formula.  The coefficient of 
variation, sum, count and autocorrelation coefficient are not 
calculated unless these statistics are specified by selecting their 
boxes.  Experiment with the dynamic nature of Simetar by 
changing the values in the original data and observing the 
updated summary statistics.  See Data Analysis Demo.xls for an 
example. 
  
The Count and Sum options in the Summary Statistics menu are 
available for conditional counts and sums of the data.  Consider 
the situation where you have 2,500 observations and need to know how many values are less 
than or equal to 10.0.  Perform this calculation by clicking on Count, followed by selecting the 
IF < = box, and then type the target value in the right hand box 10.0.  The conditional count will 
appear with the other statistics.   
 

Figure 51.  Summary Statistics 
Dialog Box. 



 
 

74

16.2 Jackknife Estimator  
 
Simetar provides a jackknife function which can be used to estimate parameters for any 
statistical formula or function in Excel or in Simetar.  Given an n-dimensional vector or matrix 
of data and an associated statistic based on the data, the jackknife procedure sequentially re-
estimates the statistic, leaving out the ith row at each iteration, where i = 1,...,N.  These n 
statistics are then used to calculate the average statistic, the bias relative to the original statistic, 
and the jackknife variance of the statistic.  The format for the =JACKKNIFE() function is: 
 
 =JACKKNIFE(DataRange, FormulaRef, RetVariance, Delete_D) 
 =JACKKNIFE(A2:B20,C2:D3) 
 
Where: Data Range is a reference to a range of data that will be resampled to calculate the 

jackknife estimator.  If this range is an Nx1 vector, then the estimator will be calculated 
based on sequentially removing the ith row of the vector, where i = 1,…,N. Similarly, if 
this range is an NxK matrix, the estimator will be calculated based on sequentially 
removing the ith row of the matrix.  Thus, multivariate data should be arranged with 
variables in columns, 

 FormulaRef is a reference to a range or cell that contains a formula which calculates an 
estimate based on the given Data Range.  The jackknife estimator will be an average of 
the result of this formula based on the sequentially re-sampled data, 

 RetVariance is an optional term to include if only the jackknife estimate of the estimator 
variance is desired.  A value of TRUE (or 1) will produce only the variance.  A value of 
FALSE (or 0) will produce the jackknife estimator, bias, and variance.  The default 
value is FALSE, and 

 Delete_D is an optional term to include if D rows are to be deleted at a time instead of 
one, where D is a positive integer less than n, the number of rows.  The JACKKNIFE 
Function will then estimate statistics based on removing D adjacent rows at a time 
sequentially.  This method is recommended when dealing with nonlinear statistics and 
should be used in conjunction with random sub-sampling methods.  The default is one. 

 
17.0 Function Evaluation 
 
Two Simetar functions are available for evaluating user specified nonlinear functions.  The first, 
=OPT( ), finds the minimum or maximum of a function given boundary constraints on the control 
variables.  The =OPT( ) function can also be used to find the value of X when a function equals a 
target value, as zero.  The second function, =RINTEGRAL( ) integrates a function over a given 
range.  Both functions provide approximate answers using efficient optimal control search and 
solve algorithms.  The level of precision can be increased, but at a slight cost of longer execution 
times. 
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17.1 Optimize a Function 
 
The =OPT( ) function uses the Golden Section method for 
optimizing a non-linear function specified by the user.  The 
function to optimize (maximize or minimize) can be either 
typed into the =OPT( ) function as a literal or as an equation 
typed into a cell.  Optimization Function Demo.xls 
demonstrates both techniques for optimizing functions. 
 
The easiest method for using the =OPT( ) function is to 
type =OPT and then click on Excel’s Equation editor, , 
and fill in the blanks in the OPT equation editor form 
(Figure 52).  The optimization function parameters are: 

 
 =OPT (Formula, Constraint Type, Change Variable, Lower Guess, Upper Guess, Max 

Iterations, Precision) 
 
where: Formula is the function to be optimized, as:  = 100 – 25X + 45X2 and must be typed into 

the referenced cell as a formula, 
 Constraint Type must be typed as the word “Min” or “Max” for minimization or 

maximization, respectively, 
 Change Variable is the cell which refers to the X variable in the function and can be any 

feasible value of X, 
 Lower Guess is the minimum X, 
 Upper Guess is the maximum X, 
 Max Iterations is the maximum number of calculation cycles to use, and 
 Precision is the degree of accuracy, such as 0.000001. 
 
The value of X which causes the Y function to be optimized will appear in the cell where   
=OPT( ) is typed.  Changing the parameters will cause Excel to calculate a new optimal value if 
the current solution is at a boundary or more precision can be obtained.  Changing the function 
or input values to the function of course changes the =OPT( ) answer. 
 
17.2 Value of a Function 
 
Given a complex polynomial function that can be programmed in a cell as Y = f(X), Simetar can 
solve for the value of X where Y equals a target value such as zero.  A variation on the =OPT( ) 
function can be used to solve this type of optimization problem.  The parameters for the function 
are: 
 
 =OPT (Formula, Target Value, Change Variable, Initial Guess, Upper Bound, Max 

Iterations, Precision) 
 
where: Formula is the cell reference for the function to be optimized, 
 Target Value is the value of Y when the function is optimized, 
 Change Variable is the cell referring to the X variable in the function and can be any 

feasible value of X, 
 Initial Guess is the lower bound constraint of X, 

Figure 52.  Equation Editor for the 
Optimization Function =OPT( ).
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 Upper Guess is the upper bound constraint of X, 
 Max Iterations is the maximum number of calculation cycles, and 
 Precision is the degree of accuracy, such as 0.000001. 
 
When the =OPT( ) function fails to find the target value for Y over the range of the function it 
returns #VALUE in the cell where =OPT( ) is typed.  In this case, try another initial guess, the 
upper bound, the level of precision or the maximum number of iterations.  Excel will solve some 
functions very fast; for example, Y = X4 will find that Y equals 23 at 2.1958 very rapidly.  See 
Optimization Function Demo.xls for this example. 
 
17.3 Integral of a Function 
 
A function can be integrated over a specified range using the 
=RINTEGRAL( ) function.  This function provides an 
approximate value for the integral using Riemann Integration. 
 The level of precision can be increased by increasing the 
number of partitions.  The easiest way to use the function is to 
develop a table of parameters and then use Excel’s Equation 
editor after typing =RINTEGRAL, as depicted in Figure 53.  
An example of integrating a function Y = 100 – 25X + 45X2 
over the interval of X equal 0 to 100 is provided in 
Optimization Function Demo.xls.  The parameters for the 
integration function are: 
 
 =RINTEGRAL (Formula, Variable Ref, Lower Bound, Upper Bound, Partitions) 
 
where: Formula is the cell reference to the equation to be integrated, 
 Variable Ref is the cell reference for the independent variable (X) in the equation, 
 Lower Bound is the minimum X for the range of the integration, 
 Upper Bound is the maximum X for the range of the integration, and 
 Partitions is the number of intervals X range is partitioned into for integration. 
 
The answer will appear in the =RINTEGRAL( ) function cell.  It is recommended that you 
increase the number of partitions until the change in the integral answer is zero.  As you increase 
the number of partitions, response time will slow.  For the example in Optimization Function 
Demo.xls the true value of 14,885,000 is reached at 300,000 partitions in about 25 seconds. 
 
18.0 Getting Help with Simetar 
 
Simetar Help is provided in two forms:  detailed description of the functions and equation 
editing help.  Detailed descriptions are available for all of the Simetar functions by clicking the 
help icon  on the toolbar.  When the help icon is selected the Help Index for Simetar window 
(Figure 54) appears on the screen.  Scroll down to the function of interest and click on the 
function name.  This action results in the requested Simetar Help screen appearing on the screen. 
  
 
An example of requesting help from the Simetar Help Index for the =NORM( ) function is 

Figure 53.  Equation Editor 
for the Integral Function.  
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displayed in Figure 55.  The help provided in the screen is designed to supplement the material 
in this manual.  You can either print the help screen, return to the Help Index, or close the help 
screen by clicking on the appropriate button at the bottom of the Help Screen. Additional help on 
the function is available from Simetar by clicking on the line “Help on the function” as 
demonstrated for the =NORM() function below. 
 
Excel provides pop-up help menus to assist with writing or editing equations.  To access help for 
equation programming simply type “equal and the function name” in a cell and then click the 
“=” button or the  icon on the formula bar.  An example of how this works for getting help 
with the =CSND( ) function is provided in the worksheet example below and Figure 56.  In the 
example the analyst has highlighted three cells (B7:B9) in preparation for using the CSND 
function as an array.  After typing “=CSND” click the “fx” button in the formula toolbar at the 
top of the worksheet and Excel will place a dialog box like Figure 50 on the screen.  

 
The equation help box in Figure 50 indicates the order of parameters for the =CSND( ) function 
and the names of the parameters.  You can fill in the worksheet cell locations for the parameters 
by clicking the miniature grid to the right of each parameter and painting the appropriate cells 
with the mouse.  After filling in values for the parameters select OK.   
 
The equation editor help function can be used to develop new equations and to de-bug existing 
equations.  Select a cell with an existing equation and click the “=” or “fx” button on the formula 
bar to see the equation editing help box.  Equation editing help screens are available for all 
Simetar and Excel functions. 

Figure 54.  Help Index Dialog Box. Figure 55.  Example of a Simetar Help Screen. 
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19.0 Solutions to Problems in Simetar Application 
 
Like all computer programs Simetar 2006 is the result of many enhancements.  Each time one 
function is complete we find two more to add and in the process a better way to do the first 
function is developed.  The program has come a long way given that it began in May 2000.  
Simetar continues to grow and become more useful. 
 
Most problems are associated with installing Simetar on computers with old operating 
systems/versions of Excel and operators without administrative privilege.  The optimal 
environment is Windows 2000 operating system with Microsoft Office XP.  The Demo programs 
were developed in this environment.  The first time you open one of the Demo workbooks it may 
warn you of embedded macros – select “Enable Macros” and proceed.  Next your Excel may 
warn you that the Demo has external links – select “No” and proceed.  Save the workbook to 
your hard drive and the next time it is opened you will not have link warnings.  The workbook 
link warnings are caused by your computer storing Simetar in a different location than the 
developer’s computer.  Excel will update the links on its own. 
 
This section documents errors we have observed.  Most of the problems occur because Excel’s 
Calculation is set to Manual or the Operating System burps and sets Calculation to Manual 
during your Excel session.  Set Calculation to Automatic and leave it there and check it if 
errors occur. 
 
19.1 My program was working when I saved it, but now the Simetar functions have 
#NAME 
 
Sometimes Simetar and Excel gets confused and you need to remind Excel that Simetar is 
loaded, to do this follow these steps: 

Tools > Add-Ins >    Uncheck the box for Simetar 
Then repeat the process 
Tools > Add-Ins >    Check the box for Simetar 

 

Figure 56.  Example of the Equation Help 
Box.
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19.2 File Not Found dialog box with a file name of “PBJ.XLA” listed, appears when I open 
a workbook  
 
Click the “Cancel” button and Excel will update the links to Simetar and PBJ using the current 
location of these files on your computer.  This error occurs when the workbook was created on a 
different computer.  Save the workbook and the next time it is opened there will be no problem. 
 
19.3 Simetar Functions returns  #NAME!  instead of values 
 
Sometimes Simetar and Excel gets confused and you need to remind Excel that Simetar is 
loaded, to do this follow these steps: 

Tools > Add-Ins >    Uncheck the box for Simetar 
Then repeat the process 
Tools > Add-Ins >    Check the box for Simetar 
 
If your computer is running Excel 97, load Service Pack 2.  If your computer is running 
Excel 95, get a newer version of Excel. 
 

19.4 Scenario names in Stochastic Dominance tables appear as #NUM! 
 
Press Function key F9 
Set calculation to automatic by following these steps: 

 Tools > Options > Calculation, set the calculation option to Automatic 
 
19.5 Statistics for the first stochastic variable in SimData Worksheet appear as #DIV/0! 

 
Press Function key F9 if the problem goes away, do the following: 

Check Tools > Options > Calculation, set the Calculation option to Automatic 
 
Check if the variable is a constant.  If it is then the means will not be zero but the standard 
deviation and coefficient of variation will be #DIV/0! 
 

19.6 Values for SERF table and chart in SERFTbl1 do not change when you change the 
ARACs or the utility function 

 
Check Tools > Options > Calculation, set the Calculation option to Automatic 

 
19.7 Results from Testing a Single Variable for Normality returns #VALUE! in place of 
values 
 
Check Tools > Options > Calculation, set the Calculation option to Automatic 
Delete the formats in the cells for the output range that may be left over from previous sessions. 

 
19.8 Results of Compare Two Data Series returns #DIV/0! and #NUM! in place of values 
 
Check Tools > Options > Calculation set the Calculation option to Automatic 
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19.9 Multiple regression returns #DIV/0! for standard deviation of residuals and/or MAPE 
is #VALUE! 
 
Check Tools > Options > Calculation, set the Calculation option to Automatic 

 
19.10 Multiple regression does not update the beta hats and goodness of fit statistics when a 
restriction value is changed  
 
Check Tools > Options > Calculation, set the Calculation option to Automatic 

 
19.11 Multiple regression does not update the beta hats and goodness of fit statistics when 
one of the X or Y observations is changed 

 
Check Tools > Options > Calculation, set the Calculation option to Automatic 

 
19.12 Multiple regression, time series, and other menu enabled functions return numbers 
instead of the names for the X and/or Y variables 

 
The dialog boxes allow you to enter “Labels in First Cell,” you did not include the label in the 
first cell, so Simetar used the first observation as the name of each X variable and/or for Y.  
Include the variables label when dialog boxes are used to enter data for functions. 

 
19.13 Time series (AR and/or VAR) procedure returns #VALUE! instead of the coefficients 
 
Check Tools > Options > Calculation, set the Calculation option to Automatic  

 
 19.14 Stochastic variables (cells) in the worksheet do not change when the Enter or F9 Keys 
 are pressed 
 
Check Tools > Options > Calculation, set the Calculation option to Automatic 
 
Check the Simetar Toolbar to see if worksheet sampling has been set to “Expected Value”, if so 
click the Expected Value button on the Simetar Toolbar. 

 
19.15 Stochastic variables (cells) in the worksheet are fixed at zero or the mean and do not 
change when F9 is pressed 
 
The “Expected Value” button in the Expected Value button on the Toolbar is turned on.  Turn 
the option off by clicking on the Expected Value button.   

 
19.16 The CDF or SERF chart has numbers instead of names on the lines and/or the 
scenario names in the legend are numbers 

 
The “Labels in First Cell” option was turned on so the program used the first observation for 
each scenario as the scenario names. 
Be sure that the label in the first row starts with a letter, not a number, as 1998 or 2000. 

 
19.17 Results and calculations in the simulation output worksheet, SimData, are gone 
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Simetar writes the iteration results to worksheet SimData after each run.  It uses as many 
columns of the worksheet required for the output variables in the Simulation Engine.  If you had 
tables from a previous simulation run in the columns needed for the current run, they got over 
written. When you place summary tables, tests, or chart data in SimData, rename the worksheet 
so it will be protected from the next simulation. 

 
19.18 Simulation used to run fast and now it has slowed down 

 
• Another Excel workbook which contains stochastic variables may be open.  When Simetar 

simulates the stochastic variables in the open workbook, Excel also simulates the workbooks 
that are minimized.  

• The SERF option is dynamic and can slow the simulation down if the model is simulating 
more than 500 iterations and SERF is tied to the SimData worksheet. 

• Simulation can be slowed down if the SimData output is being used to calculate a large 
number of CDF and PDF charts. 

• The number of Key Output Variables that Simetar is collecting for statistical analysis may 
have been expanded from previous runs. 

• The number of Scenarios is greater than previous runs. 
• The SimSolver option in the Simulation Engine is turned on. 
 
19.19 A Simetar matrix or array function returns a single value when you expected an 
array or matrix of answers. 

 
Press F2 to edit the function; if it is typed correctly press three keys:  Control Shift Enter. 
Any time an array function is used, you MUST end by pressing these three keys: Control Shift 
Enter. 

 
19.20 Hypothesis Test statistics appear wrong.  
 
• Re-do the test and be careful to indicate no labels in the first row and only include the data. 
• Change the variable labels or names so they begin with a letter, as Y1988, not 1988 and re-

do the test. 
• The t-tests are two tailed tests, so thye will not be the values you expect for a one-tailed test. 
 
19.21 After installation, if the Excel Tool Bar does not show “Simetar,” it can be re-loaded 
to the toolbar using the following steps: 
 
Tools > Select Add-Ins ... > scroll down and click the box for Simetar > OK 
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20.0 List of All Simetar Functions 
 
Following is a list and short description of all functions in Simetar: 
Function Name Description 
· ANOVA  One way analysis of variance 
· ARLAG  Recommends the number of lags in an autoregressive model 
· ARSCHWARZ Schwarz criterion associated with recommended number of lags 
· AUTOCORR  Autocorrelation function for a univariate time series 
· BANDWIDTH Bandwidth function in kernel density estimation 
· BERNOULLI Bernoulli random variable 
· BERNOULLIDIST  Bernoulli distribution function 
· BINOMINV  Binomial random variable 
· BLOCKIT  Column Vector to a Matrix 
· BOOTSTRAPPER  Bootstrap resampling of a univariate or multivariate series 
· BOXCOX  Box-Cox transformation of a data series for normalization 
· BOXCOXEXP Estimate of the Box-Cox exponent in a Box-Cox transformation 
· BOXM  Box’s M statistic for testing multivariate variances 
· CAUCHY  Cauchy random variable 
· CAUCHYDIST Cauchy distribution function 
· CDFDEV  Indicate goodness of fit between sample data & known distribution data  
· CELLSUB  Replace an item or items in a block of data 
· CERTEQ  Certainty equivalent of a data series assuming a utility function 
· CMOVAVG  Centered moving average 
· CONCAT  Concatenate two or more matrices 
· COSDIST  Cosine distribution function 
· COSINV  Cosine random variable 
· CSND  Correlated standard normal deviates 
· CUSD  Correlated uniform standard deviates 
· DELNUM  Remove the numbers from a string of text and numbers 
· DELTEXT  Remove the text from a string of text and numbers 
· DEMPIRICAL Discrete empirical distribution random variable 
· DEXPONDIST Double exponential distribution function 
· DEXPONINV Double exponential random variable 
· DF   Dickey-Fuller test statistic 
· DIRICHINV  Dirichlet random variable 
· EDF  Empirical distribution function 
· EMP  Empirical random variable 
· EMPCOPULA Empirical copula function 
· EMPIRICAL  Empirical random variable 
· EPANDIST  Epanechnikov distribution function 
· EWMA  Exponentially weighted moving average 
· EXPONINV  Exponential random variable 
· EXTVALDIST Extreme value distribution function 
· EXTVALINV Extreme value random variable 
· GEOMDIST  Geometric distribution function 
· GEOMINV  Geometric random variable 
· GMDIF  Gini’s mean difference 
· GRK  GRK random variable 
· GRKS  GRKS random variable 
· GRKSDIST  GRKS distribution function 
· GUMBELDIST Gumbel distribution function 
· GUMBELINV Gumbel random variable 
· HOTELLTDIST Hotelling T-squared distribution function 
· HOTELLTINV Hotelling T-squared random variable 
· HYPERGEOMINV  Hypergeometric random variable 
· IMPULSE  Impulse response function in a vector autoregression 
· INVGAUS  Inverse Gaussian random variable 
· INVGAUSDIST Inverse Gaussian distribution function 
· IQR  Inner quartile range of a sample 
· ITERATION     Show the iteration number during simulation 
· ITERSUM  Sum a value across iterations during a simulation 
· JACKKNIFE  Jackknife estimate of statistic, bias, and variance 
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· KDEINV  Random variable based on a kernel density estimate 
· KTAU  Kendall's Tau measure of concordance 
· LOGISTICDIST Logistic distribution function 
· LOGISTICINV Logistic random variable 
· LOGIT  Logit binary response regression 
· LOGLOGDIST Log-log distribution function 
· LOGLOGINV Log-log random variable 
· LOGLOGISTICDIST  Log-logistic distribution function 
· LOGLOGISTICINV    Log-logistic random variable 
· LR   Linear regression (OLS) 
· LRAIC  Akaike information criterion for a regression 
· LRBIG  Linear regression (OLS) for large data sets 
· LRDFBETA  Observational diagnostics for a regression 
· LRDHATMAT Diagonal of the hat matrix 
· LRDW  Durbin-Watson test statistic in a regression 
· LREGLS  Estimated generalized least squares (EGLS) 
· LRGLS  Generalized least squares (GLS) 
· LRGQ  Goldfeld-Quandt test statistic for a regression 
· LROBS  Regression observation count and degrees of freedom 
· LRPARTCORR Partial correlation function in a regression 
· LRRESID  Residuals and predicted values in a regression 
· LRRHO  Autocorrelation coefficient in the errors of a regression 
· LRRIDGE  Ridge regression 
· LRSEMICORR Semi-partial correlation function in a regression 
· LRSIC  Schwarz information criterion for a regression 
· LRT  Likelihood ratio test in univariate or multivariate autoregression estimation 
· LRVIF  Variance inflation factor for a regression 
· LRWLS  Weighted least squares (WLS) 
· MAE  Mean absolute error 
· MAHANGLE Mahalanobis angle of a data matrix 
· MAPE  Mean absolute percent error 
· MCENTER  Centering matrix of a specified dimension 
· MCHOL  Choleski factorization of an nx(n+p) matrix, () 
· MCOFACTOR Cofactor of a square matrix 
· MCOR  Correlation matrix 
· MCOV  Covariance matrix 
· MDAPE  Median absolute percent error 
· MDET  Determinant of a square matrix 
· MDIAG  Diagonalize a vector or matrix 
· MDIST  Squared Mahalanobis distance of two data matrices 
· MEDAVG  Median average 
· MEQCORR  Equicorrelation matrix of a specified dimension 
· MEVAL  Eigenvalues of a square matrix 
· MEXP  Exponential power of a matrix 
· MGINVERSE Generalized inverse of a matrix 
· MIDEN  Identity matrix 
· MINV  Inverse of a square matrix 
· MIP  Inner product of two matrices 
· MJ   Matrix of 1s 
· MKRON  Kronecker multiply two matrices 
· MLEBETA  Beta MLE of parameter(s) 
· MLEBINOM  Binomial MLE of parameter(s) 
· MLEDEXPON Double Exponential MLE of parameter(s) 
· MLEEXPON  Exponential MLE of parameter(s) 
· MLEGAMMA Gamma MLE of parameter(s) 
· MLEGEOM  Geometric MLE of parameter(s) 
· MLELOGISTIC Logistic MLE of parameter(s) 
· MLELOGLOG Log-Log MLE of parameter(s) 
· MLELOGLOGISTIC  Log-Logistic MLE of parameter(s) 
· MLELOGNORM        Lognormal MLE of parameter(s) 
· MLENEGBIN Negative Binomial MLE of parameter(s) 
· MLENORM  Normal MLE of parameter(s) 
· MLEPARETO Pareto MLE of parameter(s) 
· MLEPOISSON Poisson MLE of parameter(s) 
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· MLEUNIFORM Uniform MLE of parameter(s) 
· MLEWEIB  Weibull MLE of parameter(s) 
· MNORM  Norm of a matrix 
· MOMBETA  Beta MOM of parameter(s) 
· MOMBINOM Binomial MOM of parameter(s) 
· MOMDEXPON Double Exponential MOM of parameter(s) 
· MOMEXPON Exponential MOM of parameter(s) 
· MOMGAMMA Gamma MOM of parameter(s) 
· MOMGEOM  Geometric MOM of parameter(s) 
· MOMLOGISTIC Logistic MOM of parameter(s) 
· MOMLOGLOG Log-Log MOM of parameter(s) 
· MOMLOGLOGISTIC  Log-Logistic MOM of parameter(s) 
· MOMLOGNORM        Lognormal MOM of parameter(s) 
· MOMNEGBIN Negative Binomial MOM of parameter(s) 
· MOMNORM Normal MOM of parameter(s) 
· MOMPARETO Pareto MOM of parameter(s) 
· MOMPOISSON Poisson MOM of parameter(s) 
· MOMUNIFORM Uniform MOM of parameter(s) 
· MOMWEIB  Weibull MOM of parameter(s) 
· MORTH  Orthoganalize a matrix 
· MOVAVG  Moving average 
· MPROD  Multiply two or more conformable matrices 
· MRANK  Rank of a matrix 
· MRECH  Row Echelon Form of a matrix 
· MRRECH  Reduced row echelon form of a matrix 
· MSE  Mean squared error 
· MSQRT  Factor a square, symmetric matrix 
· MSTACK  Stack two or more matrices 
· MSVD  Singular value decomposition of a matrix 
· MSWEEP  Sweep a square matrix on a diagonal element 
· MTOEP  Column vector to a Toeplitz matrix 
· MTPNORM  Modified two-piece normal random variable 
· MTPNORMDIST  Modified two-piece normal distribution function 
· MTRACE  Trace of a square matrix 
· MULTINOMDIST  Multinomial distribution function 
· MULTINOMINV    Multinomial random vector 
· MULTSORT  Sort a matrix by a specified column 
· MVCHT  LRT for complete homogeneity of multiple data matrices 
· MVCV  Multivariate coefficient of variation 
· MVEMP  Multivariate empirical random vector 
· MVEMPIRICAL Multivariate empirical random vector 
· MVEPANDIST Multivariate Epanechnikov distribution function 
· MVLOGNORM Multivariate lognormal random vector 
· MVNORM  Multivariate normal random vector 
· MVNORMDIST Multivariate normal distribution function 
· MVPDENSITY Percentile based on a multivariate kernel density estimator 
· MVTINV  Multivariate student's t random variable 
· NEGBINOMINV  Negative binomial random variable 
· NORM  Normal random variable 
· NORMAD  Anderson Darling statistic for test of normality 
· NORMCHI  Chi-squared statistic for a test of normality 
· NORMCVM  Cramer von Mises statistic for test of normality 
· NORMKS  Kolmogorov Smirnov statistic for test of normality 
· NORMSW  Shapiro-Wilks statistic for test of normality 
· OPT  Find an iterative optimum solution 
· PARETO  Pareto random variable 
· PARETODIST Pareto distribution function 
· PAUTOCORR Partial autocorrelation function for a univariate time series 
· PDENSITY  Percentile based on a Kernel density estimator 
· PERTDIST  Project evaluation and review technique (PERT) distribution function 
· PERTINV  Project evaluation and review technique (PERT) random variable 
· PNORM  Power normal random variable 
· PNORMDIST Power normal distribution function 
· POISSONINV Poisson random variable 
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· PROBIT  Probit binary response regression 
· QUANTILE  Find the quantile of an empirical CDF given the probability 
· RANDSORT  Randomly sort a vector 
· RANDWALK Generate a random walk series 
· RANKCORREL Rank correlation of two data series 
· REVERSE  Reverse the order of a vector 
· RINTEGRAL Riemann integral of a bounded function 
· RMSE  Root mean squared error 
· RUSD  Rank correlation matrix 
· SCENARIO  Return a value associated with different scenarios in a simulation 
· SEMICIRCDIST Semicircle distribution function 
· SEMICIRCINV Semicircle random variable 
· SEQ  Sequence of numbers 
· SIMETARCR Returns copyright information for Simetar 
· STRETCHIT  Matrix to a vector 
· TEMPIRICAL Truncated empirical random variable 
· TGAMMADIST Truncated gamma distribution function 
· TGAMMAINV Truncated gamma random variable 
· THEILU2  Theil’s U2 statistic for forecasts 
· TNORM  Truncated normal random variable 
· TNORMDIST Truncated normal distribution function 
· TPNORM  Two-piece normal random variable 
· TPNORMDIST Two-piece normal distribution function 
· TRANS  Transpose a matrix 
· TRIANGLE  Triangle random variable 
· TRIANGLEDIST  Triangle distribution function 
· TSDECOMP  Time series decomposition 
· TWEIBDIST  Truncated Weibull distribution function 
· TWEIBINV  Truncated Weibull random variable 
· TWOSLS  Two stage least squares (2SLS) 
· UNBOXCOX Convert a Box-Cox transformed value back to the original level 
· UNIFORM  Uniform random variable 
· UNIFORMDIST Uniform distribution function 
· USND  Uncorrelated standard normal deviate 
· UUSD  Uncorrelated uniform standard deviate 
· VARAIC  Akaike information criterion in univariate or multivariate autoregression models 
· VAREST  Univariate or multivariate autoregression estimation function 
· VARLRT  Likelihood ratio test in univariate or multivariate autoregression estimation 
· VARRESID  Predictions & residuals in univariate or multivariate autoregression models 
· VFORMULA View the formula in the referenced cell 
· WAPE  Weighted absolute percent error 
· WBNAME  Return the name of the workbook 
· WEIBDIST  Weibull distribution function 
· WEIBINV  Weibull random variable 
· WILKSLDIST Approximate cdf of the Wilks' Lambda random variable 
· WILKSLINV Wilks Lambda random variable 
· WISHDIST  Wishart distribution function 
· WISHINV  Wishart random matrix 
· WSNAME  Return the name of the worksheet 
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21.0 Cross Reference of Functions and Demonstration Programs 
 
       Topic             Demonstration Program Name 
ANOVA       Data Analysis Tools Demo.xls 
ANOVA test      Hypothesis Tests Demo.xls 
AR and VAR models estimated    Time Series Demo.xls 
AR model dynamic probabilistic forecast   Time Series Forecasting Demo.xls 
AR model estimation     Time Series Functions Demo.xls 
AR model estimation     Time Series Analysis Tools Demo.xls 
ARLAG function      Time Series Functions Demo.xls 
ARSCHWARZ function     Time Series Functions Demo.xls 
AUTOCORR function     Time Series Functions Demo.xls 
Additive seasonal decomposition forecasting with cycle  Seasonal Decomposition Forecasts Demo.xls 
Additive seasonal decomposition forecasting without cycle  Seasonal Decomposition Forecasts Demo.xls 
Amortize land debts     Farm Simulator Demo.xls 
Amortize loans with monthly payments    Monthly Payments Demo.xls 
Augmented Dickie Fuller test     Time Series Functions Demo.xls 
Autocorrelation coefficients     Time Series Forecasting Demo.xls 
Autocorrelation coefficients     Time Series Analysis Tools Demo.xls 
Autocorrelation coefficients     Time Series Demo.xls 
Autocorrelation test     Time Series Functions Demo.xls 
BERNOULLI function application                      Simulate Alternative Distributions Demo.xls 
BOXCOX function      Data Analysis Tools Demo.xls 
BOXCOXEXP function     Data Analysis Tools Demo.xls 
Bad (singular) correlation/covariance matrix   Bad Correlation Matrix Demo.xls 
Bernoulli distribution     Conditional Probability Distributions Demo.xls 
Bernoulli distribution     Probability Distribution Demo.xls 
Bernoulli distribution     Probability Distributions Demo.xls 
Bernoulli distribution parameter estimation   Trend Regression to Reduce Risk Demo.xls 
Beta distribution      Probability Distribution Demo.xls 
Beta distribution      Simulate All Probability Distributions Demo.xls 
Beta distribution      Probability Distributions Demo.xls 
Bingo        Games of Chance Demo.xls 
Binomial distribution     Simulate All Probability Distributions Demo.xls 
Binomial distribution     Probability Distributions Demo.xls 
Boot strap simulation     Simulate All Probability Distributions Demo.xls 
Bootstrap for singular matrix     Bad Correlation Matrix Demo.xls 
Bootstrap simulation     Probability Distributions Demo.xls 
Bootstrapper distribution     Probability Distribution Demo.xls 
Box plot chart of risky alternatives    Analysis of Simulation Results Demo.xls 
Box's M test      Data Analysis Tools Demo.xls 
Box-Cox transformation     Data Analysis Tools Demo.xls 
Business model      Deterministic Demo.xls 
Simplified Business model of net returns   Business Model with Risk Demo.xls 
CDF chart of random variables    Analysis of Simulation Results Demo.xls 
CDFDEV function      Univariate Parameter Estimator Demo.xls 
CDFs for 12 distributions      Test Parameters Demo.xls 
CV stationarity for Normal distributions   CV Stationarity Normal Demo.xls 
CV stationarity for empirical distributions   CV Stationarity Empirical Demo.xls 
Capital Investment Analyzer ©    Net Present Value Internal Rate of Return Demo.xls 
Cauchy distribution      Probability Distribution Demo.xls 
Cauchy distribution      Simulate All Probability Distributions Demo.xls 
Cauchy distribution      Probability Distributions Demo.xls 
Centering a matrix      Matrix Operation Tools Demo.xls 
Centering matrix of size n     Matrices Demo.xls 
Chi-Squared distribution     Probability Distribution Demo.xls 
Chi-Squared distribution     Probability Distributions Demo.xls 
Chi-Squared test      Data Analysis Tools Demo.xls 
Choleski decomposition of a covariance matrix    Parameter Estimation Tools Demo.xls 
Coin toss       Games of Chance Demo.xls 
Column vector to a matrix     Matrix Operation Tools Demo.xls 
Compare means and variance for multivariate distributions  Hypothesis Tests Demo.xls 
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Compare means and variance for univariate distributions  Hypothesis Tests Demo.xls 
Compare means for two distributions -- ANOVA   Hypothesis Tests Demo.xls 
Compare means for two series    Data Analysis Tools Demo.xls 
Compare two data series     Analysis of Simulation Results Demo.xls 
Compare two multivariate distributions    Validation Tests Demo.xls 
Compare two tests -- t and F tests    Data Analysis Tools Demo.xls 
Compare two univariate distributions    Validation Tests Demo.xls 
Complete Homogeneity test     Data Analysis Tools Demo.xls 
Concatenate data from two locations    Matrix Operation Tools Demo.xls 
Concatenate two matrices     Matrices Demo.xls 
Conditional distribution for simulating sales bonus  Conditional Probability Distributions Demo.xls 
Conditional probability distributions    Conditional Probability Distributions Demo.xls 
Confidence interval for seasonal index    Seasonal Analysis Demo.xls 
Confidence intervals for Multiple Regression forecasts  Probabilistic OLS Forecasts Demo.xls 
Convert a matrix to a vector     Matrices Demo.xls 
Convert a vector to a matrix     Matrices Demo.xls 
Corporate federal income taxes    Income Tax Demo.xls 
Corporate income taxes     Farm Simulator Demo.xls 
Correct for CV non-stationarity Normal distribution  CV Stationarity Normal Demo.xls 
Correlated standard normal deviates    Probability Distributions Demo.xls 
Correlated uniform standard deviates    Probability Distributions Demo.xls 
Correlating Normal, Empirical, Uniform in a MV distribution Multivariate Mixed Probability Distribution Demo.xls 
Correlation matrix calculated     Data Analysis Tools Demo.xls 
Correlation matrix t test of rho vs. zero    Data Analysis Tools Demo.xls 
Correlation matrix test simulated vs. historical   Data Analysis Tools Demo.xls 
Correlation matrix validation for MV distributions  Validation Tests Demo.xls 
Correlation significance test     Hypothesis Tests Demo.xls 
Correlation test of MVE method    Multivariate Empirical Distribution Demo.xls 
Cosine distribution      Simulate All Probability Distributions Demo.xls 
Cosine distribution      Probability Distributions Demo.xls 
Cost of a project with risk     Project Management Demo.xls 
Covariance matrix calculated     Data Analysis Tools Demo.xls 
Covariance matrix estimation     Parameter Estimation Tools Demo.xls 
Covariance matrix estimation     Matrix Operation Tools Demo.xls 
Crop Insurance premium estimation    Insurance Premium Demo.xls 
Cumulative distributions for ranking risky alternatives  Stochastic Dominance Demo.xls 
Cycle length estimation     Probabilistic Cycle Forecasts Demo.xls 
Cyclical decomposition of times series data   Exponential Smoothing Demo.xls 
Cyclical decomposition of times series data   Moving Average Demo.xls 
Cyclical index      Cyclical Analysis Tools Demo.xls 
Cyclical index      Exponential Smoothing Demo.xls 
Cyclical index      Moving Average Demo.xls 
Cyclical index      Seasonal Analysis Demo.xls 
DELNUM function      Data Analysis Tools Demo.xls 
DELTEXT function     Data Analysis Tools Demo.xls 
DEMPIRICAL function application    Simulate Alternative Distributions Demo.xls 
DF Betas       Parameter Estimation Tools Demo.xls 
DF function      Time Series Functions Demo.xls 
DF function      Time Series Analysis Tools Demo.xls 
Decomposition forecasting     Seasonal Decomposition Forecasts Demo.xls 
Decomposition forecasts     Seasonal Index Forecasts Demo.xls 
Decomposition of a time series    Cyclical Analysis Tools Demo.xls 
Delivery time and inventory management    Inventory Management Demo.xls 
Determinant of a square matrix    Matrices Demo.xls 
Determinate of a square matrix    Matrix Operation Tools Demo.xls 
Deterministic farm model     Deterministic Demo.xls 
Deterministic simulation NPV and IROR   Net Present Value Internal Rate of Return Demo.xls 
Deterministic simulation model    Cotton Model Demo.xls 
Dice        Games of Chance Demo.xls 
Dickie Fuller (DF) test     Time Series Functions Demo.xls 
Dickie Fuller test      Time Series Forecasting Demo.xls 
Dickie Fuller test      Time Series Analysis Tools Demo.xls 
Dickie Fuller test      Time Series Demo.xls 
Discrete empirical distribution    Probability Distributions Demo.xls 
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Discrete uniform distribution     Probability Distribution Demo.xls 
Discrete uniform distribution     Simulate Alternative Distributions Demo.xls 
Discrete uniform distribution -- numbers and names  Simulate All Probability Distributions Demo.xls 
Double exponential distribution    Simulate All Probability Distributions Demo.xls 
Dummy variables in Multiple Regression for seasonal analysis Regression for Seasonal Forecasts Demo.xls 
Dynamic forecast of AR model    Time Series Forecasting Demo.xls 
E Factors to control heteroskedasticy    Heteroskedasticy Demo.xls 
EMP function      Empirical Distribution Demo.xls 
EMP function application     Simulate Alternative Distributions Demo.xls 
EMP icon for estimating parameters    Multivariate Empirical Distribution Demo.xls 
Econometric model for soybeans    Soybean Model Demo.xls 
Econometric model for wheat     Wheat Sim Solve Demo.xls 
Econometric stochastic model    Soybean Model Demo.xls 
Econometric wheat model      Wheat Model Demo.xls 
Eigenvalues for a square matrix    Matrix Operation Tools Demo.xls 
Eigenvalues for a square matrix    Matrices Demo.xls 
Empirical distribution     Probability Distribution Demo.xls 
Empirical distribution     Probability Distributions Demo.xls 
Empirical distribution -- actual data    Empirical Distribution Demo.xls 
Empirical distribution -- actual data w/ CV stationary  CV Stationarity Empirical Demo.xls 
Empirical distribution -- deviations from mean   Empirical Distribution Demo.xls 
Empirical distribution -- deviations from trend          Empirical Distribution Demo.xls 
Empirical distribution -- differences from mean   Empirical Distribution Demo.xls 
Empirical distribution -- general and direct   Simulate All Probability Distributions Demo.xls 
Empirical distribution -- percent deviates from mean  CV Stationarity Empirical Demo.xls 
Empirical distribution parameter estimation   Trend Regression to Reduce Risk Demo.xls 
Empirical distribution using interpolation   Empirical Distribution Demo.xls 
Empirical distribution using inverse transform method  Inverse Transform Demo.xls 
Empirical parameter estimation using actual data   Parameter Estimation Tools Demo.xls 
Empirical parameter estimation using deviates from the mean Parameter Estimation Tools Demo.xls 
Empirical parameter estimation using deviates from trend  Parameter Estimation Tools Demo.xls 
Empirical parameter estimation using differences from the mean Parameter Estimation Tools Demo.xls 
Equation editor to use Simetar functions   Equation Editor Demo.xls 
Equicorrelation matrix     Matrices Demo.xls 
Equicorrelation matrix      Matrix Operation Tools Demo.xls 
Equilibrium displacement model    Cotton Model Demo.xls 
Ethanol feasibility study     Project Feasibility Demo.xls 
Excel's equation editor for using Simetar functions  Equation Editor Demo.xls 
Exponential distribution     Probability Distribution Demo.xls 
Exponential distribution     Simulate All Probability Distributions Demo.xls 
Exponential distribution     Probability Distributions Demo.xls 
Exponential smoothing Holt method    Exponential Smoothing Forecasts Demo.xls 
Exponential smoothing Holt-Winters method   Exponential Smoothing Forecasts Demo.xls 
Exponential smoothing for probabilistic forecasts   Exponential Smoothing Demo.xls 
Exponential smoothing forecast    Cyclical Analysis Tools Demo.xls 
Exponential smoothing forecasts    Exponential Smoothing Forecasts Demo.xls 
Exponential smoothing probabilistic forecasts   Exponential Smoothing Forecasts Demo.xls 
Exponential smoothing trend only    Exponential Smoothing Forecasts Demo.xls 
Extreme value distribution     Simulate All Probability Distributions Demo.xls 
Extreme value distribution     Probability Distributions Demo.xls 
F distribution      Simulate All Probability Distributions Demo.xls 
F distribution      Probability Distributions Demo.xls 
F test of variances      Data Analysis Tools Demo.xls 
Factor a correlation matrix for a MVE distribution  Parameter Estimation Tools Demo.xls 
Factor a correlation matrix for a MVE distribution  Matrix Operation Tools Demo.xls 
Factor a square symmetric matrix    Matrices Demo.xls 
Fan graph of random variable over time    Analysis of Simulation Results Demo.xls 
Farm simulator 3 crops     Farm Simulator Demo.xls 
Feasibility of purchasing a business    Investment Management Demo.xls 
Feasibility study for new business    Project Feasibility Demo.xls 
Federal income taxes      Income Tax Demo.xls 
Financial statements      Feedlot Demo.xls 
Financial statements      Financial Risk Management Demo.xls 
Financial statements for a business    Business Demo.xls 
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Financial statements for multiple enterprise business  Investment Management Demo.xls 
Financial statements multi year business   Deterministic Demo.xls 
Financial statements with risk     Farm Simulator Demo.xls 
Financial statements with risk     Project Feasibility Demo.xls 
First degree stochastic dominance    Stochastic Dominance Demo.xls 
Forecasting with AR and VAR models    Time Series Functions Demo.xls 
GRK and GRKS distributions    Probability Distributions Demo.xls 
GRK distribution      GRK Distribution Demo.xls 
GRK distribution      Simulate All Probability Distributions Demo.xls 
GRK distributions      Probability Distributions Demo.xls 
GRK function application     Simulate Alternative Distributions Demo.xls 
GRKS distribution      Probability Distributions Demo.xls 
GRKS distribution       GRKS Distribution Demo.xls 
GRKS distribution for sparse data    Parameter Estimation Tools Demo.xls 
Games of chance       Games of Chance Demo.xls 
Gamma distribution     Probability Distribution Demo.xls 
Gamma distribution     Simulate All Probability Distributions Demo.xls 
Generalized inverse of a square matrix    Matrix Operation Tools Demo.xls 
Generalized inverse of a square matrix    Matrices Demo.xls 
Generalized stochastic dominance for ranking risky alternatives Stochastic Dominance Demo.xls 
Generate random numbers     Probability Distributions Demo.xls 
Geometric distribution     Simulate All Probability Distributions Demo.xls 
Geometric distribution     Probability Distributions Demo.xls 
Harmonic regression for seasonal analysis   Regression for Seasonal Forecasts Demo.xls 
Hedging and options for risk management   Financial Risk Management Demo.xls 
Heteroskedasticy correction in simulation   Heteroskedasticy Demo.xls 
Heteroskedasticy test     Heteroskedasticy Demo.xls 
Histogram of a random variable    Analysis of Simulation Results Demo.xls 
Hotelling T-Squared distribution    Simulate All Probability Distributions Demo.xls 
Hotelling T-squared distribution    Probability Distributions Demo.xls 
Hypergeometric distribution     Probability Distribution Demo.xls 
Hypergeometric distribution     Simulate All Probability Distributions Demo.xls 
Hypergeometric distribution     Probability Distributions Demo.xls 
IROR simulated for a business    Net Present Value Demo.xls 
Identity matrix      Matrices Demo.xls 
Identity matrix       Matrix Operation Tools Demo.xls 
Inflation rates stochastic     Farm Simulator Demo.xls 
Inner product of two matrices     Matrix Operation Tools Demo.xls 
Inner product of two matrices     Matrices Demo.xls 
Insurance premium estimation     Insurance Premium Demo.xls 
Integrate a function      Data Analysis Tools Demo.xls 
Integrate a function      Optimization Function Demo.xls 
Internal rate of return for a risky business   Net Present Value Demo.xls 
Interpolate function      Empirical Distribution Demo.xls 
Intra- and inter-temporal correlation    Complete Correlation Demo.xls 
Inventory management  with stochastic demand   Inventory Management Demo.xls 
Inverse Gaussian distribution     Simulate All Probability Distributions Demo.xls 
Inverse Gaussian distribution     Probability Distributions Demo.xls 
Inverse transform method of simulating random variables  Inverse Transform Demo.xls 
Invert a nonsingular square matrix    Matrix Operation Tools Demo.xls 
Invert a nonsingular square matrix    Matrices Demo.xls 
Investment analysis under risk    Project Evaluation Demo.xls 
Iteration counter ITERATION function    Simulate All Probability Distributions Demo.xls 
Iteration counter function     Probability Distributions Demo.xls 
Iteration number comparison     Latin Hypercube vs Monte Carlo Demo.xls 
Iteration number comparison     Latin Hypercube Demo.xls 
Iteration number comparison     Business Model with Risk Demo.xls 
J Factor to correct for non-stationarity of CV   Heteroskedasticy Demo.xls 
J-factor for CV stationarity Normal distribution   CV Stationarity Normal Demo.xls 
Jack knife a covariance matrix    Jack Knife Demo.xls 
Jack knife estimator for statistical functions   Jack Knife Demo.xls 
Jack knife summary statistics for distributions   Jack Knife Demo.xls 
Kernel density estimator     Probability Distributions Demo.xls 
Kernel distribution      Probability Distribution Demo.xls 
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Kernel distribution      Simulate All Probability Distributions Demo.xls 
Kernel distribution for 9 kernels    Probability Distributions Demo.xls 
Kernel distribution simulation    Sparse Data Demo.xls 
Kronecker multiply two matrices    Matrices Demo.xls 
Kronecker product of two matrices    Matrix Operation Tools Demo.xls 
Latin hyper cube sampling method    Latin Hypercube vs Monte Carlo Demo.xls 
Latin hyper cube sampling method    Latin Hypercube Demo.xls 
Latin hyper cube vs. Monte Carlo sampling method  Latin Hypercube vs Monte Carlo Demo.xls 
Latin hyper cube vs. Monte Carlo sampling method  Latin Hypercube Demo.xls 
Likelihood ration test LRT function    Time Series Analysis Tools Demo.xls 
Line graph with labels for points    Analysis of Simulation Results Demo.xls 
Loan amortization      Feedlot Demo.xls 
Log Normal distribution     Probability Distribution Demo.xls 
Log normal distribution     Simulate All Probability Distributions Demo.xls 
Log normal distribution     Probability Distributions Demo.xls 
Log-log distribution     Simulate All Probability Distributions Demo.xls 
Log-log distribution     Probability Distributions Demo.xls 
Log-logistic distribution     Simulate All Probability Distributions Demo.xls 
Logistic distribution     Simulate All Probability Distributions Demo.xls 
Logistic distribution     Probability Distributions Demo.xls 
Logit regression      Probit and Logit Demo.xls 
Lottery       Games of Chance Demo.xls 
MAE        Forecast Errors Demo.xls 
MAE -- Mean absolute error     Measuring Forecast Errors Demo.xls 
MAPE       Forecast Errors Demo.xls 
MAPE -- Mean absolute percent error    Measuring Forecast Errors Demo.xls 
MLE and MOM to estimate distribution parameters  Parameter Estimation Demo.xls 
MLE for estimating distribution parameters   Parameter Estimation Tools Demo.xls 
MLE for estimating distribution parameters   Univariate Parameter Estimator Demo.xls 
MOM for estimating distribution parameters   Parameter Estimation Tools Demo.xls 
MOM for estimating distribution parameters   Univariate Parameter Estimator Demo.xls 
MPCI simulation      Crop Insurance Demo.xls 
MSQRT function      Matrix Operation Tools Demo.xls 
MSQRT function to factor a square matrix   Matrices Demo.xls 
MVE distribution      Complete Correlation Demo.xls 
MVE distribution      Multivariate Empirical Distribution Demo.xls 
MVE distribution in one step     Multivariate Empirical Distribution Demo.xls 
MVE distribution parameter estimation in detail   Multivariate Empirical Distribution Demo.xls 
MVE distribution prices and costs    Project Feasibility Demo.xls 
MVE in one step      Feedlot Demo.xls 
MVE intra- and inter-temporal correlation   Complete Correlation Demo.xls 
MVE with exogenous projected means    Farm Simulator Demo.xls 
MVE with trend projected means    Farm Simulator Demo.xls 
MVN distribution      Multivariate Normal Distribution Demo.xls 
MVN distribution in one step     Multivariate Normal Distribution Demo.xls 
MVN distribution parameter estimation in detail   Multivariate Normal Distribution Demo.xls 
MVN parameter estimation and simulation   Multivariate Normal Distribution Demo.xls 
MVN validation test     Multivariate Normal Distribution Demo.xls 
Marketing options simulation     Futures and Options Demo.xls 
Marketing strategies simulated    Futures and Options Demo.xls 
Matrix of 1s      Matrices Demo.xls 
Matrix of one's      Matrix Operation Tools Demo.xls 
Matrix to a vector      Matrix Operation Tools Demo.xls 
Maximum likelihood estimation for parameter estimation  Parameter Estimation Tools Demo.xls 
Maximum likelihood estimation for parameter estimation  Univariate Parameter Estimator Demo.xls 
Maximum likelihood estimator for parameter estimation  Parameter Estimation Demo.xls 
Mean absolute error -- MAE     Measuring Forecast Errors Demo.xls 
Mean absolute percent error -- MAPE    Measuring Forecast Errors Demo.xls 
Mechanical repair costs/failure simulation   Conditional Probability Distributions Demo.xls 
Method of Moments for parameterestimation   Parameter Estimation Demo.xls 
Method of moments for parameter estimation   Parameter Estimation Tools Demo.xls 
Method of moments for parameter estimation   Univariate Parameter Estimator Demo.xls 
Model validation statistical tests    Hypothesis Tests Demo.xls 
Modified two piece normal distribution    Simulate All Probability Distributions Demo.xls 
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Monte Carlo sampling method    Latin Hypercube vs Monte Carlo Demo.xls 
Monte Carlo sampling method    Latin Hypercube Demo.xls 
Moving average forecast     Cyclical Analysis Tools Demo.xls 
Moving average forecast     Moving Average Demo.xls 
Moving average forecasts     Moving Average Forecasts Demo.xls 
Moving average seasonal index    Seasonal Index Forecasts Demo.xls 
Multi peril crop insurance analyzer    Crop Insurance Demo.xls 
Multinomial distribution     Simulate All Probability Distributions Demo.xls 
Multinomial distribution     Probability Distributions Demo.xls 
Multiple Regression forecast stochastic w/ SE of predictions Probabilistic OLS Forecasts Demo.xls 
Multiple Regression forecast stochastic w/ Std Dev  Probabilistic OLS Forecasts Demo.xls 
Multiple Regression forecast with stochastic betas  Probabilistic OLS Forecasts Demo.xls 
Multiple Regression harmonic and dummy variable regression Regression for Seasonal Forecasts Demo.xls 
Multiple Regression linear trend regression    Trend Forecasts Demo.xls 
Multiple Regression multiple regression model   Parameter Estimation Tools Demo.xls 
Multiple Regression non-linear trend regression    Trend Forecasts Demo.xls 
Multiple Regression probabilistic forecasting   Multiple Regression Forecasts Demo.xls 
Multiple Regression regression with restrictions   Parameter Estimation Tools Demo.xls 
Multiple Regression to estimate risk for a random variable  Multiple Regression to Reduce Risk Demo.xls 
Multiple enterprise business     Business Demo.xls 
Multiple enterprise business     Farm Simulator Demo.xls 
Multiple enterprise business     Feedlot Demo.xls 
Multiple regression      Parameter Estimation Tools Demo.xls 
Multiple regression forecasting    Multiple Regression Forecasts Demo.xls 
Multiple regression model vs. trend model vs. mean model  Multiple Regression to Reduce Risk Demo.xls 
Multiple regression to reduce risk    Trend Regression to Reduce Risk Demo.xls 
Multiple regression with probabilistic forecast   Multiple Regression Demo.xls 
Multiple year financial statement    Net Present Value Demo.xls 
Multiplicative seasonal decomposition forecasting with cycle Seasonal Decomposition Forecasts Demo.xls 
Multiplicative seasonal decomposition forecasting without cycle Seasonal Decomposition Forecasts Demo.xls 
Multiply two matrices     Matrix Operation Tools Demo.xls 
Multiply two matrices     Matrices Demo.xls 
Multivariate Student's t distribution    Probability Distributions Demo.xls 
Multivariate empirical distribution    Multivariate Empirical Distribution Demo.xls 
Multivariate empirical distribution    Simulate All Probability Distributions Demo.xls 
Multivariate empirical distribution -- 1 and 2 steps  Probability Distributions Demo.xls 
Multivariate lognormal distribution    Probability Distributions Demo.xls 
Multivariate mixed distribution    Multivariate Mixed Probability Distribution Demo.xls 
Multivariate mixed distribution    Simulate All Probability Distributions Demo.xls 
Multivariate mixed distribution     Probability Distributions Demo.xls 
Multivariate normal distribution    Multivariate Normal Distribution Demo.xls 
Multivariate normal distribution    Simulate All Probability Distributions Demo.xls 
Multivariate normal distribution -- 1 and 2 steps   Probability Distributions Demo.xls 
Multivariate test of two distributions    Data Analysis Tools Demo.xls 
NORMAL function application    Simulate Alternative Distributions Demo.xls 
NPV        Farm Simulator Demo.xls 
NPV        Project Feasibility Demo.xls 
NPV - Net Present Value     Investment Management Demo.xls 
NPV and IROR simulated for 20 year investment   Net Present Value Internal Rate of Return Demo.xls 
NPV for alternative discount rates    Feedlot Demo.xls 
NPV optimization for a business    Deterministic Optimal Control Demo.xls 
NPV simulated for a business     Net Present Value Demo.xls 
Negative binomial distribution    Probability Distribution Demo.xls 
Negative binomial distribution    Simulate All Probability Distributions Demo.xls 
Negative binomial distribution    Probability Distributions Demo.xls 
Negative ending cash reserves    Feedlot Demo.xls 
Negative ending cash reserves    Financial Risk Management Demo.xls 
Net present value for a risky business    Net Present Value Demo.xls 
Net returns for one enterprise     Truncated Normal Distribution Demo.xls 
Norm of a square matrix     Matrix Operation Tools Demo.xls 
Norm of a square matrix     Matrices Demo.xls 
Normal distribution      Probability Distribution Demo.xls 
Normal distribution      Probability Distributions Demo.xls 
Normal distribution      Test Simetar Demo.xls 
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Normal distribution -- general and direct   Simulate All Probability Distributions Demo.xls 
Normal distribution using inverse transform method  Inverse Transform Demo.xls 
Normality tests      Conditional Probability Distributions Demo.xls 
Normality tests      Data Analysis Tools Demo.xls 
Normality tests      Hypothesis Tests Demo.xls 
Normality tests for random variable    Validation Tests Demo.xls 
Number of iterations     Latin Hypercube vs Monte Carlo Demo.xls 
Number of iterations     Latin Hypercube Demo.xls 
Number of iterations test     Business Model with Risk Demo.xls 
Observational diagnostics -- DF Betas    Parameter Estimation Tools Demo.xls 
Optimal control theory for a deterministic simulation model Optimal Control Demo.xls 
Optimal control theory for crop mix decision   Deterministic Optimal Control Demo.xls 
Optimal control theory for simulation model   Deterministic Optimal Control Demo.xls 
Optimal control theory to maximize NPV   Deterministic Optimal Control Demo.xls 
Optimal control theory to solve of equilibrium prices  Wheat Model Demo.xls 
Optimal number of lags ARLAG function   Time Series Functions Demo.xls 
Optimize a function OPT      Data Analysis Tools Demo.xls 
Optimize a non-linear function    Optimization Function Demo.xls 
Options and hedging for risk management   Financial Risk Management Demo.xls 
Options contracts simulated for market strategy   Futures and Options Demo.xls 
Orthoganalize a matrix     Matrix Operation Tools Demo.xls 
Orthoganalize a matrix     Matrices Demo.xls 
PDF chart of random variables    Analysis of Simulation Results Demo.xls 
PDFs for 12 distributions      Test Parameters Demo.xls 
PERT distribution      Probability Distributions Demo.xls 
PERT distribution  -- general and direct    Simulate All Probability Distributions Demo.xls 
Parameter estimation for 16 distributions   Parameter Estimation Tools Demo.xls 
Parameter estimation for 16 distributions   Univariate Parameter Estimator Demo.xls 
Parameter tests -- t and Chi-Square    Data Analysis Tools Demo.xls 
Parametric distribution parameter estimator   Parameter Estimation Demo.xls 
Pareto distribution      Probability Distributions Demo.xls 
Pareto distribution       Simulate All Probability Distributions Demo.xls 
Partial autocorrelation coefficients    Time Series Forecasting Demo.xls 
Partial autocorrelation coefficients    Time Series Analysis Tools Demo.xls 
Partial autocorrelation coefficients    Time Series Demo.xls 
Partial autocorrelation test     Time Series Functions Demo.xls 
Percentiles with EDF function    Analysis of Simulation Results Demo.xls 
Poisson distribution      Probability Distribution Demo.xls 
Poisson distribution      Simulate All Probability Distributions Demo.xls 
Poisson distribution      Probability Distributions Demo.xls 
Poker        Games of Chance Demo.xls 
Portfolio analysis      Portfolio Analysis Demo.xls 
Power normal distribution     Simulate All Probability Distributions Demo.xls 
Power normal distribution     Probability Distributions Demo.xls 
Premium calculation for term life insurance   Life Insurance Demo.xls 
Premium calculation for whole life insurance   Life Insurance Demo.xls 
Probabilistic forecast of Multiple Regression structural model Multiple Regression Demo.xls 
Probabilistic forecast of monthly data            Seasonal Analysis Demo.xls 
Probabilistic forecast of time series model   Time Series Forecasting Demo.xls 
Probabilistic forecast of time series model   Time Series Analysis Tools Demo.xls 
Probabilistic forecasting of Multiple Regression equations  Multiple Regression Forecasts Demo.xls 
Probabilistic forecasting of cycles    Probabilistic Cycle Forecasts Demo.xls 
Probabilistic forecasting of harmonic regression   Regression for Seasonal Forecasts Demo.xls 
Probabilistic forecasting of seasonal index   Regression for Seasonal Forecasts Demo.xls 
Probabilistic forecasting with Multiple Regression  Probabilistic OLS Forecasts Demo.xls 
Probabilistic forecasting with moving average   Moving Average Forecasts Demo.xls 
Probabilistic forecasts with exponential smoothing  Exponential Smoothing Demo.xls 
Probabilistic linear and non-linear trend regression  Trend Forecasts Demo.xls 
Probabilistic moving average forecast         Moving Average Demo.xls 
Probability annual cash flow deficits    Farm Simulator Demo.xls 
Probability annual cash flow deficits    Project Feasibility Demo.xls 
Probability losing real net worth    Farm Simulator Demo.xls 
Probability losing real net worth    Project Feasibility Demo.xls 
Probability of success     Feedlot Demo.xls 
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Probability-Probability (PP) plot chart    Analysis of Simulation Results Demo.xls 
Probit regression      Probit and Logit Demo.xls 
Production function with risk     Production Function Demo.xls 
Production function with risk     Stochastic Production Function Demo.xls 
Production insurance (MPCI)     Financial Risk Management Demo.xls 
Project management analysis      Project Management Demo.xls 
Project management and evaluation    Project Evaluation Demo.xls 
QUANTILE function     Analysis of Simulation Results Demo.xls 
Quantile-Quantile (QQ) plot chart    Analysis of Simulation Results Demo.xls 
RANDSORT function application    Simulate Alternative Distributions Demo.xls 
RMSE       Forecast Errors Demo.xls 
RMSE -- Root mean square error    Measuring Forecast Errors Demo.xls 
Random sort of objects     Probability Distributions Demo.xls 
Random walk distribution     Probability Distributions Demo.xls 
Rank insurance strategies     Financial Risk Management Demo.xls 
Rank of a matrix      Matrix Operation Tools Demo.xls 
Rank of a matrix      Matrices Demo.xls 
Rank risky alternatives with SERF    SERF Analysis Demo.xls 
Rank risky alternatives with SERF    Simulate Scenarios Demo.xls 
Rank risky marketing strategies    Financial Risk Management Demo.xls 
Ranking alternative portfolios    Portfolio Analysis Demo.xls 
Ranking risky alternatives based on NPV   Net Present Value Demo.xls 
Ranking risky alternatives with several methods   SDRF and SERF Ranking Demo.xls 
Ranking risky alternatives with several methods   Analysis of Simulation Results Demo.xls 
Ranking risky marketing options    Futures and Options Demo.xls 
Ranking univariate distributions    Univariate Parameter Estimator Demo.xls 
Real rate of return to equity     Investment Management Demo.xls 
Regression forecasting     Probabilistic OLS Forecasts Demo.xls 
Replacement of machinery compliment by item   Machinery Demo.xls 
Residuals from regression to measure risk   Multiple Regression to Reduce Risk Demo.xls 
Restricted Multiple Regression estimations   Parameter Estimation Tools Demo.xls 
Revenue insurance (CRC)     Financial Risk Management Demo.xls 
Reverse the order of a vector     Matrix Operation Tools Demo.xls 
Reverse the order of data in a vector    Matrices Demo.xls 
Risk premiums for ranking risky alternatives   SDRF and SERF Ranking Demo.xls 
Risk premiums for ranking risky alternatives   Analysis of Simulation Results Demo.xls 
Risky cost of projects     Project Management Demo.xls 
Risky investment analysis     Project Evaluation Demo.xls 
Root mean square error -- RMSE    Measuring Forecast Errors Demo.xls 
Row echelon for of a matrix     Matrix Operation Tools Demo.xls 
Row echelon of a matrix     Matrices Demo.xls 
SCENARIO function     Scenario Analysis Demo.xls 
SDRF for ranking risky alternatives    Stochastic Dominance Demo.xls 
SDRF ranking of risky alternatives    Crop Insurance Demo.xls 
SERF and SDRF for ranking risky alternatives   Portfolio Analysis Demo.xls 
SERF application      SERF Analysis Demo.xls 
SERF ranking of risky alternatives    Crop Insurance Demo.xls 
Sampling without replacement    Probability Distributions Demo.xls 
Scatter matrix      Matrix Operation Tools Demo.xls 
Scenario analysis      Feedlot Demo.xls 
Scenario analysis      Analysis of Simulation Results Demo.xls 
Scenario analysis       Net Present Value Demo.xls 
Scenario analysis of a simple business    Simulate Scenarios Demo.xls 
Scenario application to simple profit model   Scenario Analysis Demo.xls 
Scenario simulation      Simulate All Probability Distributions Demo.xls 
Scenario simulation and ranking    Simulate Scenarios Demo.xls 
Schwarz criteria for number of lags    Time Series Forecasting Demo.xls 
Schwarz criteria for number of lags    Time Series Analysis Tools Demo.xls 
Schwarz criteria for number of lags    Time Series Demo.xls 
Schwarz test      Time Series Functions Demo.xls 
Seasonal decomposition of monthly & quarterly data  Seasonal Analysis Demo.xls 
Seasonal forecast of monthly & quarterly data   Seasonal Analysis Demo.xls 
Seasonal index      Seasonal Index Forecasts Demo.xls 
Seasonal index      Cyclical Analysis Tools Demo.xls 
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Seasonal index      Exponential Smoothing Demo.xls 
Seasonal index      Moving Average Demo.xls 
Seasonal index      Seasonal Analysis Demo.xls 
Second degree stochastic dominance    Stochastic Dominance Demo.xls 
Seed for pseudo random number generator   Pseudo Random Number Generator Demo.xls 
Semicircle distribution     Simulate All Probability Distributions Demo.xls 
Semicircle distribution     Probability Distributions Demo.xls 
Sensitivity analysis      Simulate All Probability Distributions Demo.xls 
Sensitivity analysis       Sensitivity Analysis Demo.xls 
Sensitivity analysis for an economic model   Simulate Sensitivity Elasticity Demo.xls 
Sensitivity elasticities for testing  models   Simulate Sensitivity Elasticity Demo.xls 
Sequence of numbers     Matrix Operation Tools Demo.xls 
Sequence of numbers     Matrices Demo.xls 
SimSolver application     Wheat Sim Solve Demo.xls 
SimSolver application     Demand Supply Model Sim Solve Demo.xls 
Simple average seasonal index    Seasonal Index Forecasts Demo.xls 
Simple regression for multiple variables   Parameter Estimation Tools Demo.xls 
Simple statistics for multiple variables    Parameter Estimation Tools Demo.xls 
Simulate a VAR model     Probabilistic Forecasting a VAR Model Demo.xls 
Simulate net returns model     Analysis of Simulation Results Demo.xls 
Simulate simultaneous equation econometric model  Sim Solve Demo.xls 
Simulating risky cost to complete a project   Project Management Demo.xls 
Simulation engine for Simetar demonstrated   Simulation Demo.xls 
Simulation engine for Simetar demonstrated   Test Simetar Demo.xls 
Simulation example for a simple model    Simulation Demo.xls 
Simultaneous equation model with stochastic errors  Sim Solve Demo.xls 
Simultaneous equation simulation    Simulate All Probability Distributions Demo.xls 
Simultaneous equation stochastic model   Wheat Sim Solve Demo.xls 
Simultaneous equation stochastic model   Demand Supply Model Sim Solve Demo.xls 
Sin Cos in Multiple Regression for cycle estimation              Probabilistic Cycle Forecasts Demo.xls 
Singular correlation matrix and MV distributions   Bad Correlation Matrix Demo.xls 
Slot machine      Games of Chance Demo.xls 
Sole proprietor federal income taxes    Income Tax Demo.xls 
Solve supply and demand model     Demand Supply Model Sim Solve Demo.xls 
Solver for optimal control     Deterministic Optimal Control Demo.xls 
Solver for simultaneous equations    Simulate All Probability Distributions Demo.xls 
Solver to simulate simultaneous equation models   Sim Solve Demo.xls 
Solver to solve for equilibrium prices    Wheat Model Demo.xls 
Sort a matrix by a column     Matrix Operation Tools Demo.xls 
Sort a matrix by a column     Matrices Demo.xls 
Sort a matrix by a row or column    Data Analysis Tools Demo.xls 
Sparse data distribution simulation    Sparse Data Demo.xls 
Sparse data distributions      GRKS Distribution Demo.xls 
Sparse data distributions using GRKS     Parameter Estimation Tools Demo.xls 
Sparse data kernel distribution    Probability Distribution Demo.xls 
Stationarity tests      Time Series Forecasting Demo.xls 
Stationarity tests      Time Series Analysis Tools Demo.xls 
Stationarity tests      Time Series Demo.xls 
Statistical tests for model validation    Hypothesis Tests Demo.xls 
Stochastic chart       Stochastic Production Function Demo.xls 
Stochastic dominance with respect to a function    Stochastic Dominance Demo.xls 
Stochastic dominance with respect to a function (SDRF)  SDRF and SERF Ranking Demo.xls 
Stochastic dominance with respect to a function (SDRF)  Analysis of Simulation Results Demo.xls 
Stochastic econometric model    Soybean Model Demo.xls 
Stochastic efficiency  with respect to a function application  SERF Analysis Demo.xls 
Stochastic efficiency with respect to a function (SERF)  SDRF and SERF Ranking Demo.xls 
Stochastic efficiency with respect to a function (SERF)  Analysis of Simulation Results Demo.xls 
Stochastic futures and options prices    Financial Risk Management Demo.xls 
Stochastic production function    Production Function Demo.xls 
Stochastic production function    Stochastic Production Function Demo.xls 
StopLight chart for ranking risky alternatives   Stochastic Dominance Demo.xls 
StopLight chart of risky alternatives    Analysis of Simulation Results Demo.xls 
Student t test of means     Data Analysis Tools Demo.xls 
Student's t distribution     Probability Distribution Demo.xls 
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Student's t distribution     Simulate All Probability Distributions Demo.xls 
Student's t distribution     Probability Distributions Demo.xls 
Summary statistics      Data Analysis Tools Demo.xls 
Summary statistics      Trend Regression to Reduce Risk Demo.xls 
Supply and demand model      Demand Supply Model Sim Solve Demo.xls 
Supply and utilization model -- cotton    Cotton Model Demo.xls 
Sweep a square matrix     Matrix Operation Tools Demo.xls 
Sweep a square matrix     Matrices Demo.xls 
Symmetric covariance matrix     Matrices Demo.xls 
TNORM function      Truncated Normal Distribution Demo.xls 
TNORM function      Simulate Alternative Distributions Demo.xls 
Test 12 distributions for empirical data    View Distributions Demo.xls 
Test alternative distributions for empirical data   View Distributions Demo.xls 
Test for presence of a trend     Trend Regression to Reduce Risk Demo.xls 
Test mean and standard deviation for a distribution  Hypothesis Tests Demo.xls 
Test parameters for simulated variable     Validation Tests Demo.xls 
Tests means for two distribution -- ANOVA   Validation Tests Demo.xls 
Thiel U2       Forecast Errors Demo.xls 
Thiel U2       Measuring Forecast Errors Demo.xls 
Time series decomposition     Cyclical Analysis Tools Demo.xls 
Time series model VAR     Probabilistic Forecasting a VAR Model Demo.xls 
Time to complete a project     Project Management Demo.xls 
Toeplitz matrix from an array     Matrix Operation Tools Demo.xls 
Toeplitz matrix from an array     Matrices Demo.xls 
Trace of a square matrix     Matrix Operation Tools Demo.xls 
Trace of a square matrix     Matrices Demo.xls 
Transpose a matrix      Matrix Operation Tools Demo.xls 
Transpose a matrix or vector of any size   Matrices Demo.xls 
Trend regression to reduce risk    Trend Regression to Reduce Risk Demo.xls 
Triangle distribution     Probability Distribution Demo.xls 
Triangle distribution     Probability Distributions Demo.xls 
Triangle distribution -- general and direct   Simulate All Probability Distributions Demo.xls 
Truncated Weibull distribution    Probability Distributions Demo.xls 
Truncated empirical distribution    Probability Distribution Demo.xls 
Truncated empirical distribution    Probability Distributions Demo.xls 
Truncated gamma distribution    Probability Distributions Demo.xls 
Truncated normal distribution    Probability Distribution Demo.xls 
Truncated normal distribution    Simulate Alternative Distributions Demo.xls 
Truncated normal distribution    Probability Distributions Demo.xls 
Truncated normal distribution -- general and direct  Simulate All Probability Distributions Demo.xls 
Truncated normal distribution application   Truncated Normal Distribution Demo.xls 
Two Sample Hotelling T-Squared test    Data Analysis Tools Demo.xls 
Two piece normal distribution    Probability Distributions Demo.xls 
UNBOXCOX function     Data Analysis Tools Demo.xls 
UNIFORM function     Uniform Random Number Generator Demo.xls 
UNIFORM function application    Simulate Alternative Distributions Demo.xls 
UNIFORM vs. Excel's RAND function    Uniform Random Number Generator Demo.xls 
Uniform distribution     Probability Distribution Demo.xls 
Uniform distribution     Probability Distributions Demo.xls 
Uniform distribution     Test Simetar Demo.xls 
Uniform distribution -- general and direct   Simulate All Probability Distributions Demo.xls 
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