Chapter 7
Parameter Estimation for Multivariate Probability Distributions

Univariate probability distributions are for individual random variables so multivariate
(MV) probability distributions are for two or more random variables that are dependent on one
another. Multivariate distributions are the rule in economic analysis models because most
variables are correlated to each other. The purpose of this chapter is to describe and demonstrate
how to estimate and apply parameters for multivariate distributions. This chapter builds on
Chapter 6, which describes how to simulate univariate probability distributions.

The chapter is separated into three parts: multivariate normal (MVN) distributions,
multivariate empirical (MVE) distributions, and simulating very large MVE distributions. The
MVN and MVE sections deal with correlating random variables within years or intra-temporal
correlation. For the problem of simulating inter-temporally correlated random variables see
Chapter 8, after working through this chapter. Chapter 8 provides a comprehensive treatment of
intra- and inter- temporal correlation and is recommended for advanced work in simulation.

Ignoring Correlation
If two random variables are correlated and their correlation is ignored in simulation the

model will either over or under state the variance and mean for the system’s KOVs. The
direction of the bias introduced on the variance is inversely related to the correlation. Ignoring a

positive correlation between X and Y will understate the variance for Z if Z= X + Y . Ignoring
a negative correlation between X and Y will overstate the variance for Z in the same case.

The reason why the variance of Z is inversely biased relative to the correlation between X
and Y is due to the variance formula for variable Z:

Let Z= X + Y where X and Y are random variables,
the expected value of Z is

E(Z)=EX) + E(Y)
the variance for Z is

V(Z)=o; + o, +2Cov(X,Y)=o0; + o, t2p, %0, *o0O,
where  p, is the correlation between X and Y.

When X and Y are negatively correlated the Cov(X,Y), or p,, is negative and reduces V(Z) so

ignoring the correlation overstates the true variance of Z. The opposite is true when X and Y are
positively correlated because the Cov(X,Y) or p,, is positive. In both cases the mean, E(Z), is

unbiased by ignoring the correlation between X and Y.
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On the other hand if the KOV is a function of products of random variables, as Z = X*Y,
the mean will be biased if correlation between X and Y is ignored. In this case the expected
value and variance of Z is:

E(Z) = E(X) + E(Y) + Cov(X,Y) =E(X) +E(Y) + 2 p,, * 0, * 0,
V(Z)=0oy + o, +2Cov(X,Y)= o0, + o0 +2p, *o, *oO,

The mean and variance for Z are over or under estimated, inversely with respect to the sign on
the correlation coefficient, if correlation is ignored in simulation.

As demonstrated in this chapter simulating a multivariate probability distribution is very
easy and automatically corrects for the potential of biasing the mean and variance. The
procedure described for simulating multivariate distributions insures that the random variables
are “appropriately” correlated, meaning that the historical correlation is maintained in the
simulation process.

Multivariate Normal (MVN) Distribution

Two or more normally distributed random variables that are correlated must be simulated as
a MVN distribution to prevent biasing the model results. Check for correlation of the random
variables by calculating the simple correlation coefficients among the variables. If the
correlation coefficients are significantly different from zero the variables must be simulated
MVN. A Student-t test is used to test each correlation coefficient in the correlation matrix to
determine if it is statistically different from zero at, say, the 95 percent level. Simetar provides a
Student-t test of correlation coefficients when calculating the correlation matrix (Figure 7.1).
(See Chapter 16 and Correlation Demo.XLS for an example of this test.) The example in Figure
7.1 uses a critical t value of 2.20 for a 95% confidence test. The calculated t-statistics (in the
lower matrix) which are larger than the critical value indicate their corresponding correlation
coefficient is statistically different from zero. For ease of interpretation these calculated t values
are bold.

A | B | ¢ [ b | E [ F | 6 |
| 20 |Correlation Matrix
| 21 | ConP  WheatP Sorg P ComnY  Wheaty |[SorgY
| 22 |Com P 1 n.a7 0.48 -0.30 -0.18 -0.53
| 23 |WWheat P 1 0.8z -0.16 -0.37 -0.34
| 24 |Sarg P 1 -0.29 -0.17 -0.56
| 256 |[Camn Y 1 0.453 0.59
| 26 |VWheat ¥ 1 047
| 27 |Sorg Y 1
| 28 |
| 28 | Carrelation Coefficient t-values.
| 30 | Significang H5% t-critical 2.20
| 31 | ComnP Wheat P Sorg P ComnY  Wheaty |[Sorg Y
| 32 |Com P 5.83 16.79 1.04 0.60 206
| 33 |WWheat P 4.68 0.54 1.3 1.21
| 34 |Sorg P 1.00 0.58 2.27
| 35 |[Comn Y 2.08 2.40
| 36 Vvheat ¥ 1.78
| 37 [Sorg Y
| 38 |Bald values indicate statistical significance at the specified level.

Figure 7.1. Statistical Test of Correlation Coefficients.
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A MVN distribution has three parameters (components) to be quantified and is described
here for a model with four random variables. The three components for a four variable MVN
distribution are:

—  Deterministic component for each of the four variables is the mean, or forecast, or X;

forj=1,2,3,4.
— Stochastic component for each of the four variables is the standard deviation about the
mean or forecast, or &ej forj=1,2,3,4

— Multivariate component for the four variables is represented by a 4x4 correlation matrix,
or O (or the covariance matrix or ).

— Parameters for a MVN Distribution

The deterministic component of a MVN can be the mean or the predicted value from a trend
regression, multiple regression, or time series model for each of the random variables, such as:

X. =4+ bT +b, X, +b2Z

]

or simply the mean

where Xij are the predicted values for all random variables Xj,j=1, 2, 3, ... m, and

1 denotes the periods (years, months, etc.) over which the variable is to be simulated.

The stochastic component for the MVN distribution is the measure of the dispersion about
the deterministic component. The dispersion measure for a normal distribution is the standard
deviation (o). The standard deviation is calculated using the residuals about the mean or

forecast and is defined for each j variable in the distribution as:

& = Xy — Xj
6'éj = standard deviation for the €;;'s.
where G is the standard deviation of the residuals for each of the random variables Xj, j = 1,

2,3, ...m.

The &éj is calculated over the T historical periods used to calculate the deterministic component,

the Xj.

The multivariate component for the MVN distribution is generally the correlation matrix of
rank m for the m random variables. The correlation matrix must be calculated using the
residuals (éij), i.e., the stochastic component. For a 4 variable model the O matrix is:



--- Chapter 7 ---

P2 P13 Pua

— 10 Py P

P 10 o34
1.0

An alternative method for simulating a MVN distribution uses the covariance matrix for the
multivariate component. For a 4 variable MVN model the covariance matrix, X, is:

2
Gy O O3 Oy

2

Z _ Gy Oy Oy
2

O3; Oy

2

Oy

— Parameter Estimation for the MVVN Distribution

The steps for estimating the parameters for a MVN distribution are:

1.

Calculate the best model possible to predict each of the random variables, whether this is
simply the mean, a trend regression, a multiple regression, or a time series model.

A

Xj = econometric model

Calculate the residuals, €;, from the econometric forecast for each random variable.
Calculate the standard deviations, ¢ is for each random variable using their residuals.

Calculate the correlation matrix (p) and calculate the covariance matrix (X) for the

random variables using the residuals. (Note: Use the residuals to calculate the matrices
because the residuals are the stochastic component of the variables to be correlated.
Calculating the correlation and covariance matrices from the actual data is equivalent to
calculating the multivariate measures about the mean which is not the same as the
correlation for the residuals.)

— Parameter Estimation Using Simetar

The Simple Statistics and Multiple Regression options in Simetar will most often be used to
estimate the deterministic components for MVN distributions. When the Multiple Regression

function is used, Simetar forecasts the random variable, )A(ij, and estimates the standard deviation

for the residuals, & i- Additionally, Simetar calculates the standard error of prediction,

G, or SEP; which should be used in place of a standard deviation of the residuals for simulating

a variable distributed normal.

Use the residuals provided in the Multiple Regression function’s output to calculate the
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correlation matrix and the covariance matrix. Simetar provides a Correlation function for
calculating the o matrix and the ¥ matrix and testing the correlation coefficients for

significance.

An example of estimating the parameters for a 3 variable MVN distribution is included in
Multivariate Normal Distribution Demo.XLS. Each of the four steps for MVN parameter
estimation are identified and the distribution is simulated different ways using Simetar. The
example begins with the data for the three random variables in rows 8-34. In Step 1, OLS
regression results show significant trends for all three random variables. The residuals from
trend for each random variable are calculated using the Simple Regression option in Simetar in
Step 1. Standard deviations for the residuals are calculated using an Excel function in line 108.
The unsorted residuals are used in Step 2 to calculate the correlation matrix.

— Simulating a MVN Distribution

Three methods for simulating a MVN probability distribution are presented here. The
technical description of what is involved in simulating the MVN distribution is provided in an
Appendix at the end of this Chapter.

The first method for simulating a MVN distribution uses the correlation matrix to simulate
CUSD’s. An example of this method for a three variable MVN distribution is presented in
Figure 7.2 (see Multivariate Normal Distribution Demo.XLS). For this method a vector of
CUSD’s 1s simulated using =CUSD (Correlation Matrix). The CUSD’s are used individually to
simulate MVN random variables using the Simetar function:

=NORM (X, StdDev,, CUSD))

| | a | 8 | ¢ | o [ e | F | & | Hw [ ¢ | o [ «k | L | M |

Random Correlation Matrix

Yields Means Std Dev CUSDs Corn Wheat Sorghum Formulas in Column B Formula for Column E
110.0931 107.559] 11.44636] 05876 1 023 0.69[=NORM{C121,D121,E121) =CUSD{F121:H123)

[ 340981 35.312]  2.3554( 0.203102 1 0.24[=NORM[C122,D122,E122)

[ 652169 50.006] 6.072636] 0.804565 1]=NORM{C123,0123,E123)

Figure 7.2. Simulating a MVN Distribution Using the Correlation Matrix.

The second method for simulating a MVN distribution uses the covariance matrix to
simulate stochastic correlated deviations (or CDEVs). A CDEV is the number of deviations
from the mean that the random value lies. For this method a vector of CDEV’s is simulated
using =CSND (Covariance Matrix). The CDEV’s are used individually in the formula:

X. = X, + CDEV,

This method is demonstrated for simulating a three variable MVN distribution in Figure 7.3.
(See the Multivariate Normal Distribution Demo.XLS for this example.)
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A | B | ¢ [ b [ E [ F [ 6 [ H ] | K [ L ]
| 125|Use the Covariance Matrix to Generate Correlated Deviations (CDEVs)
1126 Random Histroical
1127|Year 1 Yields Means  CDEVs Covariance Matrix Formulas in Column B Formulain Column D
1128 Comn 124.5414]  107.559( 16.98221] 302.6983 4296493 114.6301[=C128+D128 =CSND(E128:5130)
|129|vWheat 38.1642|  35.312) 2.851893 0] 13.38022 17.57007[=C129+D129
|130|Sorghum | 65 31816] 60 006) 5311842 0 0 B2 536|=C130+D130

Figure 7.3. Example of Using Covariance Matrix to Simulate MVN Distribution in Two
Steps.

The third method for simulating a MVN distribution does it all in one step using Simetar’s
MVNORM function. The one step formula is the easiest method for simulating a MVN
distribution over a multiple year planning horizon. The MVNORM function simulates the MVN
values for the i" forecast period as:

i

i = MVNORM (Vector of X., Covariance Matrix)

ij?

The one step method for simulating a MVN distribution is demonstrated in Figure 7.4.

A | B | ¢ | o | E [ F | & [ H | |
1110/ A One Step Approach to Simulating a MVN Distribution.
| 111]Assemble the parameters and use the =MYNORM() function
1112 Random Covariance Matrix
1113 Yields Means Corn Wheat Sorghum Formula in Column B
1114/ Corn 84.24| 107.559( 302.6983 4296493 114 6301 =MVNORM{C114:C116,D114:F116)
1115 Wheat 31.52 35312 13.38022 17.57007
| 116|Sorghum 5146 50.006 52.536

Figure 7.4. Exa
for One Year.

mple of the One Step Procedure for Simulating a MVN Distribution

The one step method for simulating a MVN distribution is demonstrated in Figure 7.5 for a
three variable MVN distribution that is simulated for four years.

A | B [ ¢ [ D [ E [ F 1

141
142
143
124
145
146
147
148
149
[150)
[151)
[152
153
154
[155
1156,
157

Simulate 5 Years for a MVN distribution in One Step
Forecast Means for Each Year to Simulate
Years Corn Wyheat Sarghum

271311438 4034883 6212418

28 1328009 4072298 69.79058

29 134 6379 41 09813 7047493

300 136.3849 4146928 71.15033
Covariance Matrix

Corn Wheat Sorghum

Corn
Wheat
Sorghum

302.6983 42.96493 114.6301
13.38022 17.57007
52536

Simulate Stochastic Forecast of the MVN for 4 Years

Years
Y27
Y28
Y29

158

Y30

Corn Wyheat Sarghum

106.5542 ) 39.55058 66.31111 =MVNORM(B144:D144,$B%150:$D%152)
141.2075 45 432 7661200 =MVNORM(B145:D145,$B%$150:$D$152)
103.6693 358383 48.31042 =MVNORM(B146:D146,$B%150:$D%152)
139.0412 42.41304 6517593 =MVNORM(B147:D147,$B%$150:$D$152)

Figure 7.5. Example of the One Step Procedure for Simulating a
MVN Distribution for Four Years.
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— Results of Simulating MVN Distribution

After simulating a multivariate probability distribution one must first test the simulated
values to be sure they are appropriately correlated. This involves calculating the correlation
matrix for the simulated random variables and comparing this correlation matrix to the original.
Simetar includes a statistical test to assist in validating the correlation of multivariate
distributions. The validation procedure for a MVN distribution is demonstrated using the
example in Multivariate Normal Distribution Demo.XLS.

The correlation test used in validation compares the correlation matrix used for the
simulation to the implicit correlation matrix in the simulated variables. For a model with three
random variables the Check Correlation in Simetar’s Hypothesis Testing for Data menu, the user
provides the location for the three simulated random variables, say B:8; B108 of the SimData
worksheet and the location for the correlation matrix to simulate the three random variables. The
null hypothesis for the test is that each correlation coefficient for the simulated variables equals
the original or assumed correlation coefficient or:

H: laij = P

The test uses a Student —t test and the critical value at the alpha equal 5% or less based on
sample size. To reject the null hypothesis the calculated t-test statistic must exceed the critical
value of, say, 2.43 at the 98.3% confidence level. The calculated t-test statistics in Figure 7.6 are
all less than 2.43 so we fail to reject the null hypothesis and say the simulated correlation
coefficients are statistically equal to the assumed (historical) correlation coefficient at the 98%
level. This test must be done for each year simulated by the MVN distribution.

o | p | a | R | s | T |
2 |Test Correlation Coefficients for Simulated Values in Year 27
3 |Confidence Level 95 3048%
4 | Critical Yalue 243
5
3] Wiheat Sorghum
7 |Comn 0.84 0.25
8 |Wheat 047

Figure 7.6. Example of a Student —t Test for a Correlation
Matrix.

Simetar provides three non-parametric tests for validating MVN distributions. The tests are:

e Two Sample Hotelling T? Test — tests the historical mean vector vs. the mean vector
for the simulated variables.

e Box’s M Test — tests the historical covariance matrix vs. the covariance matrix for
the simulated variables.

e Complete Homogeneity Test — simultaneously tests the historical means vector and
covariance matrix vs. the means vector and covariance matrix for the simulated
variables.
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The tests are described in Chapter 3 and 16 in more detail. If the tests “Fail to Reject the Null
Hypothesis” that the simulated parameters equal the historical parameters, then the simulation
process simulated the MVN distribution appropriately. An example of using the non-parametric
tests to validate a MVN distribution is provided in Figure 7.7. When the Test Values are less
than the Critical Values, the tests will Fail to Reject the null hypothesis and this is what we want.

0 [ P T @ | R | s T u v W X Y z AA A
| 28 |Distribution Comparison of Corn & Corn
| 29 | Confidence Level 95.0000%
| 30 Test Value Critical Val P-Value
| 31 |2 Sample Hotelling T° Test 0.00 8.17 1.000 Faif to Reject the Hao that the Mean Vectors are Equal
| 32 |Box's M Test 061 12.59 0996 Fail to Reject the Ho that the Cavariance Matrices are Equivalent™
| 33 |Complete Homogeneity Test 058 16.92 1.000 Fail to Reject the Ha that the Mean Veactors and Covariance Matrices are Equivalant Raspectivaly®
34 "Based on asympiotic distribution

Figure 7.7. Non-Parametric Tests for Testing Simulated Values from MVN Distributions.

Multivariate Empirical (MVE) Distribution

Two or more correlated random variables can be simulated as a multivariate distribution,
even if the variables are not normally distributed. For example, non-normal MV distributions
can be simulated as a MVE distribution. The generalized MV procedure presented here for the
MVE distribution allows one to correlate non-normal distributions in a simulation model.
Richardson and Condra first introduced the procedure in 1978 and an extension of their original
procedure is used here and expanded upon in Chapter 8. King later reported the procedure to
simulate a multivariate beta distribution. The workbook Multivariate Empirical Demo.XLS
demonstrates the steps for MVE parameter estimation and simulation described in this section.

A MVE distribution has three parameters or components to be estimated. The MVE is
described here for a model with four random variables, eventhough the procedure can easily be
expanded for an m variable MVE. The three components/parameters are:

— Deterministic component for each of the four variables, X i forj=1,2,3,4.
— Stochastic component for each of the four variables, Séj forj=1,2,3,4

— Multivariate component for the four variables O, 4.

— Parameters for a MVE Distribution

The deterministic component is the projected value based on the mean, trend regression,
multiple regression, or time series model for each of the random variables, such as:

X. =4+ bT + b,X, + bZ

ij i

or simply the mean:
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where )A(ij are the predicted values for all random variables Xj, j =1, 2, 3, ... m, and i denotes

the periods (years, months, etc.) over which the variable is to be simulated.

The stochastic component for the MVE distribution is the measure of the dispersion about
the deterministic component or S;. The dispersion measure for an empirical distribution is the
vector of sorted deviations from the deterministic component, expressed as a fraction of the
forecasted values at each historical period i. The S, values are calculated for each random

variable as:

Séij = Sorted (Féij)

where Séij are the sorted fractional residuals for each of the random variables X, j =1, 2, 3,

..., mover the historical periodi=1,2,3, ..., T

Multivariate component for the MVE distribution is the correlation matrix of rank m for the
m random variables. The correlation matrix must be calculated using the unsorted residuals
(éij ), 1.e., the stochastic component. For a 4 variable model the O matrix is:

P12 P13 Pia
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— Parameter Estimation for the MVE Distribution
The steps for estimating the parameters for a MVE distribution are:

1. Calculate the best model possible to predict each of the random variables, whether this is
simply the mean or a complex econometric model, such as, a trend regression, a multiple
regression, or a time series model.

X.. = econometric model

ij
2. Calculate the residuals, éij, from the econometric forecast for each random variable.

3. Calculate the mxm correlation matrix for all of the random variables using the unsorted
residuals. (Note: Use the residuals to calculate the correlation matrix because the
residuals are the stochastic component of the variables to be correlated. Calculating the
correlation matrix from the actual data is equivalent to calculating the multivariate
measures about the mean which is not the same as the correlation for the residuals.
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4. Calculate the fractional residuals for each variable and then sort these values for each of
the random variables. Calculate the pseudo minimums and maximums for each variable
using the sorted fractional residuals.

5. Assign probabilities to each of the sorted fractional residuals including a zero to the
pseudo minimum and a one to the pseudo maximum.

— Parameter Estimation Using Simetar

The EMP icon on the Simetar toolbar can be used to calculate all of the parameters for an
MVE distribution. The EMP icon calculates the S; values for multiple variables assuming the

MVE uses either actual data, deviations from mean or deviations from trend. If more complex
forecasting models are needed to project Xij , use the residuals from the econometric model and

select the Actual Data option in the EMP icon to estimate the parameters.

The steps for estimating the parameters for a MVE distribution are presented in Multivariate
Empirical Demo.XLS. The worksheet starts with six random variables and goes through the
steps described above for estimating the parameters. The data do not have statistically
significant trends so fractional deviations from the mean are used to estimate the S; parameters

for the empirical distributions. The resulting MVE distribution is simulated three different ways
in Steps 7-9.

— Simulating a MVE Distribution

A MVE distribution can be simulated several ways in Excel using Simetar functions. Three
methods are presented here starting with the easiest and proceeding to the most complex. But
first the general procedure is described in matrix notation for completeness.

The first step is to simulate an Mx1 vector of correlated uniform standard deviates or
CUSD’s. The Simetar array function =CUSD( ) performs the necessary calculations and
simulation. In its most simple form the CUSD function is =CUSD (Correlation Matrix) so the
result is m cells with CUSDs as demonstrated in Figure 7.8.

Figure 7.8. Example of Simulating a Vector of CUSD'’s.

E | F [ & | H [ 1+ | 4 [ Kk | L [ wm |
160 CUSDs Correlation Matrix Formula in Column E
1161 03354 1.000 0869 0981 -0.299 -0.175 -0.529(=CUSD(F161:K166)
1162 05353 0.000 1.000 0816 -0.159 -0.367 -0.342
163 | 02788 0.000 0.000 1.000 -0.288 -0.169 -0.565
164 | 08504 0.000 0.000 0.000 1.000 0531 0587
165 03309 0.000 0.000 0.000 0.000 1.000 0473
166 0.8180 0.000 0.000 0.000 0.000 0.000 1.000
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The final step in simulating a MVE distribution is to use the CUSD’s in an empirical
distribution. The formula varies depending upon the format of the S; values:

- Sj are actual data
Xj =EMP (Sj, P(Sj), CUSDj)
- S ; are absolute deviations from means
Xj = Xj + EMP (Sj, P(Sj), CUSDJ.)
- S ; are fractional deviations from means
Xj = Xj + Xj * EMP (Sj, P(Sj), CUSDj)
- S ; are fractional deviations from a forecast
Xj = XJ. + Xj * EMP (Sj, P(Sj), CUSDJ.)

The EMP( ) Simetar function simulates an empirical distribution defined by S; and P(S;) using
the uniform standard deviate indicated by the CUSD; .

There are two ways to simulate the MVE distribution with Simetar. The first method uses
the =MVEMP( ) function and it takes only one step. The one step method calculates all of the
parameters in the background and also generates the CUSD’s. Program the one step MVE
distribution function as:

=MVEMP(Actual Data,,,,Forecasted Xs, Code)

where: Actual Data is the location for the original historical data,
The ,,,, must be provided and indicate optional parameters that are not provided,

Forecasted Xs represent the 5(6 for the i" period to simulate,

Code is a switch to specify the format for the Sjs, as 0 for actual data,
1 for fractional deviates from mean,

2 for fractional deviates from trend, and

3 for differences from mean.

The =MVEMP( ) function is an array function so highlight m cells representing the m random
variables in the MVE distribution. Additionally, the function is completed by pressing Control
Shift Enter. An example of simulating a six variable MVE distribution using the one step
method is presented in Figure 7.9.
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A, | B | C | D | E | F | ¢
148 Random
149 /Names Values Formulas Used to Simulate the MVE in One Step
150\ Corn Pr 298| =MVEMP(B11:G23,, B144.G144 1)
151 vheat Pr 363
152 | Sorghum Pr 2 64 |Mote B11:G23 is the actual data and B144:G144 is the
153 Corn Yld 127 .04 |forecasted deterministic compaonent of the MYE distribution
154 | vwheat Yid 43.05
155 | Sorghum Yid 67 53

Figure 7.9. One Step Method to Simulate an MVE Distribution.

The second method for simulating an MVE distribution with Simetar is a two step process.
First generate an mx1 vector of CUSD’s. Next use the CUSD’s in the EMP function applying
the appropriate formula based on the form of the S; to each of the m random variables:

=X, +X, *EMP (S, P(S,), CUSD))

Repeat this formula for each of the m variables in the distribution.

This method is demonstrated in Figure 7.10 for a six variable MVE distribution where the S;'s

are specified as fractional deviations from the mean.

A [ B \ [ \ D [ E T F T[T & [ H ] [ [ 0 T k]
1159 Random Correlated
| 160 Names Values Means Deviates as % CUSDs Correlation Matrix
| 181 Corn Pr 223 2325 -0.0385 0.3354 1.000 0.869 0.981 -0.299 -0.175 -0.529
| 162 Wheat Pr 332 3294 0.0083 0.5353 0.000 1.000 0816 -0.129 -0.367 -0.342
| 163 | Sorghum Pr 1.90 2128 -0.1066 0.2788 0.000 0.000 1.000 -0.288 -0.169 -0.585
| 164 Corn Yld 13249 118.363 01184 0.8504 0.000 0.000 0.000 1.000 0531 0587
165 Wheat Yid 36.04 37.152 -0.0300 0.3809 0.000 0.000 0.000 0.000 1.000 0473
| 166 Sorghum Yid 69 96 64855 00787 0.8180 0.000 0.000 0.000 0.000 0.000 1.000
| 167 | =C166+C166"D166 =CUSD{F161:K166)
| 168 =EMPIG$122:G136,$45122:548136,E166)

Figure 7.10. Example of Using a Two Step Method to Simulate a MVE Distribution.

If there is a one step method, what is the need for the two step method? The two step
method is used when not all of the random variables have the same form for the Sj's. For

example, if the first three Xs have no trend so they are simulated as actual data and the next three
X’s have a trend and must be simulated as fractional deviations from trend.

— Results of Simulating MVE Distribution

A validation test to insure that the random variables are appropriately correlated should be
done before using the random values in a decision model. Simulate the MVE distribution
collecting values for the stochastic variables and then test the correlation implicit in the
simulated values against the correlation matrix for the historical data. Validation of the
simulated random variables is particularly important for non-normal distributions because the
procedure is not widely used and understood. Simetar provides a correlation test and three non-
parametric tests for validating MVE distributions. All four tests should be used to validate all
multivariate distributions.
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The six variable MVE distribution simulated in the Multivariate Empirical Demo.XLS is
used to demonstrate the four validation tests in the SimData worksheet. The results of the four
tests are summarized in Figure 7.11. The results of the correlation test reveal that all of the
correlation coefficients implicit in the simulated variables are statistically equal to their
counterparts in the actual data’s correlation matrix, at the 99% level. Additionally the mean
vectors and covariance matrices for the simulated data and the actual data are statistically equal
at the 95 percent level.

L o T v [ L T m [ v [ o [ P [ a ] r [ s [ 17 [ U]
Test Correlation Coefficients
Confidence Level 99 B586%
Critical Value 3.00

o

Wheat Pr Sorghum FECorn Yid  Wheat Yid Sorghum Yid

| 12 |Com Pr 0.38 1.19 0.58 0.83 1.27
| 13 Wheat Pr 1.13 0.68 0.63 0.55
| 14 |Sorghum Pr 072 0.70 0.93
| 15 |Corn Yid 155 0.37

16 ‘heat Yid 1.29

=

@0

Distribution Comparison of Corn Pr & Corn Pr
Confidence Level 95.0000%
Test Value Critical Val P-Value

w

[
=}

| 21 |2 Sample t 1.77 13.73 0.945 Fail fo Reject the Ha that the Mean Vectors are Equal

| 22 |Box's M Te 12.83 3267 0.914 Fail fo Reject the Ho that the Covariance Mairices are Equivalent™

| 23 |Complete | 14 .63 40.11 0.974 Fail fo Reject the Ho that the Mean Vectors and Covariance Matrices are Equivalent, Respectivaly™
| 24 | *Based on asympiotic distribution

Figure 7.11. Validation Tests for MVE Distributions.

Mixed Multivariate Probability Distributions

When parameter estimation (or the problem being analyzed) requires simulation of a
distribution where the random variables are not all normal or all empirical, what do you do?
Ignoring the correlation of these variables would bias the key output variables in the model by
over-or under-stating their means and risk. The procedure presented in this section allows for
the appropriate correlation of random variables with different distributions. For example, one
variable can be normal, another can be empirical, and another can be uniform or beta and yet the
probability distribution can be appropriately correlated in simulation, so historical variability and
correlation will be observed in the simulation. Richardson and Condra reported this procedure in
1987.

— Parameter Estimation

The deterministic component for each random variable must be quantified using the best
model possible, such as, mean, trend regression, multiple regression, or time series model. The
stochastic component for each variable is the residual from the deterministic component and

must be calculated for each variable in the MV distribution, i.e., estimate the éij's. The

multivariate component of the MV distribution ( © matrix) must be estimated using the unsorted
residuals or éij 's. The parameters to quantify the stochastic component for each of the random
variables are estimated based on the appropriate parameters for each variable’s assumed
distribution, i.e., & for the normal, S, and P(S,) for the empirical, minimum and maximum for

the uniform, and so on.

— Simulation Steps
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1. Generate m correlated uniform standard deviates using the correlation matrix and the Simetar
command =CUSD for an mx1 array of CUSD,, wherei=1,2,3, ... m.

2. Use the inverse transform formulas to simulate random values for each variable by applying
the appropriate parameters for the variable’s deterministic and stochastic components and the
variable’s respective CUSD..

— Simulating a Mixed Multivariate Distribution

Assume the mixed MV distribution to simulate has 4 random variables, defined and
distributed as follows:

X ~ Normal ()_(, o)
Y ~ Empirical (S;, P(S,))
Z ~ Empirical (Si, P(Si))

W ~ Uniform (min, max)

The multivariate component for the mixed MV distribution is the correlation matrix for the
four random variables. The correlation coefficients for the © matrix must be estimated using

the residuals from the deterministic component for the X, Y, and Z variables and the historical
data for variable W. The actual historical data has to be used for W because of the nature of the
uniform distribution. The resulting correlation matrix is:

t> &xt  Pext» ey ¢ Pexts ezt péxt,wt
péyt9 &y ¢ péyt9 ézt  Péytwt

Pézts ezt Péztwt

pwt,wt

Generate a vector of correlated uniform standard deviates (CUSDs) of size mx1 using the
array function =CUSD as follows:

Block a 4x1 array and type the command
=CUSD (Correlation Matrix Range), then
press the Control Shift Enter keys.

The resulting 4x1 array has four values that change as the F9 key is pressed and during
simulation, Simetar will generate new values for each iteration. The four values in the array are
correlated based on the correlation matrix.

Apply the appropriate Simetar function to simulate the random numbers for each random
variable being sure to use each variables CUSD,,
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X =NORM(X + 6, CUSD,)

Y

Y +Y *EMP (S, F(S,), CUSD, )

Z=7+Z*EMP (S,, F(S,), CUSD,)

zi°

W = UNIFORM(Min, Max, CUSD,)

The Simetar functions for generating random variables all allow for specification of a
random uniform standard deviate (see Chapter 16). In the case of a MV distribution you must
specify a CUSD rather than an independent USD.

The Multivariate Mixed Probability Distribution Demo.XLS spreadsheet provides an
example of how to simulate random variables that have different probability distributions, as a
multivariate distribution. The first variable is assumed to be normally distributed, the second
and third are distributed empirical and the last is distributed uniform. The MV distributions
simulated as indicated in (cells B79-B82) use their respective CUSD’s in the inverse transform
formulas Figure 7.12.

A \ B | c | D | E | F | G| H | [ | J \
| 7T Random
78 Values Mean Std Dev Min Max CUSDs
| 79 Var X MNormal | 2.1823438|=NORM(F79,G79,J78) 2127 0.369 0.5595
| 80 Var Y EMP 2.5497697| =F80* [ 1+EMP{F32:F43 E32:E43,J80)) 2.361 0.7477
| 81 Var ZEMP 172.11025|=F8 17 1+EMP{G32:G43 E32.E43 J31)) 160.7 0.6124
| 82 Var W Uniform{ 89 958372|=UNIFORM(HE2,182,J82) 61.310 92740 0.9115

Figure 7.12. Example of Simulating a MV Mixed Distribution Using CUSD’s and the Inverse
Transform Functions.

Four validation tests were used to statistically determine if the MV mixed distribution
reproduced the historical correlation matrix, means vector, and covariance matrix. The null

hypothesis that the simulated test statistic (o, X and X) equal their historical counterparts were
not rejected, indicating that the procedure worked. The test statistics are reported in Figure 7.13.

HT [ 0 T w [ L I wm [ N [ o [ P T @[ R [ s [ T ]
Test Correlation Coefficients
Confidence Level 99 1488%
Critical Value 2.64

Var Y EM Var ZEMP | Var W Uniform
Var X Nor 158 0.15 0.34
Var Y EMP 0.49 1.06
Var Z EMP 0.71

Distribution Comparison of Var X Normal & Var X
Confidence Level 95.0000%
Test Valug Critical Valu P-Value

g e e

2 Sample 4.52 962 0.344 Fail fo Refect the Ha that the Mean Vectors are Equal
| 21 BoxsMT 142 18.31 0.899 Fail fo Refect the Hao that the Covariance Malrices are Equivalent®
| 22 | Complete 200 2368 1.000 Fail fo Refect the Ho that the Mean Vectors and Covariance Malrices are Equivalent, Respeciivaly’
| 23 | "Based on asymptotic distribution

Figure 7.13. Validation Tests for a MV Mixed Distribution.
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Simulating Large Multivariate Distributions

For multivariate (MV) distributions containing a large number of variables, it is often
impossible to use the procedures described for the MVN and MVE distributions. The symptom
that the MVE and MVN methods will not work, is that Excel returns “# VALUE” in the CUSD
or CSND arrays. The function fails because the correlation matrix is not positive definite, and
therefore the correlation matrix (p) can not be factored by the square root method (Choleski

decomposition). A factored matrix (o) is required to simulate the MVE and MVN distributions.

The equations for simulating the MVE and MVN distributions show the dependence of the
method on the R matrix:

Let p = NxN corrrelation matrix

and R(NXN) = \/;(NXN)
CSND ), = Ryny * ISND
also  CUSD,y,,, =ERF (R, * ISND,)

where: EREF is the error function for intergrating the area under a standard normal distribution
from - o to z and is calculated using Excel’s function =NORMSDIST.

The Choleski decomposition of the correlation matrix is calculated in Simetar using the
=MSQRT (Correlation Matrix) function. If the correlation matrix is positive definite, the
MSQRT function will return a non-zero value in every cell in the upper right triangle and the
main diagonal of the result matrix. On the other hand, if MSQRT returns a matrix with zeros in
the upper right triangle or main diagonal (or #VALUE) the distribution cannot be simulated
using the MVE or MVN procedure. See the correlation matrix and its factored matrix in Figure
7.14 for an example of a matrix which is not positive definite. The example comes from the Bad
Correlation Matrix Demo.XLS.

As a further test of a problem matrix, the determinate of the full symmetric correlation
matrix or the covariance matrix should be calculated to make sure it is positive or that it is not so
close to zero it causes exponent overflows in =MSQRT. The correlation icon on the Simetar
toolbar can be used to calculate the full symmetric correlation or covariance matrix. The
determinate of a square matrix can be calculated using the determinate function in the Simetar
Matrix Operations dialog box. If the determinate for either the correlation or covariance matrix
is negative or almost zero the matrix cannot be factored. This result is generally due to the fact
that there are too many “large” correlation coefficients or the number of correlation coefficients
outside the & 0.50 causes the MV distribution to be over specified.

When the MVE and MVN procedures described in this Chapter cannot be used, there are
two options for simulating a MV distribution: (a) use a bootstrap simulation technique or (b) re-
arrange the correlation matrix.
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& | B € 5] E F ] H | J K]
21 |Correlation Matrix of 10x10 Variables
| 22 | War 1 Va2  [War3  Ward  Mar  Varf Va7 War®  Vard  Var®l
| 23 [var1 1 021 -0.0§ 0.30 012 0.35 0.03 018 047 0.00
| 24 [var2 1 0.78 0.76 0.83 0.64 0.84 0.60 0w 0.5
| 25 [var3 1 0.80 0.93 0.73 0.88 0.26 0.68 0.62
| 26 [var 4 1 0.73 0.80 0.32 0.33 0.26 0.70
| 27 [var 5 1 0.66 0.91 0.35 0.50 060
| 28 [vars 1 0.73 0.268 0.43 0.40
| 23 [var 7 1 0.32 0.34 0.69
| 30 [vars 1 008 0.45
3 |varg 1 0.31
| 32 [var 0 ]
3
| 34 | Factor a 10x10 Square. Symmetric Matrix. 12142003 3:46:01 PM
| 35 | S | BVALUE! | BVALUE! | HVALUE! | #VALUE! | #VALUE! #VALUE! HVALUE! HVALUE! #VALLE!
E3 HYALUE! | BVALUE! | BYVALUE! | HVALUE! | #VALUEL  #VALUEL #YALUE! #YALUEL #YALUE! #VALLE!
| a7 | HVALUE! | BVALUE! | HVALUE! | HVALUE! | #VALUE!  #VALUE! #VALUE! HVALUE! HVALUE! #VALLE!
E3 HYALUE! | BYALUE! | HYALUE! | HVALUE! | #YVALUEL | #YALUE! #YALUE! HYALUE! HYALLUE! #VALLE!
E3 HYALUE! | HVALLE! | HVALUE! | HVALUE! | HYVALUE!  #VALUE! #vALUE! #YALUE! #YALUE! #vALLE!
| 40| HVALUE! | HVALUE! | HVALUE! | HVALUE! | #VALUE!  #VALUE! #YALUE! HVALUE! HVALLUE! #VALLE!
41 HYALUE! | HYVALLE! | HVALUE! | HVALLE! | HYVALUE!  #VALUE! #YALUE! #YALUE! #YALUE! #vALLE!
| 42 | HVALUE! | HVALUE! | HVALUE! | HVALUE! | #VALUE!  #VALUE! #YALUE! HVALUE! HVALUE! #VALLE!
43 HYALUE! | BYVALUE! | BYALUE! | HVALUE! | #YVALUE!  #YALUE! #YALUE! HYALUE! HYALLUE! #VALLE!
m HVALUE! HVALUE! | HVALUEL HVALUEL HVALUEL #VALUEL #VALUEL HYALUEL HVALLUE! BVALLE!

17

Figure 7.14. Example of a Correlation Matrix that Can Not be Factored by the
Square Root Method.

— Bootstrapping a Multivariate Distribution

Bootstrap methodology can be used to simulate a multivariate empirical distribution if there
are a large number of observations for the random variables. Bootstrap simulation is based on
Elfon’s (1979) work on bootstrapping univariate distributions. For a complete description of
univariate bootstrapping see Chapter 11. If applied properly bootstrap simulation of MV
distributions maintains not only the correlation among variables, but also higher order moments
and any multi-modal characteristics of the variables. To simulate a MV distribution using
bootstrap simulation methodology, do the following:

1. Prepare the historical data in a table with all random variables contiguous and in the
proper temporal order, X,., X,,, ... X, for m variables, with years i for the rows. See

Figure 7.15 for a data table in the proper format.

2. Use Simetar’s =BOOTSTRAPPER function to randomly draw rows from the data matrix.
The array function is programmed as:

=BOOTSTRAPPER(Data Matrix, TRUE)

TRUE instructs Simetar to draw m values from the m columns of the Data Matrix and
that all of M values must come from one row.

where:

Simetar draws rows of values from the data matrix at random if the function is used properly
as an array function and is concluded by pressing Control Shift Enter. See the example in Figure
7.15 taken from the Bootstrap Multivariate Distribution Demo.XLS.
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A | B | c | D | E | F | G| H | [ | J |
| 77| Random
78 Values Mean Std Dev Min Max CUSDs
| 79 |War X Normal [ 2.1823438]=NORM(FT9,G79,J79) 2127 0.359 0.5595
| 80 |var Y EMP 25497697 | =Fa0" 1+EMP(F32:F43 E32:E43 JBO)) 2361 07477
| 81 |Var ZEMP 172 1M025|=F&1*(1+EMP({G32 . G43 E32.E43 J81)) 160.7 0.6124
| 82 |War ¥V Uniform] 89 959372|=UNIFORM{HE2,182,82) 51.310 92.740 09115

Figure 7.15. Using the Bootstrapping Function to Simulate a MV Distribution.

The benefits to the bootstrap simulation methodology for a MV empirical distribution are:
(a) it draws random X ; observations in historically observed paired groups so the historical

intratemporal correlation is maintained, (b) the historical data are used to simulate each
variable’s distribution so no assumptions about distributional shapes or types are required, and
(c) the method is efficient in that no parameters must be calculated. The disadvantage to the
methodology is that the values simulated are the discrete historical values because interpolation
between observed points is not employed. To minimize this being a significant disadvantage, the
original sample in the data matrix must be sufficiently large to define the population being
simulated, as no new values are generated by interpolating among observed values.

L I« [ W [0 [P [ a [ R [ 5 [ T [ 0 [ V¥

Summary Staistics For History

Varl War2 Var3d Vard Varh Varb Var?7 Var® Vard
Average 9.05254) 575351 B.27573| 8.47801 501336 493466 7.04667 6.01031 6.05603
Sid Diew 162534 BAVISF) F119730 16.3338) 121805 108852 125513 M.2Y73 10.0823
Skewness 378787 239039 26495 3B0EEZ 5.09888 482735 414163 434966 352544
Summary Statistics For Simul ated Yalues

Yarl Var?2 Var3d Vard Varh Varb Var7 Var8 Vard
tean 9.00841 B.728E7 624335 844813 4597606 490453 F.00545 5.97E93 B.02275
Sid Diew 159517 586722 E.98891 160371 119458 106817 127467 10643 3.89201
Skewness 362882 22912 254043 364063 4.83303 4623271 39716 41703 33815
Distribution Comparizon of Yar 1& Var 1
Confidence Level 957

Test Valu Critical V. P-Value
2 Sample Hotelling T* Test 0.00 1713 1.000| Ao fo Sgrsesf S A Sax e Adagn Vaoiars oo Equis’
Biox's b Test 07 E1EE 1.000| Fa fo Siyied $e A $asf 50 Civand ine Adiroas e Epavalar™

Complete Homogeneity Tes 0.0z 7215 1000 Fadf do Saract e A S e Aaz Vackrs aad Civara e Ao,
are Equivalent, Respectivel ™
Trzsad o aaprpiodc st dian

PDF Approzimations PDF Approzimations
- - | I -]
000 20.00 40.00 60.00 30,00 100.00 000 20,00 40.00 60.00 50,00 100.00
—trard var i —rar 4 ——tard
PDF Approzimations PDF Approzimations
A | PN N A
000 1000 2000 5000 4000 5000 B0.00 7000 000 10,00 2000 5000 40.00 S0.00 G000
—arf ——Yark —ard ——ard

B | o | o e e | e G D O D G D G el | P P | P P Tl | T P o b | L | b L e | ) —_

i
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=
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. Validation Tests and PDFs for a Bootstrapped MV Distribution.
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When using bootstrap simulation it is recommended that the number of iterations should be
expanded to 1000 or more (Conover). The question remains, how well does this method work?
For the example MVE in Figure 7.15, the results from a 1,000 iteration simulation are
summarized in Figure 7.16. The means for the simulated and historical series are statistically
equal as are the covariance matrices, based on three non-parametric validation tests. The
skewness for the distributions are also very similar between the simulated and the historical
distributions. The PDFs for four of the random variables are presented to show that the
simulated distributions conform closely to the historical distributions. In particular the PDFs
show that the multi-modal aspects of the historical distributions are matched by the simulated
values.

— Two Stage Correlation for Multivariate Distributions

The second method for simulating a MV distribution defined by a correlation matrix that
will not factor is to make two correlation matrices and factor the two matrices. The new
correlation matrix is re-estimated after eliminating one or two variables and a second correlation
matrix between the deleted variables and one remaining variable is estimated.

To demonstrate the procedure, the 10x10 correlation matrix in Figure 7.14 is used because it
will not factor. The 3™ variable in the original data set is removed and a new correlation matrix
is estimated (Figure 7.17). The 3" variable was deleted because of its large number of
correlation coefficients outside the = 0.5 range. (The 5" variable could have been the eliminated
variable for the same reason.) The resulting 9x9 correlation matrix factors as demonstrated by
the third part of Figure 7.17. The second correlation matrix is a 2x2 between variables 3 and 5
(or any other variable remaining in the 9x9) (see Figure 7.18).

Once the two correlation matrices have been estimated and factored, the CSNDs for the 10
variables are generated in three steps.

1. Use the first correlation matrix and the =CSND (9x9 Correlation Matrix) function to
generate an array of nine CSNDs (Step 1 in Figure 7.18).

2. Use the second correlation matrix and the =CSND (2x2 Correlation Matrix, 2x1 ISND
Array) function to generate two CSNDs for variables 3 and 5 (Step 2 in Figure 7.18).
The two ISNDs in the CSND function are actually one ISND for variable 3 (=NORM( ))
and the CSNDs generated for variable 5 in Step 1.

3. Assemble the 10 CSNDs into a final 10x1 array using the CSNDs for variables 1-2 and 4-
9 from Step 1 and variable 3’s CSND from Step 2. In Figure 7.18 the final array is
G96:G105.

The assembled 10x1 CSND array can be used to generate MVN values or converted to CUSDs
using =NORMSDIST( ) and used to generate MVE values.

a | B [ ¢ | o [ e T F [ & [ H | 1T [ J ]
52 |Drop out the ¥ar 3 Column and re-build the Correlation Matrix
| 53 | Yar 1 Var 2 Var 4 War War 6 Yar 7 Yar 8 Yar 9 Yar 10
| 54 1 25 22 38 25 Kl 24 Kl 32 30
| 55 | 2 33 34 s 30 25 22 44 29 33
55 3 23 a0 a2 e i 22 23 a0 24 25
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Before using the CSNDs for generating random numbers, they need to be tested to insure
that they are appropriately correlated. To test the correlation select the assembled array of
CSNDs as the simulation output variables, simulate the workbook, and test the implicit
correlation for the simulated values against the original 10x10 correlation matrix. The results of
the correlation test for the problem in Figure 7.18 indicate that all but two of the correlation
coefficients in the matrix are statistically correlated as they were over the historical period. If
the correlation test indicates that many of the correlation coefficients are statistically different
from the original matrix, select a different variable to eliminate and repeat the process.
Experience suggests that the variable with the most large correlation coefficients is the best
candidate for elimination and for some problems more than one variable must be eliminated and
then added back via the second matrix. The variable selected to correlate back to (5 in this
example) must be highly correlated to the eliminated variables and to the remaining variables in
the correlation matrix. The Bad Correlation Matrix Demo.XLS workbook contains the example
described in this section.
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4 | B [ Cc | o | E [ F | &G [ H | I

87 |Use the correlation coefficient from the original
22 |matrix between Var 3 and 5. to create a new correlation matrix.

21

| 83 War 3 War &

a0 |Var 3 1 0.931| Mote that Yariable 5 is the independent variable in the matrix
E War 5 1|and ¥ariable 3 depends upon Yariable 5.
Ea
| 93 |Step 1. CSHNDS for 9 variable

94 Correltion Matrix Step 3. Assemble the CSNDs for the
| 55 | CSHD 10 ¥ariables and use the CSNDs.
| 96 | Yar 1| -0.13614| =CShD|BEE.J74) ar 1 -0.13614
| 97 | War 2] -0.4416 Yar 2 -0.4416
| 98 | Yar 4] -0.01293 Yar 3 -0_67602
| 99 | ar 5| -0.20708 Yar 4 -0.01293
| 100 | War B War 5 -0.20708
101 | War 7 ‘ar B -0.7131
| 102 | ar 8 War 7 -0.18983

103 ar 9 ‘ar 8 -0.21889
104 | War 10 War 9 0.08733
105 | Yar 10 0.85187
| 106 | Step 2. Calgualte CSNDs For Variabl

107 |For this step use the CSMND generatgd for ¥ariable 5in Step 1
108 | SND for Var 3 CSNDs

103 | War 3 -1.324787| =NORM[) -0.676024 =C5MD(EINCIET0S.B110)
10 | Var & -0.207082] =E99 -0.207082

Figure 7.18. Steps for Simulating CSNDs from a 9x9 and a 2x2
Correlation Matrix.
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Appendix: Simulation of a MVN Distribution

In matrix notation a four variable MVN distribution is simulated using the R matrix, which
is the factored correlation matrix. The Choleski decomposition can be used to factor the
correlation matrix, i.e., to calculate the square root of the correlation matrix. Appendix Figure
7.1 shows the matrix notation for the steps to simulate a four variable MVN distribution. The
ISND vector is an Mx1 vector of independent standard normal deviates which is multiplied by
the R matrix to calculate a vector of correlated standard normal deviates (CSND’s). Multiplying
the MxM standard deviation diagonal matrix by a vector of CSND’s and adding the product to
the means gives a vector of correlated stochastic values that are distributed MVN. The CSND
vector is not presented in Appendix Figure 7.1 as this is an intermediate step, and is shown in
Step 8 of the Multivariate Normal Distribution Demo.XLS.

X X . _ [ISND,
. ) 0, Iy I T3 Ty
X X 5 ISND
: : O; Ly Ty Dyl 2
X 3 o L, T
X, X, 3 A 33 I ISND,
O T
~ R 4 44
X, X, [ ISND, |
— - - - -
Stochastic Deterministic Correlation Component Results in CSNDs
Results Component

Stochastic Component

Appendix Figure 7.1. Simulation of a MVN Distribution.

The MVN distribution simulation depicted in Appendix Figure 7.1 can be written as
individual equations for each random variable, much like a univariate normal variable. Recall
that a univariate normal variable is simulated as:

X =X + o, *SND

where  SND is an independent standard normal deviate distributed N(0,1).

For a MVN distribution each random variable is simulated as:

X =X + 6.

i i &j

* CSND,
where CSND, is the i" correlated standard normal deviate in the CSND vector.

Simetar calculates the CSND vector two ways. Both methods are used in Multivariate Normal
Distribution Demo.XLS and are described here:

1. The user can specify the vector of ISND’s. The 3 variable MVN distribution example in
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Appendix Figure 7.2 shows that the vector of ISND’s is provided as input in column I.
The CSND function is an array function so highlight 3 cells and enter the function
=CSND (correlation matrix, ISND vector) and press Control Shift Enter.

E | F | & | H | | | o | kK | L |
121| CSNDs Correlation Matrix ISNDs Formula in Column E
122 1.644655 1.0000 0.2335 0.6943 1.977|=CSNDIF122:H124 1122:1124)
123 047652 0.0000 1.0000 0.2373 0.421
124 0.286447 0.0000 0.0000 1.0000 0.286

Appendix Figure 7.2. Example of CSND Calculated With the ISND Vector Provided as
Input.

2. The user does not specify the vector of ISND’s. The 3 variable MVN distribution
example in Appendix Figure 7.3 shows that the CSND vector is calculated using only
the correlation matrix as input. In this case Simetar generates the ISND’s without the

user explicitly including this step.

E F | ¢ | H | L J | Kk ]
113 CSNDs Correlation Matrix Formula in Column E
114 -1.0016 1.0000 0.2335 0.6943 =CSNDF114:H116)
115 -1.3480 0.0000 1.0000 0.2373
116 -0.8221 0.0000 0.0000 1.0000

Appendix Figure 7.3. Example of CSND Vector Calculated Without Explicitly Providing

the ISND Vector.
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