
Chapter 7 
Parameter Estimation for Multivariate Probability Distributions 

 
 
 Univariate probability distributions are for individual random variables so multivariate 
(MV) probability distributions are for two or more random variables that are dependent on one 
another. Multivariate distributions are the rule in economic analysis models because most 
variables are correlated to each other.  The purpose of this chapter is to describe and demonstrate 
how to estimate and apply parameters for multivariate distributions.  This chapter builds on 
Chapter 6, which describes how to simulate univariate probability distributions.  
 
 The chapter is separated into three parts:  multivariate normal (MVN) distributions, 
multivariate empirical (MVE) distributions, and simulating very large MVE distributions.  The 
MVN and MVE sections deal with correlating random variables within years or intra-temporal 
correlation.  For the problem of simulating inter-temporally correlated random variables see 
Chapter 8, after working through this chapter.  Chapter 8 provides a comprehensive treatment of 
intra- and inter- temporal correlation and is recommended for advanced work in simulation.   
 
Ignoring Correlation 
 
 If two random variables are correlated and their correlation is ignored in simulation the 
model will either over or under state the variance and mean for the system’s KOVs.  The 
direction of the bias introduced on the variance is inversely related to the correlation.  Ignoring a 
positive correlation between X and Y% %  will understate the variance for Z if Z = X + Y% % .  Ignoring 
a negative correlation between X and Y% %  will overstate the variance for Z in the same case. 
 
 The reason why the variance of Z is inversely biased relative to the correlation between X 
and Y is due to the variance formula for variable Z: 
 
 Let Z = X + Y% % where X and Y% % are random variables, 
 
the expected value of Z is 
 
 E(Z) = E(X) + E(Y) 
 
the variance for Z is 
 
 2 2 2 2

X Y X Y xy x yV(Z) =  +   + 2 Cov (X, Y) =  +  + 2  * * σ σ σ σ ρ σ σ  
 
where xyρ  is the correlation between X and Y. 
 
When X and Y are negatively correlated the Cov(X,Y), or xyρ  is negative and reduces V(Z) so 
ignoring the correlation overstates the true variance of Z.  The opposite is true when X and Y are 
positively correlated because the Cov(X,Y) or xyρ  is positive.  In both cases the mean, E(Z), is 
unbiased by ignoring the correlation between X and Y. 
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Figure 7.1.  Statistical Test of Correlation Coefficients. 

 On the other hand if the KOV is a function of products of random variables, as Z = X * Y% % , 
the mean will be biased if correlation between X and Y% % is ignored.  In this case the expected 
value and variance of Z is: 
 
 xy x yE(Z) = E(X) + E(Y) + Cov(X,Y) = E(X) + E(Y) + 2  *  * ρ σ σ  

 2 2 2 2
X Y X Y xy x yV(Z) =  +   + 2 Cov (X, Y) =  +  + 2  * * σ σ σ σ ρ σ σ  

 
The mean and variance for Z are over or under estimated, inversely with respect to the sign on 
the correlation coefficient, if correlation is ignored in simulation. 
 
 As demonstrated in this chapter simulating a multivariate probability distribution is very 
easy and automatically corrects for the potential of biasing the mean and variance.  The 
procedure described for simulating multivariate distributions insures that the random variables 
are “appropriately” correlated, meaning that the historical correlation is maintained in the 
simulation process. 
 
Multivariate Normal (MVN) Distribution 
 
 Two or more normally distributed random variables that are correlated must be simulated as 
a MVN distribution to prevent biasing the model results.  Check for correlation of the random 
variables by calculating the simple correlation coefficients among the variables.  If the 
correlation coefficients are significantly different from zero the variables must be simulated 
MVN.  A Student-t test is used to test each correlation coefficient in the correlation matrix to 
determine if it is statistically different from zero at, say, the 95 percent level.  Simetar provides a 
Student-t test of correlation coefficients when calculating the correlation matrix (Figure 7.1).  
(See Chapter 16 and Correlation Demo.XLS for an example of this test.)  The example in Figure 
7.1 uses a critical t value of 2.20 for a 95% confidence test.  The calculated t-statistics (in the 
lower matrix) which are larger than the critical value indicate their corresponding correlation 
coefficient is statistically different from zero.  For ease of interpretation these calculated t values 
are bold. 
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 A MVN distribution has three parameters (components) to be quantified and is described 
here for a model with four random variables.  The three components for a four variable MVN 
distribution are:  
 

– Deterministic component for each of the four variables is the mean, or forecast, or jX̂  
for j = 1, 2, 3, 4. 

– Stochastic component for each of the four variables is the standard deviation about the 
mean or forecast, or $σ ej  for j = 1, 2, 3, 4 

– Multivariate component for the four variables is represented by a 4x4 correlation matrix, 
or ρ  (or the covariance matrix or ).Σ  

 
– Parameters for a MVN Distribution 
 
 The deterministic component of a MVN can be the mean or the predicted value from a trend 
regression, multiple regression, or time series model for each of the random variables, such as: 

 

ij 1 i 2 i-1 3 i
ˆ ˆ ˆˆ ˆX  = a  +  b T   +  b  X   +  b Z  

 
or simply the mean 
 

 ij ijX̂  = X  
 

where $Xij  are the predicted values for all random variables Xj, j = 1, 2, 3, … m, and 
  i denotes the periods (years, months, etc.) over which the variable is to be simulated. 
 
 The stochastic component for the MVN distribution is the measure of the dispersion about 
the deterministic component.  The dispersion measure for a normal distribution is the standard 
deviation ê( ).σ   The standard deviation is calculated using the residuals about the mean or 
forecast and is defined for each j variable in the distribution as: 

 
$ $

$ $$

e   =   X     X

  =   standard deviation for the e 's.

ij ij ij

ej ij

−

σ
 

 
where $ $σ ej  is the standard deviation of the residuals for each of the random variables Xj, j = 1, 

2, 3, … m.   
 
The $ $σ ej  is calculated over the T historical periods used to calculate the deterministic component, 

j
ˆthe X . 

 
 The multivariate component for the MVN distribution is generally the correlation matrix of 
rank m for the m random variables.  The correlation matrix must be calculated using the 
residuals (e ),ij$  i.e., the stochastic component.  For a 4 variable model the ρ  matrix is: 
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 An alternative method for simulating a MVN distribution uses the covariance matrix for the 
multivariate component.  For a 4 variable MVN model the covariance matrix, ,  is:Σ  
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∑  

 
– Parameter Estimation for the MVN Distribution 

 
 The steps for estimating the parameters for a MVN distribution are: 
 

1. Calculate the best model possible to predict each of the random variables, whether this is 
simply the mean, a trend regression, a multiple regression, or a time series model. 

 
 $Xij  = econometric model 
 
2. Calculate the residuals, ijê ,  from the econometric forecast for each random variable. 
 

3. Calculate the standard deviations, $σ j , for each random variable using their residuals. 
 

4. Calculate the correlation matrix ρ( )  and calculate the covariance matrix Σ( )  for the 
random variables using the residuals.  (Note:  Use the residuals to calculate the matrices 
because the residuals are the stochastic component of the variables to be correlated.  
Calculating the correlation and covariance matrices from the actual data is equivalent to 
calculating the multivariate measures about the mean which is not the same as the 
correlation for the residuals.) 

 
– Parameter Estimation Using Simetar 
 
 The Simple Statistics and Multiple Regression options in Simetar will most often be used to 
estimate the deterministic components for MVN distributions.  When the Multiple Regression 
function is used, Simetar forecasts the random variable, ijX̂ ,  and estimates the standard deviation 
for the residuals, $σ j .  Additionally, Simetar calculates the standard error of prediction, 

jp, j or SEPσ̂  which should be used in place of a standard deviation of the residuals for simulating 
a variable distributed normal. 
 
 
 Use the residuals provided in the Multiple Regression function’s output to calculate the 



--- Chapter 7 --- 

 

5 

correlation matrix and the covariance matrix.  Simetar provides a Correlation function for 
calculating the ρ  matrix and the Σ  matrix and testing the correlation coefficients for 
significance.  
 
 An example of estimating the parameters for a 3 variable MVN distribution is included in 
Multivariate Normal Distribution Demo.XLS.  Each of the four steps for MVN parameter 
estimation are identified and the distribution is simulated different ways using Simetar.  The 
example begins with the data for the three random variables in rows 8-34.  In Step 1, OLS 
regression results show significant trends for all three random variables.  The residuals from 
trend for each random variable are calculated using the Simple Regression option in Simetar in 
Step 1.  Standard deviations for the residuals are calculated using an Excel function in line 108.  
The unsorted residuals are used in Step 2 to calculate the correlation matrix. 

 
– Simulating a MVN Distribution 
 
 Three methods for simulating a MVN probability distribution are presented here.  The 
technical description of what is involved in simulating the MVN distribution is provided in an 
Appendix at the end of this Chapter. 
 
 The first method for simulating a MVN distribution uses the correlation matrix to simulate 
CUSD’s.  An example of this method for a three variable MVN distribution is presented in 
Figure 7.2 (see Multivariate Normal Distribution Demo.XLS).  For this method a vector of 
CUSD’s is simulated using =CUSD (Correlation Matrix).  The CUSD’s are used individually to 
simulate MVN random variables using the Simetar function: 
 
 j j j

ˆ=NORM (X , StdDev , CUSD )  
 
 
 
 
 
 
 
 
 
 The second method for simulating a MVN distribution uses the covariance matrix to 
simulate stochastic correlated deviations (or CDEVs).  A CDEV is the number of deviations 
from the mean that the random value lies.  For this method a vector of CDEV’s is simulated 
using =CSND (Covariance Matrix).  The CDEV’s are used individually in the formula: 
 
  i i i

ˆX   =  X  + CDEV%  
 
This method is demonstrated for simulating a three variable MVN distribution in Figure 7.3.  
(See the Multivariate Normal Distribution Demo.XLS for this example.) 

 
 
Figure 7.2.  Simulating a MVN Distribution Using the Correlation Matrix. 
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 The third method for simulating a MVN distribution does it all in one step using Simetar’s 
MVNORM function.  The one step formula is the easiest method for simulating a MVN 
distribution over a multiple year planning horizon.  The MVNORM function simulates the MVN 
values for the thi  forecast period as: 
 
 ij ij

ˆX   = MVNORM (Vector of X , Covariance Matrix)%   
 
The one step method for simulating a MVN distribution is demonstrated in Figure 7.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 The one step method for simulating a MVN distribution is demonstrated in Figure 7.5 for a 
three variable MVN distribution that is simulated for four years. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7.3.  Example of Using Covariance Matrix to Simulate MVN Distribution in Two 
Steps. 

 
 
Figure 7.5.  Example of the One Step Procedure for Simulating a 
MVN Distribution for Four Years. 

 
 
Figure 7.4.  Example of the One Step Procedure for Simulating a MVN Distribution 
for One Year. 
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− Results of Simulating MVN Distribution 
 
 After simulating a multivariate probability distribution one must first test the simulated 
values to be sure they are appropriately correlated.  This involves calculating the correlation 
matrix for the simulated random variables and comparing this correlation matrix to the original.  
Simetar includes a statistical test to assist in validating the correlation of multivariate 
distributions.  The validation procedure for a MVN distribution is demonstrated using the 
example in Multivariate Normal Distribution Demo.XLS.  
 
 The correlation test used in validation compares the correlation matrix used for the 
simulation to the implicit correlation matrix in the simulated variables.  For a model with three 
random variables the Check Correlation in Simetar’s Hypothesis Testing for Data menu, the user 
provides the location for the three simulated random variables, say B:8; B108 of the SimData 
worksheet and the location for the correlation matrix to simulate the three random variables.  The 
null hypothesis for the test is that each correlation coefficient for the simulated variables equals 
the original or assumed correlation coefficient or: 
 

 0 ij ijˆH :    =  ρ ρ  
 
The test uses a Student –t test and the critical value at the alpha equal 5% or less based on 
sample size.  To reject the null hypothesis the calculated t-test statistic must exceed the critical 
value of, say, 2.43 at the 98.3% confidence level.  The calculated t-test statistics in Figure 7.6 are 
all less than 2.43 so we fail to reject the null hypothesis and say the simulated correlation 
coefficients are statistically equal to the assumed (historical) correlation coefficient at the 98% 
level.  This test must be done for each year simulated by the MVN distribution.   
 
 
 
 
 
 
 
 
 
 
 
 
 Simetar provides three non-parametric tests for validating MVN distributions.  The tests are: 
 

• Two Sample Hotelling 2T  Test – tests the historical mean vector vs. the mean vector 
for the simulated variables. 

• Box’s M Test – tests the historical covariance matrix vs. the covariance matrix for 
the simulated variables. 

• Complete Homogeneity Test – simultaneously tests the historical means vector and 
covariance matrix vs. the means vector and covariance matrix for the simulated 
variables. 

 
 

 
 
Figure 7.6.  Example of a Student –t Test for a Correlation 
Matrix. 
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The tests are described in Chapter 3 and 16 in more detail.  If the tests “Fail to Reject the Null 
Hypothesis” that the simulated parameters equal the historical parameters, then the simulation 
process simulated the MVN distribution appropriately.  An example of using the non-parametric 
tests to validate a MVN distribution is provided in Figure 7.7.  When the Test Values are less 
than the Critical Values, the tests will Fail to Reject the null hypothesis and this is what we want. 
 
 
 
 
 
 
 
 
 
 
Multivariate Empirical (MVE) Distribution 
 
 Two or more correlated random variables can be simulated as a multivariate distribution, 
even if the variables are not normally distributed.  For example, non-normal MV distributions 
can be simulated as a MVE distribution.  The generalized MV procedure presented here for the 
MVE distribution allows one to correlate non-normal distributions in a simulation model. 
Richardson and Condra first introduced the procedure in 1978 and an extension of their original 
procedure is used here and expanded upon in Chapter 8.  King later reported the procedure to 
simulate a multivariate beta distribution.  The workbook Multivariate Empirical Demo.XLS 
demonstrates the steps for MVE parameter estimation and simulation described in this section. 
 
 A MVE distribution has three parameters or components to be estimated.  The MVE is 
described here for a model with four random variables, eventhough the procedure can easily be 
expanded for an m variable MVE.  The three components/parameters are:  
 

– Deterministic component for each of the four variables, jX̂  for j = 1, 2, 3, 4. 
– Stochastic component for each of the four variables, Sej$  for j = 1, 2, 3, 4 
– Multivariate component for the four variables ρ4x4 . 

 
– Parameters for a MVE Distribution 
 
 The deterministic component is the projected value based on the mean, trend regression, 
multiple regression, or time series model for each of the random variables, such as: 

 

ij 1 i 2 i-1 3 i
ˆ ˆ ˆˆ ˆX  = a  +  b T   +  b X   +  b Z  

 
or simply the mean: 
 
 ij iijX̂  = X  

 
 

 
 
Figure 7.7.  Non-Parametric Tests for Testing Simulated Values from MVN Distributions. 
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where $Xij  are the predicted values for all random variables Xj, j = 1, 2, 3, … m, and i denotes 
the periods (years, months, etc.) over which the variable is to be simulated. 

 
 The stochastic component for the MVE distribution is the measure of the dispersion about 
the deterministic component or Se$ .  The dispersion measure for an empirical distribution is the 
vector of sorted deviations from the deterministic component, expressed as a fraction of the 
forecasted values at each historical period i.  The êS  values are calculated for each random 
variable as: 

 
ij ij ij

ˆ ij ijeij

ˆ ˆeij eij

ˆê   =  X     X

ˆˆF   =  e /X

S   =  Sorted (F )

−

 

 
where êijS  are the sorted fractional residuals for each of the random variables Xj, j = 1, 2, 3, 

…, m over the historical period i = 1, 2, 3, …, T 
 
 Multivariate component for the MVE distribution is the correlation matrix of rank m for the 
m random variables.  The correlation matrix must be calculated using the unsorted residuals 
(e ),ij$  i.e., the stochastic component.  For a 4 variable model the ρ  matrix is: 
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– Parameter Estimation for the MVE Distribution 

 
 The steps for estimating the parameters for a MVE distribution are: 
 

1. Calculate the best model possible to predict each of the random variables, whether this is 
simply the mean or a complex econometric model, such as, a trend regression, a multiple 
regression, or a time series model. 

  $Xij  = econometric model 
 

2.  Calculate the residuals, ijê ,  from the econometric forecast for each random variable. 
 

3.  Calculate the mxm correlation matrix for all of the random variables using the unsorted 
residuals.  (Note:  Use the residuals to calculate the correlation matrix because the 
residuals are the stochastic component of the variables to be correlated.  Calculating the 
correlation matrix from the actual data is equivalent to calculating the multivariate 
measures about the mean which is not the same as the correlation for the residuals.   
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4.  Calculate the fractional residuals for each variable and then sort these values for each of 
the random variables.  Calculate the pseudo minimums and maximums for each variable 
using the sorted fractional residuals. 

 
5. Assign probabilities to each of the sorted fractional residuals including a zero to the 

pseudo minimum and a one to the pseudo maximum. 
 
– Parameter Estimation Using Simetar 
 
 The EMP icon on the Simetar toolbar can be used to calculate all of the parameters for an 
MVE distribution.  The EMP icon calculates the êijS  values for multiple variables assuming the 
MVE uses either actual data, deviations from mean or deviations from trend.  If more complex 
forecasting models are needed to project ijX̂ , use the residuals from the econometric model and 
select the Actual Data option in the EMP icon to estimate the parameters. 
 
 The steps for estimating the parameters for a MVE distribution are presented in Multivariate 
Empirical Demo.XLS.  The worksheet starts with six random variables and goes through the 
steps described above for estimating the parameters.  The data do not have statistically 
significant trends so fractional deviations from the mean are used to estimate the Si  parameters 
for the empirical distributions.  The resulting MVE distribution is simulated three different ways 
in Steps 7-9. 

 
– Simulating a MVE Distribution 
 
 A MVE distribution can be simulated several ways in Excel using Simetar functions.  Three 
methods are presented here starting with the easiest and proceeding to the most complex.  But 
first the general procedure is described in matrix notation for completeness.   
 
 The first step is to simulate an Mx1 vector of correlated uniform standard deviates or 
CUSD’s.  The Simetar array function =CUSD( ) performs the necessary calculations and 
simulation.  In its most simple form the CUSD function is =CUSD (Correlation Matrix) so the 
result is m cells with CUSDs as demonstrated in Figure 7.8. 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7.8.  Example of Simulating a Vector of CUSD’s. 
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 The final step in simulating a MVE distribution is to use the CUSD’s in an empirical 
distribution.  The formula varies depending upon the format of the jS  values: 
 
 - jS  are actual data  
 
  j j j jX  = EMP (S , P(S ), CUSD )%  
 
 - jS  are absolute deviations from means  
 
  j j j j jX  = X  + EMP (S , P(S ), CUSD )%  
 
 - jS  are fractional deviations from means  
 
  j j j j j jX  = X  + X  * EMP (S , P(S ), CUSD )%  
 
 - jS  are fractional deviations from a forecast 
 
  j j j j j j

ˆ ˆX  = X  + X  * EMP (S , P(S ), CUSD )%  
 
The EMP( ) Simetar function simulates an empirical distribution defined by j jS  and P(S )  using 
the uniform standard deviate indicated by the jCUSD . 
 
 There are two ways to simulate the MVE distribution with Simetar.  The first method uses 
the =MVEMP( ) function and it takes only one step.  The one step method calculates all of the 
parameters in the background and also generates the CUSD’s.  Program the one step MVE 
distribution function as: 
 
 =MVEMP(Actual Data,,,,Forecasted Xs, Code) 
 
where: Actual Data is the location for the original historical data, 
  The ,,,, must be provided and indicate optional parameters that are not provided, 
  Forecasted Xs represent the ijX̂  for the thi  period to simulate, 
  Code is a switch to specify the format for the Sjs, as 0 for actual data, 
  1 for fractional deviates from mean,  
  2 for fractional deviates from trend, and 
  3 for differences from mean. 
 
The =MVEMP( ) function is an array function so highlight m cells representing the m random 
variables in the MVE distribution.  Additionally, the function is completed by pressing Control 
Shift Enter.  An example of simulating a six variable MVE distribution using the one step 
method is presented in Figure 7.9. 
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 The second method for simulating an MVE distribution with Simetar is a two step process.  
First generate an mx1 vector of CUSD’s.  Next use the CUSD’s in the EMP function applying  
the appropriate formula based on the form of the jS  to each of the m random variables: 
 
 j j j j j

ˆ ˆ=X  + X  * EMP (S , P(S ), CUSD )  
 Repeat this formula for each of the m variables in the distribution. 
 
This method is demonstrated in Figure 7.10 for a six variable MVE distribution where the jS 's  
are specified as fractional deviations from the mean. 
 
 
 
 
 
 
 
 
 
 
 
 If there is a one step method, what is the need for the two step method?  The two step 
method is used when not all of the random variables have the same form for the jS 's.   For 
example, if the first three Xs have no trend so they are simulated as actual data and the next three 
X’s have a trend and must be simulated as fractional deviations from trend. 
 
– Results of Simulating MVE Distribution  
 
 A validation test to insure that the random variables are appropriately correlated should be 
done before using the random values in a decision model.  Simulate the MVE distribution 
collecting values for the stochastic variables and then test the correlation implicit in the 
simulated values against the correlation matrix for the historical data.  Validation of the 
simulated random variables is particularly important for non-normal distributions because the 
procedure is not widely used and understood.  Simetar provides a correlation test and three non-
parametric tests for validating MVE distributions.  All four tests should be used to validate all 
multivariate distributions. 

 
 
Figure 7.9.  One Step Method to Simulate an MVE Distribution. 

 
 
Figure 7.10.  Example of Using a Two Step Method to Simulate a MVE Distribution. 
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 The six variable MVE distribution simulated in the Multivariate Empirical Demo.XLS is 
used to demonstrate the four validation tests in the SimData worksheet.  The results of the four 
tests are summarized in Figure 7.11.  The results of the correlation test reveal that all of the 
correlation coefficients implicit in the simulated variables are statistically equal to their 
counterparts in the actual data’s correlation matrix, at the 99% level.  Additionally the mean 
vectors and covariance matrices for the simulated data and the actual data are statistically equal 
at the 95 percent level.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mixed Multivariate Probability Distributions 
 
 When parameter estimation (or the problem being analyzed) requires simulation of a 
distribution where the random variables are not all normal or all empirical, what do you do?  
Ignoring the correlation of these variables would bias the key output variables in the model by 
over-or under-stating their means and risk.  The procedure presented in this section allows for 
the appropriate correlation of random variables with different distributions.  For example, one 
variable can be normal, another can be empirical, and another can be uniform or beta and yet the 
probability distribution can be appropriately correlated in simulation, so historical variability and 
correlation will be observed in the simulation.  Richardson and Condra reported this procedure in 
1987. 
 
– Parameter Estimation 
 
 The deterministic component for each random variable must be quantified using the best 
model possible, such as, mean, trend regression, multiple regression, or time series model.  The 
stochastic component for each variable is the residual from the deterministic component and 
must be calculated for each variable in the MV distribution, i.e., estimate the $e 's.ij   The 
multivariate component of the MV distribution (ρ  matrix) must be estimated using the unsorted 
residuals or $e 's.ij   The parameters to quantify the stochastic component for each of the random 
variables are estimated based on the appropriate parameters for each variable’s assumed 
distribution, i.e., $σ  for the normal, i iS  and P(S )  for the empirical, minimum and maximum for 
the uniform, and so on. 
 
 
– Simulation Steps 

 
 
Figure 7.11.  Validation Tests for MVE Distributions. 
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1. Generate m correlated uniform standard deviates using the correlation matrix and the Simetar 

command =CUSD for an mx1 array of iCUSD ,  where i = 1, 2, 3, … m. 
2. Use the inverse transform formulas to simulate random values for each variable by applying 

the appropriate parameters for the variable’s deterministic and stochastic components and the 
variable’s respective iCUSD . 

 
– Simulating a Mixed Multivariate Distribution 
 
 Assume the mixed MV distribution to simulate has 4 random variables, defined and 
distributed as follows: 
 

( )

( )
i i

i i

ˆX  ~  Normal (X, )

Y  ~  Empirical S , P(S )

Z  ~  Empirical S , P(S )

W  ~  Uniform (min, max)

σ

 

 
 The multivariate component for the mixed MV distribution is the correlation matrix for the 
four random variables.  The correlation coefficients for the ρ  matrix must be estimated using 
the residuals from the deterministic component for the X, Y, and Z variables and the historical 
data for variable W.  The actual historical data has to be used for W because of the nature of the 
uniform distribution.  The resulting correlation matrix is: 
 

ρ

ρ ρ ρ ρ
ρ ρ ρ

ρ ρ
ρ
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 Generate a vector of correlated uniform standard deviates (CUSDs) of size mx1 using the 
array function =CUSD as follows: 
 
Block a 4x1 array and type the command 
=CUSD (Correlation Matrix Range), then 
press the Control Shift Enter keys. 
 
The resulting 4x1 array has four values that change as the F9 key is pressed and during 
simulation, Simetar will generate new values for each iteration.  The four values in the array are 
correlated based on the correlation matrix. 
 
 Apply the appropriate Simetar function to simulate the random numbers for each random 
variable being sure to use each variables iCUSD ,  
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( )
( )

1

yi i 2

zi i 3

4

ˆ ˆX = NORM(X + ,  CUSD )

ˆ ˆY = Y + Y * EMP S , F(S ), CUSD

ˆ ˆZ = Z + Z * EMP S , F(S ), CUSD

W = UNIFORM(Min, Max, CUSD )

σ%

%

%

%

 

 
 The Simetar functions for generating random variables all allow for specification of a 
random uniform standard deviate (see Chapter 16).  In the case of a MV distribution you must 
specify a CUSD rather than an independent USD. 
 
 The Multivariate Mixed Probability Distribution Demo.XLS spreadsheet provides an 
example of how to simulate random variables that have different probability distributions, as a 
multivariate distribution.  The first variable is assumed to be normally distributed, the second 
and third are distributed empirical and the last is distributed uniform.  The MV distributions 
simulated as indicated in (cells B79-B82) use their respective CUSD’s in the inverse transform 
formulas Figure 7.12.   
 
 
 
 
 
 
 
 
 
 
 Four validation tests were used to statistically determine if the MV mixed distribution 
reproduced the historical correlation matrix, means vector, and covariance matrix.  The null 
hypothesis that the simulated test statistic ( , X and )ρ Σ  equal their historical counterparts were 
not rejected, indicating that the procedure worked.  The test statistics are reported in Figure 7.13.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7.12.  Example of Simulating a MV Mixed Distribution Using CUSD’s and the Inverse 
Transform Functions. 

 
 
Figure 7.13.  Validation Tests for a MV Mixed Distribution. 
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Simulating Large Multivariate Distributions 
 
 For multivariate (MV) distributions containing a large number of variables, it is often 
impossible to use the procedures described for the MVN and MVE distributions.  The symptom 
that the MVE and MVN methods will not work, is that Excel returns “# VALUE” in the CUSD 
or CSND arrays.  The function fails because the correlation matrix is not positive definite, and 
therefore the correlation matrix ( )ρ  can not be factored by the square root method (Choleski 
decomposition).  A factored matrix ( )ρ  is required to simulate the MVE and MVN distributions. 
 The equations for simulating the MVE and MVN distributions show the dependence of the 
method on the R matrix: 
 

(NxN) (NxN)

(Nx1) (NxN) (Nx1)

(Nx1) (NxN) (Nx1)

Let  = NxN corrrelation matrix             

and R  =                                  

CSND  = R  * ISND            
also CUSD  = ERF (R  * ISND )

ρ

ρ
 

 
where: ERF is the error function for intergrating the area under a standard normal distribution 

from - ∞  to z and is calculated using Excel’s function =NORMSDIST. 
 
 
The Choleski decomposition of the correlation matrix is calculated in Simetar using the 
=MSQRT (Correlation Matrix) function.  If the correlation matrix is positive definite, the 
MSQRT function will return a non-zero value in every cell in the upper right triangle and the 
main diagonal of the result matrix.  On the other hand, if MSQRT returns a matrix with zeros in 
the upper right triangle or main diagonal (or #VALUE) the distribution cannot be simulated 
using the MVE or MVN procedure.  See the correlation matrix and its factored matrix in Figure 
7.14 for an example of a matrix which is not positive definite.  The example comes from the Bad 
Correlation Matrix Demo.XLS. 
 
 As a further test of a problem matrix, the determinate of the full symmetric correlation 
matrix or the covariance matrix should be calculated to make sure it is positive or that it is not so 
close to zero it causes exponent overflows in =MSQRT.  The correlation icon on the Simetar 
toolbar can be used to calculate the full symmetric correlation or covariance matrix.  The 
determinate of a square matrix can be calculated using the determinate function in the Simetar 
Matrix Operations dialog box.  If the determinate for either the correlation or covariance matrix 
is negative or almost zero the matrix cannot be factored.  This result is generally due to the fact 
that there are too many “large” correlation coefficients or the number of correlation coefficients 
outside the ± 0.50 causes the MV distribution to be over specified. 
 
 When the MVE and MVN procedures described in this Chapter cannot be used, there are 
two options for simulating a MV distribution:  (a) use a bootstrap simulation technique or (b) re-
arrange the correlation matrix. 
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– Bootstrapping a Multivariate Distribution 
 
 Bootstrap methodology can be used to simulate a multivariate empirical distribution if there 
are a large number of observations for the random variables.  Bootstrap simulation is based on 
Elfon’s (1979) work on bootstrapping univariate distributions.  For a complete description of 
univariate bootstrapping see Chapter 11.  If applied properly bootstrap simulation of MV 
distributions maintains not only the correlation among variables, but also higher order moments 
and any multi-modal characteristics of the variables.  To simulate a MV distribution using 
bootstrap simulation methodology, do the following: 
 

1. Prepare the historical data in a table with all random variables contiguous and in the 
proper temporal order, 1i 2i miX ,  X , ... X  for m variables, with years i for the rows.  See 
Figure 7.15 for a data table in the proper format. 

 
2. Use Simetar’s =BOOTSTRAPPER function to randomly draw rows from the data matrix. 

The array function is programmed as: 
 

=BOOTSTRAPPER(Data Matrix, TRUE) 
 
where: TRUE instructs Simetar to draw m values from the m columns of the Data Matrix and 

that all of M values must come from one row. 
 
 Simetar draws rows of values from the data matrix at random if the function is used properly 
as an array function and is concluded by pressing Control Shift Enter.  See the example in Figure 
7.15 taken from the Bootstrap Multivariate Distribution Demo.XLS. 
 
 

 
 
Figure 7.14.  Example of a Correlation Matrix that Can Not be Factored by the 
Square Root Method. 
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Figure 7.16.  Validation Tests and PDFs for a Bootstrapped MV Distribution. 

 
 
 
 
 
 
 
 
 
 
 The benefits to the bootstrap simulation methodology for a MV empirical distribution are:  
(a) it draws random jX%  observations in historically observed paired groups so the historical 
intratemporal correlation is maintained, (b) the historical data are used to simulate each 
variable’s distribution so no assumptions about distributional shapes or types are required, and 
(c) the method is efficient in that no parameters must be calculated.  The disadvantage to the 
methodology is that the values simulated are the discrete historical values because interpolation 
between observed points is not employed.  To minimize this being a significant disadvantage, the 
original sample in the data matrix must be sufficiently large to define the population being 
simulated, as no new values are generated by interpolating among observed values.   
 
 
 
 
 
 
 
 

 

 
 
Figure 7.15.  Using the Bootstrapping Function to Simulate a MV Distribution. 



--- Chapter 7 --- 

 

19 

 When using bootstrap simulation it is recommended that the number of iterations should be 
expanded to 1000 or more (Conover).  The question remains, how well does this method work?  
For the example MVE in Figure 7.15, the results from a 1,000 iteration simulation are 
summarized in Figure 7.16.  The means for the simulated and historical series are statistically 
equal as are the covariance matrices, based on three non-parametric validation tests.  The 
skewness for the distributions are also very similar between the simulated and the historical 
distributions.  The PDFs for four of the random variables are presented to show that the 
simulated distributions conform closely to the historical distributions.  In particular the PDFs 
show that the multi-modal aspects of the historical distributions are matched by the simulated 
values. 
 
– Two Stage Correlation for Multivariate Distributions 
 
 The second method for simulating a MV distribution defined by a correlation matrix that 
will not factor is to make two correlation matrices and factor the two matrices.  The new 
correlation matrix is re-estimated after eliminating one or two variables and a second correlation 
matrix between the deleted variables and one remaining variable is estimated. 
 
 To demonstrate the procedure, the 10x10 correlation matrix in Figure 7.14 is used because it 
will not factor.  The 3rd variable in the original data set is removed and a new correlation matrix 
is estimated (Figure 7.17).  The 3rd variable was deleted because of its large number of 
correlation coefficients outside the ± 0.5 range.  (The 5th variable could have been the eliminated 
variable for the same reason.)  The resulting 9x9 correlation matrix factors as demonstrated by 
the third part of Figure 7.17.  The second correlation matrix is a 2x2 between variables 3 and 5 
(or any other variable remaining in the 9x9) (see Figure 7.18). 
 
 Once the two correlation matrices have been estimated and factored, the CSNDs for the 10 
variables are generated in three steps. 
 

1. Use the first correlation matrix and the =CSND (9x9 Correlation Matrix) function to 
generate an array of nine CSNDs (Step 1 in Figure 7.18). 

 
2. Use the second correlation matrix and the =CSND (2x2 Correlation Matrix, 2x1 ISND 

Array) function to generate two CSNDs for variables 3 and 5 (Step 2 in Figure 7.18).  
The two ISNDs in the CSND function are actually one ISND for variable 3 (=NORM( )) 
and the CSND5 generated for variable 5 in Step 1. 

 
3. Assemble the 10 CSNDs into a final 10x1 array using the CSNDs for variables 1-2 and 4-

9 from Step 1 and variable 3’s CSND from Step 2.  In Figure 7.18 the final array is 
G96:G105. 

 
The assembled 10x1 CSND array can be used to generate MVN values or converted to CUSDs 
using =NORMSDIST( ) and used to generate MVE values.   
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 Before using the CSNDs for generating random numbers, they need to be tested to insure 
that they are appropriately correlated. To test the correlation select the assembled array of 
CSNDs as the simulation output variables, simulate the workbook, and test the implicit 
correlation for the simulated values against the original 10x10 correlation matrix.  The results of 
the correlation test for the problem in Figure 7.18 indicate that all but two of the correlation 
coefficients in the matrix are statistically correlated as they were over the historical period.  If 
the correlation test indicates that many of the correlation coefficients are statistically different 
from the original matrix, select a different variable to eliminate and repeat the process.  
Experience suggests that the variable with the most large correlation coefficients is the best 
candidate for elimination and for some problems more than one variable must be eliminated and 
then added back via the second matrix.  The variable selected to correlate back to (5 in this 
example) must be highly correlated to the eliminated variables and to the remaining variables in 
the correlation matrix.  The Bad Correlation Matrix Demo.XLS workbook contains the example 
described in this section. 
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Figure 7.18.  Steps for Simulating CSNDs from a 9x9 and a 2x2 
Correlation Matrix. 
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Appendix Figure 7.1.  Simulation of a MVN Distribution. 

Appendix:  Simulation of a MVN Distribution 
 
 
 In matrix notation a four variable MVN distribution is simulated using the R matrix, which 
is the factored correlation matrix.  The Choleski decomposition can be used to factor the 
correlation matrix, i.e., to calculate the square root of the correlation matrix.  Appendix Figure 
7.1 shows the matrix notation for the steps to simulate a four variable MVN distribution.  The 
ISND vector is an Mx1 vector of independent standard normal deviates which is multiplied by 
the R matrix to calculate a vector of correlated standard normal deviates (CSND’s).  Multiplying 
the MxM standard deviation diagonal matrix by a vector of CSND’s and adding the product to 
the means gives a vector of correlated stochastic values that are distributed MVN.  The CSND 
vector is not presented in Appendix Figure 7.1 as this is an intermediate step, and is shown in 
Step 8 of the Multivariate Normal Distribution Demo.XLS. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 The MVN distribution simulation depicted in Appendix Figure 7.1 can be written as 
individual equations for each random variable, much like a univariate normal variable.  Recall 
that a univariate normal variable is simulated as: 

 

ê
ˆX  =  X  +   * SNDσ%  

 
where SND is an independent standard normal deviate distributed N(0,1). 
 
For a MVN distribution each random variable is simulated as: 
 
 ˆi i iej

ˆ ˆX   =  X   +    *  CSNDσ%  
 
where iCSND  is the thi  correlated standard normal deviate in the CSND vector. 
 
Simetar calculates the CSND vector two ways.  Both methods are used in Multivariate Normal 
Distribution Demo.XLS and are described here: 
 
 

1. The user can specify the vector of ISND’s.  The 3 variable MVN distribution example in 
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Appendix Figure 7.2 shows that the vector of ISND’s is provided as input in column I.  
The CSND function is an array function so highlight 3 cells and enter the function 
=CSND (correlation matrix, ISND vector) and press Control Shift Enter. 

 
 
 
 
 

 
 
 
 
 
 
2. The user does not specify the vector of ISND’s.  The 3 variable MVN distribution 

example in Appendix Figure 7.3 shows that the CSND vector is calculated using only 
the correlation matrix as input.  In this case Simetar generates the ISND’s without the 
user explicitly including this step. 

 
 
 
 
 
 
 
 
 
 

 
 
Appendix Figure 7.2.  Example of CSND Calculated With the ISND Vector Provided as 
Input. 

 
 
Appendix Figure 7.3.  Example of CSND Vector Calculated Without Explicitly Providing 
the ISND Vector. 
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