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Simetar Quickstart 
 
Simulating Random Variables 
− Basic Univariate Probability Distributions 

=UNIFORM (min, max); USD=UNIFORM( ) 
=NORM (mean, std dev); SND=NORM( ) 
=EMPIRICAL (sorted data) 
=BETAINV (USD, alpha, beta, min, max) 
=GAMMINV (USD, alpha, beta) 
=BERNOULLI (p) 

− Multivariate Probability Distributions 
=MVNORM (mean vector, covariance matrix) 

 =MVEMPIRICAL (matrix of variables) 
 =CSND (correlation matrix) 
 =CUSD (correlation matrix) 
 

 
Toolbar Icons 
 

  -- Simulation options for simulating an Excel workbook 

   -- Set all random variables to expected value 

   -- Calculate summary statistics 

   -- Multiple regression (OLS, GLS, Logit, Probit, Ridge, 2SLS, WLS) 

   --  Simple regression 

   --  Calculate correlation and covariance matrices 

   --  Data manipulation and matrix operation functions 

   --  Stochastic dominance with respect to a function 

   --  Stochastic efficiency with respect to a function 

   --  Develop a stoplight chart for comparing risky alternatives 

   --  Statistical tests for validating simulated random variables 

   --  AR and VAR time series model estimates 

   --  Forecasting with exponential smoothing and seasonal indices 

   --  Univariate parameter estimator for 16 probability distributions 

   --  Develop line chart with and without labels on data points 

   --  Fan graph of alternative stochastic scenarios 

   --  Histogram of alternative stochastic scenarios 

   --  Cumulative distribution function chart 

   --  Probability density function chart 

   --  Probability plot charts (NP, QQ and PP plots) 

   --  Box plot chart 

   --  Scatter matrix plot 

   --  Estimate parameters for an empirical probability distribution 

   --  Personal settings for Simetar 

   --  Help for 250+ user defined functions in Simetar 
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 Chapter 1 
 Introduction to Risk 
 
 

“Reality is only one realization.”  -- Chip Conley 
 
 
Decision making in business implies that management has a choice among alternative 

actions. The alternative actions could be different combinations of crops to produce, alternative 
production systems for crops or livestock, or different marketing or financial strategies for an 
agribusiness.  If the decisions are to be made in a risk free setting, the manager can easily 
determine which strategy is best ... the one with the greatest economic return.  When decisions 
are made in a risky environment the manager cannot use such a simple rule because the 
economic return for each alternative is a distribution of returns rather than a single value.  One 
approach to decision making under risk is to simulate the alternative strategies to estimate the 
distribution for each alternatives= return and then base the decision on these simulated 
distributions.   

 
The purpose of simulation in risk analysis is to estimate distributions of economic 

returns for alternative strategies so the decision maker can make better management 
decisions. 
 

Without risk there is very little to be gained from simulation beyond what you can do with a 
calculator.  Simulation models without risk (deterministic models) can be used to learn how an 
economic system works and how it responds to managerial changes.  Deterministic models can 
answer the first round of “What if ….?” questions about the system.  However, without risk in 
the model the outcomes for the alternative strategies will not be robust enough for actual 
decision making in a risky economic environment.   
 

At this point it is worthwhile to define risk.  In an economic system there is risk associated 
with yields (production), input prices, output prices, interest rates, annual rates of change in 
input prices, market share, etc.  For farmers, ranchers, and agribusiness managers there is a 
common thread among these variables, namely:  the manager does not have control over these 
variables.  Risk is the part of a business decision, the manager cannot control.   

 
The Texas Agricultural Extension Service surveyed producers in three regions of Texas and 

three regions of Kansas as to their perceptions of sources of risk.  Farmers in both states ranked 
price risk as the most important, followed by yield risk and then changes in input costs.  The 
producers were also asked about their risk management techniques.   

 
 
 
 
 
 
The material contained herein may not be copied or distributed in whole or part without 
permission from Dr. James W. Richardson, Department of Agricultural Economics, Texas A&M 
University. 
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Review of Literature 
 

 The history of risk analysis is outlined by Bernstein and is highly recommended reading for 
those wanting a deeper explanation of risk.  Hardaker, et al., Fleisher and Robison and Barry 
provide descriptions of risk in agriculture and ways that firm managers can manage risk. 
 
 A comprehensive, although not complete, review of literature in the area of simulation 
analysis by agricultural economists from the 40s through the 70s is provided by Johnson and 
Rausser.  Their work is highly recommended for the serious student of simulation.  A second 
review of literature on simulation worthy of note is by Anderson in 1974. 
 
 The application of simulation techniques to project assessment and investment analysis is 
described best by Pouliquen and by Reutlinger.  They were innovators in the use of risk analysis 
to evaluate risky investments using probability distributions of benefit cost ratios.  These early 
works have stood the test of time and remain relevant to project assessment under risk today. 
 
 An early introduction to risk analysis for business decisions is provided by Jones and by 
House and more recently by Winston.  Richardson and Mapp’s firm level modeling effort in 
1976 lead to Richardson and Nixon’s development of the Farm Level and Income Simulator 
(FLIPSIM) and more than 250 firm level simulation analyses.  (See the Economic Models 
bibliography at www.afpc.tamu.edu for an extensive list of publications that have used FLIPSIM 
to analyze a range of topics in agricultural economics.)  This line of firm level simulation 
modeling continues with the development of the Farm Assistance model by Klose and Gray’s 
agribusiness model named FRAN.   
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Chapter  2 
Terminology for Simulation Modeling and Steps for Model Development 
 

 Webster’s New Collegiate Dictionary defines simulation as “the act or process of 
simulating,” or “the imitative representation of the functioning of one system or process by 
means of the functioning of another,” and “examination of a problem often not subject to direct 
experimentation by means of a simulating device.”  All three of these definitions are useful to 
describe the material presented in this book.  Economists and business analysts construct 
mathematical representations of actual systems that can not be experimented on directly for the 
purpose of simulating “What if …?” questions.  It is the goal of modelers to construct models 
that imitate how the real systems would respond to exogenous changes in management and 
policy. 
 
 One could compare simulation models developed by economists and business analysts to 
experiments run by bench scientists.  Bench scientists conduct repeated experiments and record 
results on plants, animals, or cells under controlled situations for specific treatments.  This 
process is a simulation, just the same as an economist who experiments on a business model to 
forecast sales and profits for the next year.  For social scientists there is no laboratory to 
experiment on human subjects or “feedlot” where they can do feed or price trials on 
unsuspecting consumers.   
 
 For this text the working definition of a simulation model is:  a mathematical representation 
of a business or economic system that reflects sufficient detail of the system to address the 
questions at hand.  An economic model of a system can thus be very simple or very detailed 
depending upon the question being addressed.  If the question is economic viability in 10 years 
one does not need to include inventory management rules and algorithms for purchasing Xerox 
paper, where as if the question is monthly cash flow management this may be a relevant part of 
the model. 
 
 Simulation is defined as the process of solving a mathematical simulation model 
representing an economic system for a set of exogenous variables.  Alternative management 
strategies and policy scenarios constitute the exogenous variables and are the numerical 
representation of a “What if …?” question.  A simulation model is “solved” a large number of 
times to statistically represent all possible combinations of the random variables in the system.  
The results of a simulation process is a large number of simulated values for key output variables 
(KOVs) of interest to the decision makers.  The simulated values for a KOV represent an 
empirical estimate of the probability distribution for the variable and quantifies the risk 
associated with the variable.  This type of answer is analogous to performing a large number of 
lab trials on mice using the same dosage of product X to determine the mean and variance of a 
lethal dose. 
 
Terminology 
 
− Types of Simulation Models 
 
 Simulation models used for economic and business analysis are digital as opposed to analog 
models used by most bench scientists.  Economists express the functions of a system as a series 
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of inter-related mathematical equations to solve for the variables of interest to decision makers.  
Analog models use real time examples such as test plots for crops or animal feed trials to show 
the response to “What if…?” questions.  Digital models that produce results in seconds are cheap 
to build and run while analog models can take weeks or months to run and costs can be quite 
high. 
 
 The old standby for describing the difference between analog and digital models is a clock.  
The clock with two hands and numerals on the face is an analog model that simulates the passage 
of time by moving the hands around the center point.  A digital clock shows the time with two 
digits representing the hour and two digits representing the minutes, and time is simulated by 
changing the numbers. 
 
− Linear Programming vs. Simulation 
 
 Mathematical programming models are simulation models in one sense.  They can represent 
the mathematical relationships necessary to describe an economic system or business.  However, 
they seldom incorporate risk and they solve for the optimal answer and give the normative 
answer of what ought to be.  Simulation models, on the other hand, incorporate risk and answer 
the positive question of what is the likely outcome. 
 
 Both quantitative analysis techniques can be used to answer What if …? questions.  Experts 
in linear programming can configure their models to incorporate risk and expert simulators can 
optimize their simulation models.  In general, programming models are used to answer the 
normative questions of what is the most profitable enterprise mix or the least cost method of 
meeting a goal.  Simulation models are generally used to answer questions of what is the profit 
risk for specific enterprise mixes or what is the range of costs for alternative means of meeting a 
particular goal. 

 
− Deterministic vs. Stochastic Simulation Models 
 
 Simulation models can be solved both deterministically and stochastically.  Deterministic 
models are simulation models without risk and are solved using simple calculator arithmetic.  
Each X variable is mapped to a single outcome Y or  

 for Y = a + bX 
 where a and b are fixed parameters 
 
Stochastic simulation models are solved a large number of times using one value for X to 
generate a sample of outcomes for the dependent variable Y, recognizing that X has risk 

X Y 

X 

Y 
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 Y = a + bX + ẽ 
 where ẽ represents a probability distribution of the risk about the deterministic component 

of Y defined by a + bX 
 
Because there is risk in the forecast for Y, it must be forecasted using a probability distribution 
rather than using a point estimate.  The simulated distribution for Y informs the decision maker 
of the riskiness of the forecast for the KOV, the skewness of the outcome, and the chances of a 
favorable outcome, all answers not available from a deterministic or linear programming 
forecast. 
 
− Discrete vs. Continuous Event Simulation Models 
 
 Another label used to describe simulation models is discrete and continuous.  Discrete 
models refer to simulation models that have distinct increments for time, such as years, months, 
weeks or days.  Continuous models have no time steps or there are so many periods in the time 
horizon that periods are not differentiated.  Most economic models are discrete in that time is 
important and the models must account for changes in value, stock levels, cash flows, and debt 
repayment.  Production models are particularly time sensitive because of the pre-plant activities, 
the growing season, and the harvest periods.  Optimization models are generally continuous 
models in that the optimal activity combination is not sensitive to time periods.  More complex 
optimization models, called poly-period programming models, optimize an object function over 
multiple periods. 
 
− Kinds of Simulation Models Economists Build 
 
 Economists generally build and use digital, discrete-event, non-linear, stochastic models of 
business systems.  Examples of economic simulation models are: 
 

- Single enterprise model 
- Whole farm model like FLIPSIM (Richardson and Nixon) 
- Agribusiness model like FRAN (Gray or Gill) 
- Commodity model such as cotton, or wheat, or corn, or dairy, etc. 
- Supply/demand sector model with multiple commodities for policy analysis such as 

cotton – wheat – feedgrains – soybeans – rice and/or cattle – hogs – dairy – poultry 
(FAPRI Model) (Brown, Adams, Ray and Richardson) 

- National economic model (Hughes) 
- International model encompassing many countries and commodities (CARD at Iowa 

State) 
 
Advantages and Disadvantages of Simulation 
 
− Advantages 
 
 Simulate facilitates experimentation on real world systems that can not be tested in real life 
because they are to complex, involve human subjects, have to long of planning horizons, and/or 
the cost of experimentation is prohibitive.  For example, it is not feasible to experiment on the 
U.S. agricultural economy with alternative loan rates, because of all the reasons listed above.  So  
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simulation models of U.S. agriculture are developed and What if …? questions are posed to 
project the probable impacts of alternative loan rates and policy settings.  Once a model is 
developed and validated it can be used for a range of different analyses thus spreading the cost of 
model development over more periods and clients. 
 
 In the case of a business model, one can develop a model as part of a project feasibility 
study; test the feasibility of the project under a range of situations; and use the model to test 
alternative management options if the project is undertaken.  This type of simulation model 
allows the analyst to experiment on a proposed system that does not yet exist and to test 
management plans without endangering the project once it is in place. 
 
 The instantaneous nature of simulation allows analysts to experiment on systems and projects 
that have very long planning horizons.  Managers are hesitant to take a chance on a project 
which takes 5 to 10 years to produce a risky payoff.  However, simulation can produce an 
estimate of the risky payoff for an investment in minutes so managers can make better decisions. 
 
 Once a simulation model has been developed and accepted by management as a realistic 
representation of the business it can be used for training.  In this mode a simulation model can be 
used to train newly hired managers as well as mid-level managers.  Using the What if …? 
paradigm managers can learn how the business responds to a wide range of policy, economic, 
environmental, and management situations.  Learning on a virtual reality version of the business 
does not endanger the real business as trainees learn how to and how not to manage the firm.   
 
 A final advantage of simulation is that much is learned about a system during the model 
development and validation phase.  This human capital developed through building a simulation 
model is an asset to the business because now a team of developers have a comprehensive 
overview of how the business operates, rather than just one or two people at the top knowing 
how it all works. 

 
− Disadvantages 
 
 A major disadvantage to simulation models is the cost of developing and maintaining a 
model.  Without a doubt the business must be committed to funding the human capital required 
to develop a comprehensive simulation model.  However, once a model is developed it can be 
used for years with the proper updating and modification (e.g., FLIPSIM was written in 1979, 
released in 1980 and has been used for 100’s of analyses). 
 
 The biggest disadvantage is that people tend to believe projections developed by a 
simulation model just “because the model said so!”  This should never be the case.  Models are 
constructed by humans and provide projections based on input from more humans, so how do 
they produce perfect forecasts?  They don’t!  Most models produce so many output values that 
people get lost in the output, so they bestow undeserved confidence on the model’s output.  The 
fastest way to kill the credibility of a model is to start believing the output without critically 
checking all projections before releasing the results.  As simulation models get larger and more 
detailed they become harder to critically check the output.  Given today’s modern computers it is 
easier to build and use large stochastic models, we have to include risk in business decisions, 
people expect to much out of simulation models, models generate such large volumes of output it  
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is difficult to check the results, and in today’s economy one must produce a result instantly, thus 
problems will arise. 
 
 The final disadvantage of simulation model’s is that they only provide an estimate of the 
true probability distribution for key output variables.  As indicated in Figure 2.1 the simulated 
pdf may be a reasonable estimate of the true distribution, but it will never be perfect. 
 

 
 
 
− Final Word of Warning: 
 
“Simulation is to teach us about a system and to facilitate better decisions, not to predict 
point estimates and make decisions.” 
 
Complexity of a Simulation Model or What is in a Model? 
 

A simulation model need only be as sophisticated as the client requires to provide a good 
answer to a relevant problem in a timely manner.  If your client is a group of risk averse 
investors being asked to put up $50 million you will need a very detailed model of the 
investment with full accounting for risk in all components of the system.  If on the other hand, 
you are modeling the toss of the coin at the start of a football game, the model need not be very 
sophisticated. 
 
In general all models have the following parts 
 
1. An initial environment stating values for all exogenous variables and their assumptions over 

the planning horizon. 
2. Control variables the user can manage for alternative scenarios. 
3. A specific sequence of equations that determines the computational flow in the system. 
4. A probability distribution simulation component for simulating the stochastic variables in 

the system. 
5. A formatted report containing the intermediate and final results of the equations in a logical 

format using tables and charts useful to management. 
 
 

true pdf

simulated pdf 

Figure 2.1.  Comparison of the True PDF and 
the Simulated PDF. 
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 When developing simulation models in Excel the use of an organizational template is 
recommended.  An example of a simulation model template is included in Figure 2.2.  Sheet 1 of 
a workbook model should be organized so the input data, the control variables and a summary of 
the key output variables appears in the first screen (upper left quadrant in Figure 2.2).  Below 
this first screen the model should contain a logical flow of equations to calculate the intermediate 
and final or key output variables for the system (bottom left quadrant of Sheet 1 in Figure 2.2).  
In Sheet 2 of the workbook, the developer should start with all of the historical data for the 
stochastic variables in the model.  Parameter estimation for the distributions assumed for the 
stochastic variables should follow.  Actual simulation of the stochastic variables should take  
place in Sheet 2 (bottom third of Sheet 2 in Figure 2.2).  Statistical summaries of the key output 
variables and the stochastic variables are placed in separate sheets by the simulation procedure 
(Simetar or @Risk©), as well as the graphs for key output variables, as depicted in Figure 2.2. 
 

 
 
Steps for Model Development 
 
 There are numerous ways to build a simulation model.  The least successful is to use the 
trial and error approach to develop each equation.  The best approach is to investigate the system 
thoroughly, sketch a diagram of the system and then build it from the top down.  Using the top 
down approach means that you first determine the output variables (KOVs in Figure 2.3) and 
then work backwards to determine the equations and parts of the model needed to properly 
calculate the output variables (levels 2, 3, 4, 5 in Figure 2.3).  The steps to this approach are 
described in detail in this section. 

Assumptions and Input Data
Control Variables for Managing the 

Figure 2.2.  Recommended Organization of Simulation Models in Excel. 

Key 
Variables Tables of Intermediate Results

Tables of Final Results 
Key Output Variables 
Logical flow of all equations required to calculate the Intermediate  
and Final Results.  Group equations in function areas or by type. 

Simulation results by iteration with statistics
Graphs of simulated results
Tables for comparing risky alternatives

Sheet 1 

Sheets 3-N 

Historical data for all stochastic 
Calculations to estimate the parameters for the probability distributions 
Simulate all stochastic 

Sheet 2 
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– Determine the Model’s Use and Sketch a Diagram of the System 
 
 Determine the actual use the model will be put to and review the literature in the area to see 
what types of models have been built to do similar things.  Develop a simple diagram of the 
concept behind your model.  The diagram should be refined after each step in the process. Model 
purposes are many, here are a few possibilities: 

 
• Investment in a risky venture or an analysis of alternative portfolios 
• Managing a risky business or enterprise (a system) 
• Policy analysis 
• Pricing a product 
• Assessing technology 
• What if ….? 

 
– Define the Key Output Variables 
 
 The key output variables (KOVs) are any variables the decision maker (the client) thinks are 
important to the decision at hand.  The KOVs actually determine the type of model to develop.  
If the primary KOV is an internal rate of return (IROR), the model has to include all of the 
variables necessary to calculate IROR.  On the other hand, if the KOV is the level of ending 
stocks of wheat for the U.S. then the model must include supply and demand equations for the 
U.S. wheat sector. 
 
 The model flow chart can start taking on some detail once the KOV’s are determined 
(Figure 2.4).  Possible KOV’s for three different types of simulation models are listed here to 
illustrate the range of KOV’s that can be included in a model.  Specific KOVs could be any 
variable the decision maker wants for basing his/her decisions on, such as: 
 
 

KOVs 

Intermediate Results 
Tables and Reports 

Equations and Calculations to 
get Values for Reports 

Stochastic Variables 

Exogenous and Control Variables 

Figure 2.3.  Simulation Pyramid. 
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• For a firm level model KOVs include financial ratios, such as:   
-- debt asset ratio 
-- internal rate of return (IRR) 
-- net present value (NPV) 
-- percentage change in real net worth (%Δ RNW) 
-- probability of cash flow deficits 
-- probability of refinancing 
-- probability of insolvency 
-- probability of economic success 
 

• For a sector level model (econometric crop model) KOVs may include: 
-- supply variables:  yield, acres, production, supply 
-- utilization variables:  domestic use, exports, industrial use 
-- price  
-- government costs 
-- stock levels 
-- probability (low stocks) 
-- probability government costs exceed a target level 

 
• For an investment decision model KOVs may include: 

-- profit or internal rate of return (IROR) 
-- probability of a positive net present value (NPV) 
-- probability of IRR exceeding the investor's minimum rate of return 
-- probability of cash flow deficits 
-- comparison of IRR or NPV between investment alternatives 
-- benefit cost ratio 

 
– Determine the Intermediate Outputs  

 
 Intermediate output variables are those variables in the model necessary to calculate the 
KOVs and to fill the output tables with information useful to the decision maker.  These are 
the variables in the second level of the simulation pyramid in Figure 2.3. 
 
• For a firm level model intermediate output variables are the values in the:  

-- income statement 
-- cash flow 
-- balance sheet 
-- enterprise summary of production, 

receipts, and costs 
 

• For a sector level model 
-- acres planted by region, yield by region, total supply 
-- equilibrium price 
-- utilization (feed, seed, industrial, exports, stocks, CCC purchases) 
-- ending stocks 

 
 
 

Investment 
Model 

IRR

NPV

Figure 2.4.  Model Diagram for Step 2. 

Income Statement 
Cash Flow 
Balance Sheet 
Financial Ratios 

Figure 2.5.  Model Design for Step 3.

% Δ RNW 

IRR 

NPV 
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• For an investment model 
 -- Profit each period 
 -- capital requirements each year 
 -- debt and assets each year 
 
– Write the Equations  
 
  Write out all of the equations that will be required to calculate each of the intermediate 

and final variables in the results tables identified in the previous steps.  The order of 
calculation for each of the variables should be established at this point based on the logical 
order that variables are used in the results tables.  Update the model schematic diagram to 
show the logical flow of calculations and equations (Figure 2.6). 

 
• For a firm level model, largely accounting identities define the relationships.  Acres, 

yields, production, prices, receipts, costs, and government payments for each crop are 
used to calculate values for the income statement on a crop farm.  Number of cows, 
calves born, calves sold, heifers retained, sale weights, prices, receipts, and costs for 
cattle are used for a cattle ranch model.  For example, for a crop model the equations 
would include: 

 
 Prodt = Acrest * Yieldt 
 Receiptst = Prodt * Pricet  
 Costt = FixCostt + Seed Costt * Acrest + .... + Fuel Costt * Acrest 
 Net Returnst = Receiptst – Costst 

 
• For a sector model the equations can be a mix of identity and econometric variables and 

equations.  Equations to calculate the endogenous variables identified in the previous 
should be hypothesized at this point.  In writing out the hypothesized equations list all of 
the exogenous variables for each variable/equation.  By writing out the equations we are 
developing a list of exogenous variables required by the model. 

 
Acrest = a +  b  Pricet-1 + c  Policy Vart  
Yieldt = a +  b  Pricet-1 + c  Yieldt-1 
Prodt = Acrest * Yieldt 
Supplyt = Prodt + Carryint + Importst 

Pricet = a -  b  Supplyt              
Feed Dt = a -  b  Pricet + c  Price other cropt 
 . 
 . 
 . 
Food Dt = a -  b  Pricet + c  Price other cropt + d̂  Incomet 

Export Dt = a -  b  Pricet + c  Price other cropt 
Total Uset = Feed Dt + Food Dt + Export Dt        
Carryovert = Supplyt - Total Uset 
Government Costt = Rate * Yieldt * Base Acrest 

 
 

Figure 2.6.  Model Design for Step 4. 

Production = .... 
Receipts = .... 
Costs = .... 
Net Returns = .... 
. 
. 
. 
Income Statement 
Cash Flow 
Balance Sheet 

% Δ RNW 

IRR 

NPV 
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− Define Input and Calculated Variables  
 
 Once the equations are specified it is easy then to define the variables you must specify 
as input (exogenous) and variables calculated in the model (endogenous).   In Step 5, begin 
the process of estimating parameters for the endogenous equations. 
 
• Exogenous variables are determined external to the model and constitute the initial  
 environment or values for the model, i.e., you must input these values.  Sources for  
 projected values of the exogenous variables are government and university modelers,  
 such as:  USDA, WEFA, FAPRI, CARD, and Project LINK at the UN.  Once the list of 

exogenous variables is completed, update the model diagram as in Figure 2.7.  An 
example of exogenous variables for economic variables is: 

 
-- annual interest rates and rates of inflation for costs and assets 
-- initial costs of production 
-- initial endowment of assets and debts 
-- production functions and input/output coefficients 
-- government policy values for each policy tool 
-- carryin stocks 
 
 
 
 
 
 
 
 
 
 
 

 
 
Endogenous variables are determined internal to the model, i.e., they are calculated.  
Regression and time series techniques should be used where appropriate at this point to 
estimate the parameters for these equations.  The rule is to develop the best model or 
equation to project each endogenous variable.  Make sure that the econometrically estimated 
equations are compatible, in other words they simulate appropriately as a system of 
equations.  A list of endogenous variables for economic models would include: 
   

-- production 
-- cash receipts 
-- costs 
-- price 
-- quantities demanded 
-- government costs 
-- net returns, cash flows, and net worth 
-- financial ratios 
 

Production = ....
Receipts = ....
Costs = ....
Net Returns = ....
Income Statement
Cash Flow
Balance Sheet

Figure 2.7.  Model Design for Step 5. 

Interest & Inflation

Costs 
Debts 

Assets 
I/O Coef. 

Beg. inventory 

Prices 
Yields

% Δ RNW 

IRR 
NPV 
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− Identify Stochastic Variables 
 
  Once the equations are specified and the parameters are estimated, define the variables 
which will be stochastic.  The stochastic variables are:  (1) variables we are still uncertain 
about, even after the best forecast we can devise, and (2) those variables the decision makers 
cannot control or predict.  Parameters necessary for simulating the distribution for each 
stochastic variable must be calculated at this point.  The subject of parameter estimation for 
stochastic variables is covered in detail in Chapters 6 and 7.    

 
• Stochastic variables in a firm level model are yields (or production level) and prices.  

Yield is usually trend projected and there is an unexplained error term about the trend 
forecast that we sample from during simulation.  The unexplained variability in Figure 
2.8 is indicated by the residuals about the trend line or Y = a + bT + e.  We use the e  as a 
measure of the risk about the projected Y  values.  Similar specifications can be used to 
estimate parameters for the distributions of stochastic prices, and other stochastic 
variables. 

 

 
 
 
• For a commodity or sector level model, the unexplained variability ( e ) for each 

econometric equation defines the probability distributions about the projected values, as 
indicated in Figure 2.8.  Additionally, these models use the stochastic prices for previous 
and current periods to more realistically simulate risk in the system.  

 

t t-1 1

t t-1 2

t t 3

t t 4

t

ˆˆ ˆAcres  = a + bPrice   + e
ˆˆ ˆYield  =  a + bPrice  + e

ˆˆ ˆPrice  = a + b Supply + e
ˆˆ ˆFeed demand  =  a + bPrice   +  e

                          .
                          .

ˆExport demand = a t n

ˆThese error terms (e's) are    
the stochastic portions 
of the model and are 
sampled during simulation
to incorporate risk.

ˆ ˆ + bPrice  +  e

 

 
 

Yield 

history projected time 

Y ^ 

Figure 2.8.  Uncertainty about Endogenous Forecasts 
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– Validation  
 
 Validation of the model is a never ending process that should begin when the first 
diagram is drawn.  All equations and relationships must be verified individually and in total 
to insure a logical and accurate series of calculations.  Validation is treated with the weight it 
deserves in Chapter 3. 

 
– Documentation of the Model 

 
 Document the model’s capabilities and data requirements prior to saying the model is 
complete.  Time fades memory and without documentation a model falls into a non-usable 
state as we forget how it was developed, verified, and validated. 

 
Two demonstration spreadsheet simulation models are provided to show the differences in 
simulation models.  Printouts for the demo programs are at the end of this chapter and the 
actual Excel workbooks are included in the CD.  To view the programs on your computer use 
the Windows Explorer to open the CD and then double click on the name of the workbook to 
review. 
 
• Deterministic Demo.XLS is a simple deterministic spreadsheet for a farm and contains a 

very rudimentary set of financial statements.  Review the program to see if you can 
identify the different components of the "steps to actual model development." 

 
• Cotton Model Demo.XLS is a deterministic model of the US cotton sector.  The model 

uses a supply and utilization baseline from FAPRI in Table 1 and a set of assumed 
elasticities in Table 2 to simulate the US cotton sector for six years.  The output variables 
are in Table 3 and constitute the supply and the demand components for cotton.  All 
equations are solved using either identities or percentage changes from the baseline and 
the appropriate elasticities.  The model follows the POLYSIM format developed by Ray 
and Richardson.  Key output variables for the model are summarized as graphs on the 
second page of the printout.  The exogenous variables the user can change are in the first 
two lines of Table 3 along with the elasticities in Table 2.  The scenario analyzed is for a 
5 percent sustained increase in cotton yield, beginning in 2000. 
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Chapter 3 
Model Validation 

 
 Model validation is the process modelers use to check simulation models for completeness, 
accuracy, and forecasting ability.  The process consists of two parts:  verification and validation. 
 Verification is the mechanical process of testing every equation in the model to insure that it 
calculates correctly and checking the logic of the model to insure all equations are properly 
specified.  Validation is the process of testing the accuracy of random variables and forecasts 
generated by the model. 
 
Verification 

 
Verification is the process of verifying that all of the equations in the model appropriately 

calculate what they are supposed to calculate.  In other words, verification checks that if Y = 
10.8 + 13.4 X1 – 3.8 X2 then the answer 260.8 is observed when X1 = 30 and X2 = 40.  
Verification involves the following: 

 
• All equations must be checked by hand to insure arithmetic accuracy. 
• The equations must be checked to insure that the correct variables are included and 

multiplied by the appropriate coefficients and added or subtracted correctly.  (Excel 
provides tools for checking the dependence of equations; see Appendix B for help in 
using the trace precedents and dependence features in Excel.) 

• All equations must be checked to insure that the variables are theoretically correct and 
have the right signs. 

• The linkage between equations must be checked to insure they are in the right order; 
insure that answers from one equation become input in subsequent equations.  Newer 
versions of Excel are more particular that the equations must be in a logical order from 
the top to the bottom.  

• The time step incrementor needs to be checked, particularly if the model simulates across 
periods, i.e., weekly equations in an annual model or multiple year models.  In a 
spreadsheet model time is implicit in the columns or rows, care should be used to insure 
that values for year 2 are not used as input in year 1, and so on. 

 
Validation 
 
 Validation is the process used to insure that the random variables are simulated correctly and 
demonstrate the appropriate properties of the parent distribution.  Once this first phase of 
validation is complete the overall forecast ability of the model must be checked.  Most times the 
KOVs are not easily observed so the analysts must also validate the forecasts of variables used to 
calculate the KOVs. Validation involves answering the following questions: 

 
• Do the random variables have the appropriate means, variances, and correlation?  
• Does the model accurately forecast the system being analyzed? 
• Do the results conform to theoretical expectations? 
• Do the results conform to expectations of experts? 
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 Van Horn suggested the use of a Touring Test – where the simulation results of a model are 
given to prospective clients, scientists, and other knowledgeable individuals to allow for 
evaluation of theoretical soundness and agreement with independent parallel research in the area. 
The Touring Test is an informal validation test but is useful because experts and prospective 
model users provide their own tests as to the validity of the forecast.  This test has been used to 
test business simulation models such as:  POLYSIM (Ray and Richardson), FLIPSIM 
(Richardson and Nixon), Ice Plant model (Richardson and Mapp), Farm Assistance (Klose), and 
Financial and Risk Analyzer (Gray). 
 
Steps for Model Verification and Validation 
 
− Validate the Stochastic Component 
 
 The stochastic component of a simulation model should be verified and validated first.  This 
phase of validation is the easiest as it can make use of statistical tests to insure that the simulated 
variables are from the appropriate probability distribution, i.e., have the correct means, variance 
and correlation.  The first step is to simulate the model and collect the simulated stochastic 
variables for the 100 plus iterations.  The statistical tests and graphs used for validation are listed 
here and then described in detail in later sections of this chapter. 

 
• Means -- test that the mean of each simulated variable equals its respective assumed or 

projected mean. 
 
•• Univariate means test uses a Student’s –t test to determine if the simulated mean 

equals the assumed mean used for the random variable. 
 
•• Multivariate probability distribution means test uses Hotelling’s T-Squared test to 

simultaneously test whether the simulated vector means for the multivariate 
distribution are statistically equal to the vector of means for the original distribution. 

 
• Variance -- test that the variance of each simulated variable equals the assumed variance 

used for the simulated variable.   
 

•• Univariate variance test uses an F test to determine if the simulated variance equals 
the assumed variance used for the random variable. 

 
•• Multivariate variance test uses Box’s M test of homogeneity for covariances to 

simultaneously test whether the covariance of the simulated multivariate distribution 
equals the covariance of the original multivariate distribution.  

 
• Correlation -- for a multivariate (MV) probability distribution, the historical correlation 

matrix used to simulate the MV distribution can be tested against the simulated variables 
to determine if they are appropriately correlated.  A Student’s–t test for each of the 
coefficients in a correlation matrix is used for this test. 

    
• Coefficient of variation -- the coefficient of variation should either be equal to its 

historical value or changing over time as specified in the model.  Visual inspection is all 
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we have at this time to test this statistic.  If expansion factors are used to alter the 
coefficient of variation over time, this fractional change from year-to-year must be 
checked. 
 

• Minimum and Maximum -- the simulated min and max values should be equal to the 
historical data or their respective assumed input values.  Visual inspection is all we can 
do to validate these statistics.  This is critical for truncated distributions and normal 
distributions that are capable of simulating values outside the realm of our priors. 
 

• Charts of the simulated stochastic variables vs. the historical data can be developed to 
help verify the simulated variables.  Charts useful for this purpose are: 
 
•• CDF or cumulative distribution functions can be developed of the simulated values 

and the historical data to insure that they have the same shape throughout the range of 
the data. 

 
•• PDF or probability distribution functions can be developed for the simulated values 

and the historical data to check for similar shapes. 
 
•• Fan graph to show how the relative variability of a stochastic variable changes over 

time.  This is particularly useful for a variable that is simulated for more than two 
years. 

 
•• Probability plots of the historical vs. the simulated data.  Both QQ and PP plots can 

be used for this purpose. 
 
•• Box plot charts of the simulated and historical data for each variable can be compared 

to see if the simulation process skewed the variable’s results. 
 
− Verification of Equations 
 
 The equations in the model must be verified one at a time.  Start the process by setting the 
model to expected value mode so all stochastic variables equal their means.  (In Simetar this can 
be done by clicking the Expected Value button on the Simetar tool bar.)  In expected value mode 
all of the equations in the model are supposed to equal their means.  If the equations do not equal 
their means based on your calculations with a hand-held calculator find out why. 
 
 A note on expected value is worth while at this point.  If the model uses only normally 
distributed random variables, then all stochastic variables will equal their means in expected 
value mode.  However, if the stochastic variables are distributed empirical these variables will not 
necessarily equal their means but may be slightly larger or smaller than the mean.  The reason for 
this result is that in expected value mode, the mean USD of 0.5 does not have to correspond to 
zero on the inverse function for the empirical distributions.  See Chapter 5 for a discussion of the 
empirical distribution and inverse transform method for simulating random variables. 
 
 In the verification process begin by checking the most basic equation and then working 
systematically through the model to the last KOV.  In a business model the order for verifying 
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the equations would start with production and then move to local price, total receipts, then on to 
variable costs, fixed costs, total costs, and net cash income.  The final equations to verify are the 
KOVs such as net worth, present value of ending net worth, net present value, and rate of return 
to equity. 
 
 Excel provides tools for verifying that the appropriate cells are linked via the trace 
precedence tools.  See Appendix B for adding these icons to the tool bar.  Once in place these 
icons can be used to verify where the inputs to an equation come from and where the results are 
used in subsequent equations in the model.  The trace precedence tools allow you to trace a cell’s 
inputs for 1, 2, 3, or more generations back and forward. 
 
− Sensitivity Tests for Validation 
 
 Sensitivity tests show how sensitive the results for the KOV are to key inputs variables.  
Simulating the model with a key input variable at alternative levels and comparing the statistics 
for the KOVs shows how critical the variable is to the model. If the KOVs change greatly as the 
input variable changes, then more attention needs to be paid to forecasting that input variable or 
specifying its probability distribution.  Sensitivity analysis is a method for determining which 
variables need the most attention when econometrically estimating the parameters for the 
probability distribution.  If the means for the KOVs jump dramatically, or do not change as 
expected from one assumed value of the input variable to another, it can indicate an error in the 
model.   
 
 It is recommended that you conduct sensitivity tests on the means and standard deviations to 
determine the range of values under which the model produces reliable results, particularly if the 
stochastic variables are distributed normal.  Alternative means for the stochastic variables should 
be tested to insure that the model is capable of simulating the full range of means available.  For 
each mean tested, one should re-check the means tests described above. 
 
 With the Simetar Simulation Engine set to stochastic simulation mode the model can be 
simulated for a range of values on one input variable at a time.  The Simulation Engine menu 
contains an option named Conduct Sensitivity Analysis.  When the sensitivity analysis option is 
selected the user may select one input cell to manipulate over three ranges. 
 
 The selected input cell can be changed by, say, ±3%, ±6% and, ±9% or any other fractions.  
The model is simulated for each of the settings specified for the variable with all other non-
stochastic values in the model held constant.  (See Chapters 10 and 16 for a compete description 
of sensitivity analysis with Simetar.) The user should collect statistics on the model’s KOVs to 
see how they change as the specified test cell changes. 
 
− Validation Using External Reviews 
 
 As a formal part of validation it is highly recommended that the model and its results be 
reviewed externally.  Start by showing the results to experts who are used to reviewing or using 
the types of values the model forecasts, or a Touring Test.  Seek experts in the field to look at 
particular parts of the forecast initially.  Show them more and more of the results as they become 
familiar with the model.  Most experts will want to know more about the model that generated  
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the forecast, once they have decided that it is worthwhile.  At that time the model can be 
presented, first in terms of the theoretical assumptions and finally the details on how the model is 
designed and how it works. 
 
 To be meaningful a Touring Test should be designed as follows: 

 
• Show the experts the assumed input data and the results for the KOVs. 
• Ask their opinions as to the reasonableness of the forecast in terms of direction and 

magnitude for the KOVs, given the input assumptions. 
• Change the input assumptions and repeat the process a second or third time. 
• In the second and subsequent trials show more of the results used to calculate the KOVs. 

 If the KOVs are standard financial ratios then show the pro forma financial tables. 
  
The 4 Ps for Simulation Model Validation 
 
 By way of summarizing, model validation is a personal activity and is solely the 
responsibility of the model developer.  The following simple nomenclature is offered to help 
modelers remember it is their responsibility to verify and validate their models. 
 
− Planning:  Developer(s) 

• Initial preparation for building a model must include plans for validation 
 

− Personal:  Developer(s) must verify every equation and their linkages 
• Logical sequence and interaction of components must be checked 
• Econometric and accounting equations tested for logic and goodness of fit 
• Do simulated PDFs reproduce their parameters? 
• Are the results consistent with theory? 

 
− Peers:  Other experts should be utilized for reviewing the model results 

• Tour the output results among experts 
• Model testing and use by practitioners trained in modeling 
• Apply model to different situations, use sensitivity tests  
• Review in professional journals 

 
− Producers:  Farmers, ranchers, commodity experts, and agribusiness managers are the 

ultimate judges as to whether a model is correct 
• Compare model results to observations by experts 
• Do projections of pro forma financial statements agree with the expert’s expectations? 
• Biophysical growth model, do the results agree with field tests 
• Similarly, sector level models must perform relative to the expectations of commodity 

experts and policy analysts, consult an array of experts 
 
Validation Never Ends 
 
 Each time the model is changed the modeler must repeat the verification and validation 
process.  How extensive the re-validation process depends on how extensive were the model  
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changes.  A simple rule is to repeat all of the verification steps and at least part of the validation 
steps. 

 
 Based on my observations, it takes a lifetime to build a good reputation and one bad study to 
lose it.  Do not underestimate the importance of model validation.  It is a continual process that 
successful modelers work at all the time. 

 
Validation Statistics 
 
 Often times we have a historical data series with 8 to 20 observations that defines the 
probability distribution for random variable.  After simulating the variable it is necessary to 
determine whether the simulated series is statistically equal to the parent or historical 
distribution.  Put another way, if the simulation model does not reproduce the statistics for the 
random variables, the model is not validated and can not be used for decision making.   
 
 Statistical tests can be used to validate the stochastic variables in a simulation model.  If the 
random variables are simulated as univariate probability distributions then Student–t tests and F 
tests are appropriate for testing the means and variances, respectively.  When the random 
variables are simulated as a multivariate distribution then the Hotelling T-Squared test and Box’s 
M test for homogeneity of covariances are used to simultaneously test the means and variances, 
respectively.  The complete homogeneity test is a nonparametric test of the means and 
covariance for the simulated distribution versus the input distribution.  Another test for 
multivariate probability distributions is to use a Student’s–t test for each coefficient in the 
correlation matrix of the simulated data. 
 
 In addition to quantitative tests to validate the stochastic variables, it is useful to check the 
skewness and kurtosis of the simulated variables relative to their historical values.  Graphical 
comparisons of the historical and simulated distributions are also useful for validating the 
process that generated the random variables. 
 
− Univariate Distribution Validation Tests 
 

• Student–t test of Univariate Means 
 

 Test that the simulated mean Xsc h  is not statistically different from the original mean 

Xhc h  using a Student’s–t test.  The null and alternative hypotheses are: 
   

  
H :   X   =   X
H :  X     X

O s h

A s h≠
  

 

 The Simetar icon    (or menu item) for hypothesis tests can be used to perform a 
Student’s–t test on the significance of the difference between the means of two 
distributions.  Select the Compare Two Series tab in the Hypothesis Testing for Data 
dialog box.  Three different Student’s–t tests of the means are demonstrated in Validation 
Tests Demo.XLS and are summarized in Figure 3.1: 
 



-- Chapter 3 --- 7

   •• Test 2 compares means of two series simulated with different distributions. 
 •• Test 3 compares means for the historical data and the simulated random variable. 
 •• Test 5 tests the mean of a simulated distribution against an assumed mean value. 

 
 In Simetar hypothesis tests, an interpretation of the test is provided (Figure 3.1).  For 
example, Test 2 results in Validation Tests Demo.XLS are reported as:  “Fail to Reject the H0 
that the Means are Equal.”  The test statistic and the critical p-value statistic are provided for the 
tests.  If the calculated t-statistic exceeds the critical value then one fails to reject the alternative 
hypothesis that the means are different.   
 

 
 
 
• F-test of Univariate Variances 

 
  Test whether the simulated variance ( )2σ  is not statistically different from the 

original variance ( )2σ  using an F-test.  The null and alternative hypotheses are: 
 

  H :     =   
H :       

O
2 2

A
2 2

σ σ
σ σ≠

 

 

  The Simetar icon   (or menu item) for tests can be used to perform an F-test of two 
variances.  Select the Compare Two Series tab in the Hypothesis Testing for Data dialog 
box.  In this case the F-test is testing whether the two variances are equal, or that the F 
ratio equals 1.  Recall the F-test calculates an F-statistic as: 

 

Figure 3.1.  Summary of Univariate Tests for Means, Variances, 
and Standard Deviations.
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F - statistic  =   

with n -1 and n -1 degrees of freedom,  where
 is the simulated variance and

n is the number of iterations,  while
 is the historical variance and

n is the number of historical observations.

2

2

2

/σ σ

σ

σ

2

 

 
This is a two-sided F-test so if the calculated F-statistic exceeds the tabled F-value, we 
reject the null hypothesis and conclude that the two variances are different.   
 
 Test 2 in the Validation Test Demo.XLS workbook and Figure 3.1 provides an 
example of using the F-test to validate the variance for two distributions.  In Test 3 of the 
Validation Test Demo.XLS workbook, the first distribution was specified as the original 
or historical data, while the second series was specified as the results of stochastically 
simulating the distribution as an Empirical distribution.  In the demo, the F test failed to 
reject the null hypothesis that the original and simulated variances are equal.  This 
combined with the 2 Sample Student’s–t test that failed to reject that the means are equal, 
indicate that the simulation package accurately simulated the mean and variance for the 
random variable. 

 
• Chi-Squared Test of Univariate Standard Deviation 

 
  Simetar includes a univariate Chi-Squared test for validating the standard deviation.  

The Test Parameters tab in the Hypothesis Testing for Data dialog box provides a Chi-
Squared test of the standard deviation for a random variable against a specified value.  
Test 5 in Validation Test Demo.XLS demonstrates how to test the simulated data against 
a specified mean and standard deviation (Figure 3.1).  The mean is tested using a 
Student’s–t test. 

 
 The Chi-Squared test is used when the analyst does not have a historical data series to 
validate simulated values against.  In this case the analyst must assume a mean and 
standard deviation, for example, N(9.8, 6.7) in Test 5 for Figure 3.1.  The Chi-Squared 
and Student’s-t tests are used to validate that the simulated random variables, 
statistically, have the assumed mean and standard deviation.  Test 5 in Figure 3.1 
indicates that the simulated values have a mean and standard deviation that are 
statistically equal to the assumed values, at the alpha equal 5% level. 

 
− Multivariate (MV) Distribution Validation Tests 
 

• Hotelling T-Squared MV Means Test 
 

 The 2-Sample Hotelling T-Squared MV means test is used to statistically test if the 
collective means of a multivariate random sample comes from the same distribution as 
the historical distribution.  This test uses the Mahalanobis distance or: 
 



-- Chapter 3 --- 9

N
2

si hi
i=1

M =  (X  - X )∑  

where: siX  represents the means of the N sampled (simulated) variables, and  
   hiX  represents the means of the N variables in the historical distribution. 

 
The null and alternative hypotheses are: 

 

 
0 s h

A s h

H :  X  = X

H :  X   X≠
 

 
 Simetar calculates the Hotelling T-Squared test when the user specifies an MxN 
matrix for the 1st series and a PxN matrix for the 2nd series, for the Compare Two Series 
tab in the Hypothesis Testing for Data dialog box.  In this case N represents the number 
of variables in both multivariate distributions, M represents number of historical 
observations, and P represents the number of iterations simulated.  See Figure 3.2 and 
Test 7 in Validation Test Demo.XLS for an example of a multivariate means test.  If the 
results of the test returns, “# Value” check for the following:  singular covariance matrix, 
excessively long worksheet name, or excessively long workbook name. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Box’s M Test for Homogeneity of Covariances 
 

 Box’s M test is used to statistically test if the covariance of a multivariate random 
sample comes from the same distribution as the historical distribution.  The test is a 
maximum likelihood ratio test of the covariance matrix.  The null and alternative 
hypotheses are: 
 

Figure 3.2.  Summary of Multivariate Tests for Means and Variances. 



-- Chapter 3 --- 10 

0 s h

A s h

H :   = 

H :    

∑ ∑

∑ ≠ ∑
 

 
where: s∑  represents the covariance for the multivariate distribution sample, and  
   h∑  represents the covariance for the historical multivariate distribution. 
 
 Simetar calculates the Box’s M test when the user specifies an MxN matrix for the 1st 
series and a PxN matrix for the 2nd series, for the Compare Two Series tab in the 
Hypothesis Testing for Data dialog box.  In this case N denotes the number of variables 
in both multivariate distribution and P represents the number of iterations simulated.  See 
Figure 3.2 and Test 7 in Validation Test Demo.XLS for an example of a multivariate 
variance test.  If the results of the test returns “# Value” check the following:  singular 
covariance matrix, excessively long worksheet name, or excessively long workbook 
name. 

 
• Complete Homogeneity Test 
 

 A multivariate distribution can also be tested using the nonparametric, complete 
homogeneity test.  The mean vector and the covariance matrix for the simulated values is 
compared simultaneously to their corresponding values in the historical data series.  An 
example of the complete homogeneity test is presented in Figure 3.2.  As indicated by the 
name this is the most comprehensive of the multivariate distribution tests for validating 
the stochastic variable generation process in a simulation model. 
  
The null and alternative hypotheses are: 
 

0 s h

A s h

H :  X  = X

H :  X   X≠
 

  
0 s h

A s h

H :   = 

H :    

∑ ∑

∑ ≠ ∑
 

 
where: siX  represents the means of the N sampled (simulated) variables,  
   hiX  represents the means of the N variables in the historical distribution, 
   s∑  represents the covariance for the multivariate distribution sample, and  
   h∑  represents the covariance for the historical multivariate distribution. 

 
• Correlation Matrix Test 

 
 When simulating a multivariate probability distribution you should also validate the 
correlation coefficients between the simulated variables and the assumed correlation 
matrix.  The correlation coefficients among the simulated variables should be statistically  
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equal to the original or historical correlation coefficients for the random variables.  A 
Student’s–t test to determine if the correlation coefficients for two matrices are 

statistically equal is provided in Simetar under the hypothesis testing icon   , 
Hypothesis Test for Data in the Check Correlation tab.  The null and alternative 
hypotheses tested using a Student’s–t test are: 

 

 
0 ij ij

A ij ij

ˆH :   = 

ˆH :    

ρ ρ

ρ ρ≠
 

 
where: ijρ̂  is the individual correlation coefficient between the simulated variables i 

and j, ijρ  is the assumed correlation coefficient between variables i and j 
used to simulate the multivariate distribution. 

 
Individual Student’s –t tests are performed for all j>i correlation coefficients in the upper 
right triangle matrix.  Thus a distribution with 5 variables has 10 t-tests and a distribution 
with 6 variables requires 15 t-tests. 

 
 See Test 6 in the Validation Test Demo.XLS workbook for an example of testing an 
input correlation matrix against the implicit correlation among the variables in the 
simulated data (Figure 3.3).  Test statistics (Student-t) less than the critical value indicate 
that the correlation coefficient for the simulated data is statistically not different from the 
original value at the indicated confidence level.  For example, the simulated correlation 
coefficient of 0.54 was statistically equal to 0.50 based on a test statistic of 0.99 and a 
critical value of 1.96 at the alpha equal 5% level (Figure 3.3). 

 
Other Statistical Tests for Validation 
 
 The second and fourth moments of the simulated random variables can be tested against their 
historical distributions. The third moment about the mean is skewness and the fourth moment is 
kurtosis.  These statistical values can be calculated and compared to the historical distribution. 
 
− Skewness Test 
 
 The skewness or left-right orientation of the distribution can be easily compared using 
Excel’s =SKEW( ) function.  The skewness of the raw data which was used to estimate the 

Figure 3.3.  Example of Testing a 4x4 
Correlation Matrix. 
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parameters for a distribution can be estimated and compared to the skewness of the simulated 
values.  For example, if the distribution for X is defined as: 
 X = (1, 2, 4, 6, 8, 10, 13, 16, 18, 20) which yields a X  of 9.8 and σ  equals 6.74.   
 
(See Validation Test Demo.XLS for the distribution and the tests summarized here.)  Skewness 
for X is equal to 0.2134 and is calculated using the Excel command:    =SKEW(Array of Xs). 
The skewness for 500 simulated values of X that are generated assuming X is distributed normal, 
is –0.0209 and was calculated by the Excel command: =SKEW(Array of 500 ~Xs) .  The 
hypothesis testing option in Simetar calculated skewness for the original distribution and the 
simulated distribution for direct comparison (lines 26-40) in Validation Test Demo.XLS. 
 
 Skewness is calibrated relative to a normal distribution which has no (or zero) skewness.  A 
negative skewness indicates the distribution leans to the left.  A positive skewness indicates a 
distribution that leans to the right.  Using skewness for validation is limited, as there are no 
statistical tests to determine if the skewness for the simulated data equals the historical value.  
Visual inspection is the only way to check the skewness.  Be forewarned that this statistic is 
particularly sensitive to the sample size.  At small sample sizes of 100 or less this statistic is not 
reliable.  As an experiment simulate X~Normal(10,3) for 100 iterations and calculate the 
skewness, it is -0.3; considerably different from 0.0.   
 
− Kurtosis Test 
 
 Kurtosis quantifies the peakedness of a distribution, relative to a normal distribution.  
Kurtosis is zero for a normal distribution and positive for one which is taller than the normal 
distribution.  A negative kurtosis is associated with a distribution which is shorter than the 
normal and its tails are thicker than the normal.  Excel provides a function for calculating 
kurtosis =KURT(Array of Xs). 
 
 Using the X distribution defined in Validation Test Demo.XLS, the original data has a 
kurtosis of –1.391. The simulated sample of Xs that is assumed normal has a kurtosis of –0.0208 
and the empirical sample has a kurtosis of –1.345.  There is no test statistic to compare the 
original and simulated kurtosis values, but –1.34 is closer than –0.02 to the original –1.39.  The 
distribution comparison statistics, kurtosis and skewness, can be calculated by Simetar through 
the Compare Two Series tab in the Hypothesis Testing for Data icon (see Chapter 16).  At small 
sample sizes of 100 or less the kurtosis statistic is not reliable.  As an experiment simulate 
X~Normal(10,3) for 100 iterations and calculate the skewness, it is 0.84; considerably greater 
than 0.0.   
 
Graphical Tools for Validation  
  
 Simple graphs of the simulated random variables results are an excellent means of validating 
the random generation procedure used in the simulation model. Cumulative distribution, 
probability density, box plots, fans graphs and normality charts are useful tools for visually 
comparing the simulated random variables.  Graphical tools should not be used in place of 
statistical validation tests, but they can be used to supplement the statistical tests described in the 
previous sections. 
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Figure 3.4.  Example of Comparing the True Distribution’s 
CDF to Simulated Distributions for Validation. 

− CDF Graphs 
 
 The original data and its corresponding simulated values can be graphed as a cumulative 
distribution function (CDF) graph on a common axis.  (See Chapter 16 to learn how this graph is 
developed in Simetar.)  The graph (line) for the original data will lie very close to the simulated 
data’s CDF line, if the data were simulated with the “correct” distribution.  As an example, the 
distribution defined by X = [2, 5, 8, 12, 14, 18, 22, 35] was simulated empirical and normal and 
the results are presented as a CDF graph in Figure 3.4.  Assuming the data are normally 
distributed would be an error based on how far the normal distribution misses the true 
distribution.  The simulated means are the same as the true distribution and the standard 
deviations are statistically the same as the true data, but the CDF chart suggests the empirical is a 
better assumed distribution than the normal. 
 
 A loss function to measure the difference between the CDF for the true distribution and an 
assumed distribution is available in Simetar.  The =CDFDEV(array of historical Xs, array of 
simulated Xs) returns a scalar which measures the difference between the two distributions, even 
if they are of different lengths.  If the simulated data exactly reproduce the actual distribution the 
CDFDEV value will be zero.  If several different distributions are tested, use the one with the 
smallest CDFDEV value. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
− PDF Graphs 
 
 The true distribution and the simulated data can be compared using a probability density 
function (PDF) graph (Figure 3.5).  As demonstrated here the means appear quite similar, 
however, the lower tails on the normal distribution is to long to adequately represent the true 
series for a simulation model.  See Chapter 16 for a description of how to develop PDF charts 
with Simetar. 
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Figure 3.5.  Example of Comparing Distributions Using a 
PDF Chart. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
− Box Plots 
 
 The dispersion and quartile relationships for the true data and simulated values can be 
compared using Box plots.  See Chapter 16 to learn how to develop Box plots in Simetar.  The 
example in Figure 3.6 suggests that the normal distribution greatly overstates the downside risk 
and slightly overstates the upside risk, relative to the true distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

− Normality Plots 
 
 If a series is simulated assuming a normal distribution, the simulated random values should 
be tested for normality.  An easy way to do this is to draw a normality plot using Simetar (see 
Chapter 16).  If the simulated data conform to Normality the observations will be on a straight  
 

Figure 3.6.  Box Plots for Comparing Two Simulated 
Distributions Against the True Distribution. 
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line through the chart area (Figure 3.7).  In contrast, the Normality plot for data that are not 
Normally distributed will resemble Figure 3.8. 
 

 
 
 
Normality Test 
 
 Oftentimes analysts assume normality for the distribution of random variables.  Recent 
research by Feldman, Richardson and Schumann suggest that when the analysts have no prior 
knowledge about the distribution, normality is the best default distribution to use.  Five different 
normality distribution tests are provided in Simetar.  Chapter 16 contains instructions on how to 
do a normality test in Simetar.  The five normality tests in Simetar are: 
 

− Chi Squared, 
− K-S – Kolmongornov-Smirnoff, 
− S-W – Shapiro-Wilks 
− A-D – Anderson, Darling, and 
− CvM – Cramer-von Mises 

 
Examples of the normality tests are provided in Test 1 of Validation Test Demo.XLS.  If sample 
size prevents the test from being reliable the letters “NA” will appear for the p-value.  Tests for 
normality seldom reject the null hypothesis that the data are normally distributed, so be cautious 
in using the tests.  See the Simetar Help file, Hypothesis Testing for Data, for a description of the 
normality tests. 
 

Figure 3.7.  Normality Plot for Normally 
Distributed Data Series. 

Figure 3.8.  Normality Plot for Data Series 
Distributed Empirical.  
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Chapter 4 
Stochastic Simulation 

 
 Simulation models that do not include risk produce a deterministic (or predetermined) result 
given the input values.  Stochastic models are deterministic simulation models that include 
variables which are not known with certainty but have a known probability distribution.  A 
stochastic model is simulated a large number of times using randomly selected values for the 
risky variables to estimate the probable outcomes for key output variables (KOVs).  The 
simulated sample of values for each KOV constitutes an estimate of the variable’s probability 
distribution which can be used to make decisions in a risky environment. 
 
 Stochastic simulation involves simulating uncertain economic systems that are a function of 
risky variables, for the express purpose of making better decisions.  In stochastic models future 
risk is assumed to mimic historical risk, so past variability is used to estimate parameters for the 
probability distributions of risky variables in a model.  Probability distributions are simulated a 
large number of times to formulate probabilistic projections for the risky variables.  The 
interaction of the risky variables with other variables in the system allows the modeler to project 
how risky a decision would likely perform under alternative management strategies.  In this way 
models can provide decision makers useful information about the likely outcomes of alternative 
management decisions under risk. 
 
 Because a stochastic simulation model is a deterministic model with one or more variables 
that have been made stochastic.  Development of a stochastic model usually starts with 
developing a deterministic model and then converting it to be stochastic by making some of the 
exogenous variables stochastic.  Even when a model is stochastic it can be used to generate 
deterministic results by making the risk components zero or setting the simulation engine to its 
“Expected Value” mode. 
 
 A simple stochastic simulation model has one output variable, one or more input variables 
subject to risk, and one or more fixed input variables.  The simple model’s flowchart would be: 
 
 

 
 
 
 

Figure 4.1.  Schematic for a Stochastic Simulation Model
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 By sampling from the X1, X2, X3 probability distributions a large number of times (or 
iterations), say, 500,  the model can calculate enough values of Y to estimate the probability 
distribution for Y.  The CDF and PDF graphs of the simulated Y output value are Aestimates@ of 
the true probability distribution for the output variable and are developed by graphing the 
simulated Y values over many iterations.  This in itself is one of the primary goals of 
simulation, the estimation of unobservable probability distributions through statistical 
sampling. 
 
 For many people, the mystery of stochastic simulation is how do you get the 500 random 
values for the risky (stochastic) variables?  That part is quite simple once you have done it.  How 
the random values are generated depends on the computer language being used: 
 

− Excel 
The RAND function returns a single random value between 0 and 1.  Each time F9 is 
pressed the value changes with another sample of the random number.  To generate a 
sample of 100 random values from RAND, type or copy the RAND command into 100 
cells.  An example of using this procedure to generate random numbers is provided in 
Uniform Random Number Generator Demo.XLS. 

 
− SIMETAR for Excel 
 The UNIFORM function returns a random number between zero and one.  A sample of 

100 values is generated by setting the number of iterations to 100, specifying the cell 
with =UNIFORM ( ) as an output variable, and simulating the worksheet with 
SIMETAR. 

 
− @Risk for Excel 

The RISKUNIFORM function generates a random value between zero and one.  A 
sample of 100 values in the cell is developed (simulated) by setting the number of 
iterations to 100, specifying the cell with =RiskUniform ( ) as an output variable, and 
simulating the worksheet with @Risk©. 

 
Random Variables in a Simulation Model 
 
 Any variable the manager or decision maker cannot control, can be made stochastic.  A 
random variable may be partly determined by internal forces but still have a random component. 
 Another type of random variable is a forecasted variable which has risk because the forecast is 
less than perfect.  Variables affected by weather are also stochastic, e.g., yields for crops or 
livestock response to feed.  Production can be stochastic due to risk caused by inconsistent 
quality of inputs and response to the inputs.  Market share is often a stochastic variable because 
managers do not know how competitors will react to their promotional campaigns or pricing 
strategies.  The quantity sold each period is a stochastic variable depending on many factors 
outside the manager’s control.   
 
 In all cases, stochastic variables are:  crucial to the success of a business decision, out of the 
control of the decision maker, and can be specified by a probability distribution.  If the variable 
is so risky that the decision maker has no idea what the probability distributions is, then that is 
uncertainty.  (Uncertainty is treated at the end of this chapter.) Examples for five stochastic 
variables in a business model are listed below.  Each variable is described in terms of 
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hypothetical parameters that could describe the probability distributions. 
 

− Sales -- distributed normal with mean 1000 and standard deviation of 100 
− Production -- distributed normal with mean 
 Y = a + b1X1 + b2X2 and standard deviation of 31.0. 
− Price -- distributed empirical over the range of 3.20, 3.40, 3.45, 3.50, 3.55, and 3.70. 
− Interest rate -- distributed GRK with minimum of 0.05, mean equal 0.07 and maximum 

of 0.095. 
− Market share -- distributed uniform with minimum of 0.40 and a maximum of 0.75. 

 
The distributions assumed for sales and production contain a deterministic component and a 
stochastic component.  The deterministic component for sales is the mean of 1000 and for 
production the deterministic component is the a + b1X1 + b2X2 mean.  The stochastic components 
for sales and production is the standard deviation of 100 and 31, respectively.  In a more general 
notation we would write production (Pd) as: 
 
 1 1 2 2Pd = a + b X  + b X  + e  
 where e  indicates the stochastic component. 
 
 Simulation engines such as SIMETAR provide an assortment of probability distributions or 
functions for simulating random variables.  The purpose of providing different functions is that 
random variables can take on an assortment of distributions.  For example, random variables can 
be distributed:  uniform, normal, empirical, bernoulli, truncated normal, or triangular, to name a 
few.  Because these functions are available the problem of generating random numbers in a 
simulation model is largely eliminated.   
 
 The Simetar functions for simulating (or generating) random numbers for more than 20 
distributions are described in detail in Chapter 16.  The Simetar functions that would be used to 
simulate the five sample stochastic variables above are presented next. 
 
 Sales simulated by = Norm (1000, 100) 
 
 Production simulated by = Norm (a + b1X1 + b2X2, 31.0) 
 
 Price simulated by = DEMPIRICAL (3.2, 3.4, 3.45, 3.5, 3.55, 3.7) 
 
 Interest rate simulated by = GRK (0.05, 0.07, 0.095) 
 
 Market share simulated by = Uniform (0.40, 0.75) 
 
These random number functions are typed into cells in an Excel worksheet and every time the F9 
key is pressed, Excel draws a new random value given the parameters for the variable.  When 
Simetar simulates the workbook it generates 100 or more random values for the stochastic 
functions.  Each set of random values is called an iteration (or state of nature).  When the value 
for a random number changes, Excel automatically updates all equations that are dependent on 
the random variable cells.  So when Simetar draws random values, Excel calculates dependent 
values for variables which use the stochastic variables, Simetar records values for the KOVs, and  
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then repeats the process for the next iteration.  After the last iteration, Simetar calculates the 
statistics for each of the output variables. 
 
 It is recommended that stochastic variables be simulated (or generated) in a three step 
process so the experienced modeler can control the process and the student can learn how the 
process of generating random numbers really works.  The three step process is described as 
follows for a variable that has a normally distributed error term: 
 

– calculate the deterministic component of the random variable in one cell, or 
 Y =  a +  bP  
 
– simulate the stochastic component of the random variable in another cell, or  
 SND = NORM(0,1) 
 where SND is a standard normal deviate, 
 
– combine the deterministic and stochastic components to calculate the random number in 

a third cell, as 
 ˆ ˆY = Y + (   * SND)σ  
 where σ̂  is the standard deviation about the deterministic forecast. 

 
The multiple step process can be used to simulate any distribution, for an example of simulating 
various distributions see Uniform Random Number Generator Demo.XLS.  A distinct advantage 
to using this multiple step process is that each part of the process can be verified independently 
during the verification/validation process. 
 
 A stochastic simulation model is simply a set of equations that define an economic model 
with at least one random variable.  The random variable(s) can be simulated by a uniform 
distribution, a normal distribution or any other distribution that emulates their historical 
variability.  The process of simulating random numbers in the model is determined by the 
computer language or engine being used for the model.  The random variables can be generated 
in Excel as demonstrated in Uniform Random Number Generator Demo.XLS or in an Excel 
spreadsheet using Simetar or @Risk© functions.  In either case we should focus more on what is 
in the model, how it works and the parameters that define the probability distributions and less 
on how to generate the random values. 
 
Iterations 
 

An iteration is one realization of a stochastic model, one state of nature, one roll of the dice, 
or one deal of the cards.  Another way to think of an iteration is that it represents one solution for 
all equations in a model using one draw (or sample) of random values for all random variables.  
Drawing another sample of random values and re-calculating all of the equations in the model 
constitutes a second iteration.  Note that the model must be designed and simulated so the only 
change from one iteration to another is the new random values for each of the random variables.  
All parameters must remain constant across iterations and none of the results of one iteration can 
be used as input into the next iteration. 
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The flowchart in Figure 4.2 demonstrates how a simulation engine simulates a model for 
500 iterations.  The model in Figure 4.2 uses 500 random prices and sales quantities to produce 
500 possible Pr or profit values.  The 500 Pr values constitute an estimate of the unobservable 
probability distribution for Pr.  The results from the 500 simulated values for Pr can be 
summarized by way of sample statistics, a histogram, or a CDF, as indicated in Figure 4.3. 
 

 
 
            
 

 
Simple Statistics 
X   = P      
    =    

min = MnP
max = MxP

r

P

r

r

r
σ σ  

 
 
Figure 4.3.  Different Ways to Summarize Simulation Results for a 500 Iteration Run of a 
Stochastic Model. 
 
 
 The results of simulating a model with Simetar are stored in a worksheet named SimData.  
The results consist of the summary statistics and the actual simulated values for each iteration.  If 
the Simetar dialog box for Simulation was programmed to collect the output for 10 output 
variables over 500 iterations, the SimData worksheet would have 10 columns with the results for 
10 KOVs and 500 rows of numbers for each variable.  Each row of values in SimData constitute 
one iteration of simulated values for the output variables.  The model depicted in Figure 4.2 was 
simulated for 500 iterations in the Excel program, Business Model With Risk Demo.XLS, to 

Iteration = 1 to 500 

No 
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~
~

Generate Random Values  
for Stochastic Variables 
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TR 
Pr 

= 
= 
= 
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~
~ ~ 

Save Pr values for future analysis 

Iteration = 500? 

Iteration  
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1.       ______ 
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        .           
.                 .           
.                 .           
.                 .           . 
       100.      ______ 

KOVs Table 

σ 
σ 

Figure 4.2.  Flowchart for Simulating a Model for 500 Iterations. 
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demonstrate the concept of iterations.  The output variables specified for Simetar were:  Q, P, 
VC, TR, and PR.  If one examines a particular iteration in SimData, you can use a calculator to 
verify how profit is calculated as a function of the random Q and P values for that particular 
iteration.  (This process of checking an iteration with a calculator is part of model verification 
and is the responsibility of the modeler.) 
 
Number of Iterations 
 
 The number of iterations to simulate a stochastic model is a researchable problem.  The 
number of iterations is different for each model depending on the number of random variables, 
the degree of correlation among the random variables, the number and type of equations in the 
model, and sensitivity of the endogenous variables to the random variables.  Generally, 100 to 
250 iterations is sufficient to accurately estimate an empirical distribution for the key output 
variables in the model. 
 
 Once a model has been validated, the analyst needs to determine the number of iterations to 
use for production runs with the model.  Simulate the model for a range of iteration numbers 
(say, 25, 50, 75, 100, 200, 500, 1,000, 5,000) and compare the summary statistics for the 
stochastic and key output variables.  Compare the standard deviation for the key output variables 
across the alternative iterations.  As the number of iterations increases, the standard deviation for 
the output variables changes until it reaches an equilibrium, as in Table 4.1.  The iteration 
number where the standard deviation stabilizes should be the minimum number of iterations used 
for the model.  The number of iterations for Business Model With Risk Demo.XLS was 
determined based on the results in the “IterNoTest” worksheet, using the steps described above. 
 
 

Table 4.1.  Comparison of the Mean and Standard Deviation 
for Profit as Iteration Number Increases for the Model 
Depicted by the Flowchart in Figure 4.2. 

 
Number of Iterations 

 
   Mean     

 
Std. Deviation 

     25 211.88 74.90 
     50 212.14 78.20 
     75 217.73 92.77 
   100 214.29 86.98 
   200 215.65 88.01 
   500 214.45 86.27 
1,000 214.41 83.77 
5,000 215.21 86.88 

 
 
 The final check for selecting the number of iterations is to examine the CDF’s for the output 
variables.  The more iterations for a model the smoother the CDF graphs.  Examine the CDFs for 
alternative numbers of iterations in Business Model With Risk Demo.XLS worksheets 25IterCDF 
to 1000IterCDF to see how iteration number affects the smoothness of the estimated CDFs. 
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Monte Carlo vs. Latin Hypercube Sampling 
 
 The number of iterations a model is simulated can be greatly reduced if the simulation 
package uses the Latin Hypercube procedure rather than the Monte Carlo procedure to sample 
the probability distributions.  The Monte Carlo procedure randomly selects values from the 
probability distributions.  As a result the procedure samples a greater percent of the random 
values from the area about the mean and under samples the tails.  When Monte Carlo sampling is 
used it is recommended that a large number of iterations be used to minimize the effects of under 
sampling the tails of the probability distribution. 
 
 An alternative technique for sampling probability distributions is the Latin Hypercube 
sampling procedure (Inman, Davenport and Zeigler).  This technique segments the distribution 
into N intervals and makes sure that at least one value is randomly selected from each interval.  
The number of intervals, N, is the number of iterations.  By sampling from N intervals, the Latin 
Hypercube insures that all areas of the probability distribution are considered in the simulation.  
Therefore, when the Latin Hypercube sampling procedure is used, the number of iterations 
necessary to reproduce the parent distributions is less than when sampling with the Monte Carlo 
procedure. 
 
 A simple example of the two sampling procedures is provided in Figures 4.4 and 4.5.  These 
figures show the CDFs from simulating a uniform (0,1) distribution with the Monte Carlo and 
Latin Hypercube sampling procedures.  A perfect sampling procedure will result in a straight 
line CDF between zero and one.  With a sample size of 100 iterations the CDF for the Latin 
Hypercube is very close to a straight line (Figure 4.4).  However, for the Monte Carlo procedure 
the CDF for 100 iterations is fairly uneven showing considerable bias in several segments of the 
distribution.  At a sample size of 1,500 the Latin Hypercube CDF is a perfectly straight line 
while the Monte Carlo procedure still has some bias (Figure 4.5).   
 
 The Simetar simulation engine is programmed to only use the Latin Hypercube sampling 
procedure.  The @Risk© package requires the analyst to specify which of the two sampling 
procedures to use.  When using @Risk© be sure to select the Latin Hypercube sampling 
procedure. 
 
Pseudo-Random Number Generator 
 
 To build stochastic simulation models one needs to know only a few of the details about 
how random numbers are actually generated.  In simulation we use pseudo-random numbers.  
Pseudo-random numbers are generated by a process which guarantees that each "seed" will 
generate the "same sequence" of random numbers.  This may not sound random to you, but it is. 
 
 A random number generator which generates a different sequence of random numbers each 
time it runs would be useless for conducting business analyses.  Such a random number 
generator would develop a different set of results every time you run the model, even if the input 
values did not change.  An even greater problem occurs when simulating two different 
management actions, because the differences in the results would be due to the assumptions and 
the particular sequence of random numbers.  To avoid these problems we use pseudo random 
number generators so the only difference between runs is due to our assumptions about 
management's actions. 
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Figure 4.5.  CDF Comparing 1500 iterations of Latin Hypercube to 
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 A pseudo random number generator uses a seed value to initiate its random number 
sequence.  Each seed is associated with a unique sequence of random numbers, or realizations.  
The seed is a five digit, odd number, as 31517.  I use this same seed for all simulation analyses 
and it works, meaning that the random numbers do not appear to be biased, do not degenerate to 
zero, and do not repeat themselves after a large number of iterations.  (A note is that this is the 
3,392 prime number.) 
 
 With Simetar you can generate pseudo-random numbers by specifying and using the same 
seed via the Simulation Settings dialog box.  Any positive integer can be used as the random 
number seed. Changing the seed results in a different sequence of random numbers, as shown in 
Pseudo Random Number Generators Demo.XLS.  In the Summary worksheet there are three 
columns of random numbers; each column is a sample of 500 pseudo random numbers distributed 
Uniform (0,1) using a different seed.  The summary statistics indicate that all three samples are 
statistically equivalent, however, visual inspection reveals that the random numbers are different 
as the seed changes.  It is recommended that you pick a seed and stay with it for all simulations.   
 
 Feldman and Valdez-Flores describe how the congruential method is used to generate 
pseudo random numbers.  This method starts with a seed and then uses a fixed algorithm to 
calculate successive random numbers and seeds.  Because the algorithm is a mathematical 
process the sequence of random numbers is always the same unless the seed is changed.  The 
algorithm described by Feldman and Valdez-Flores is quoted directly (page 80) as follows: 
 

 “… let a and b be two fixed integers, and let L denote the largest possible (signed) 
integer that the computer can store.  Let S be a random seed and let Snext be the next seed to 
be determined.  The random number associated with the seed is: 
 
 R = S/L, 
 
 and the next seed is: 
 
 Snext = (aS + b) mod L. 
 
For example, for a 16-bit computer, L = 32767 = (215-1) and we might set a = 1217, set b = 
0, and let the initial seed be S0 = 23.  For this situation, the random number sequence is 
generated by the following calculations: 
 
 S1 = (1217 * 23) mod 32767 = 27991 
 
 R1 = 27991/32767 = 0.85424 (first random number), 
 
 S2 = (1217 * 27991) mod 32767 
      = 34065047 mod 32767 = 20134 
 R2 = 20134/32767 = 0.61446 (second random number), …” 

 
The random numbers generated by the congruential method are distributed uniform (are USDs) that 
can be converted to standard normal deviates (SNDs) using the inverse transform method.  Because 
Simetar does all of this work for you during the simulation process all you have to know is that the 
sequence of random numbers will remain constant until the random number seed is changed. 
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Simulating Uncertainty 
 
 Risk and uncertainty are out of the decision makers control and most often they are the forces 
that affect the success of a business decision.  Risk is the portion that can easily be modeled using 
stochastic simulation.  Risky variables have probability distributions that define the nature of their 
risk.  For example, sales per period may be normally distributed with a mean of 10,000 and a 
standard deviation of 300. 
 
 Uncertainty is risk which can not be defined by a probability distribution.  An uncertain 
variable is one which does not have a known distribution.  One way to think about uncertainty is 
that the mean and standard deviation for the variable’s probability distribution are risky.  Using this 
construct, the risky probability distribution for an uncertain variable X could be stated in terms of 
its uncertain mean y(X ~ N(Y, ))σ  and uncertain standard deviation X Z Zˆ(  ~ N( , ))σ σ σ  or 

Y Z ZX ~ N(N(Y, ), N( , ))σ σ σ .  The resulting probability distribution for the example variable X is 
risky in terms of its mean and variance, but what if one did not even know the type of distribution X 
followed, then X would be truly uncertain. 
 
 Because uncertain variables do not have known distributions and parameters they can not be 
simulated directly.  Uncertainty can be incorporated into simulation models two ways.  The first is 
to use an example from catastrophe theory and assume the worst outcome happens at random with a 
probability of P.  For example, a plant manager may know that the main power supply can fail but 
has no idea when it will occur.  This type of uncertain event can be simulated using a Bernoulli (P) 
distribution.  Each period the power failure variable is simulated, if it equals 1 then the uncertain 
event occurred. 
 
 Another way to try to stress test a business for uncertainty is to test the probability distributions 
for risky variables by making their means stochastic using a sensitivity analysis.  A range of means 
for each distribution can be simulated to determine which is most critical to the business decision.  
This approach can be extended to the variability parameter for each risky variable.  
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Chapter 5 
Distributions Frequently Used for Simulation 

 
Probability distributions are classified as being continuous or discrete and closed or open 

form.  Continuous distributions are smooth functions (lines) that do not have breaks or jumps 
from their minimums to their maximums.  These functions behave nicely, can generally be 
integrated and conform to mathematical functions that define their properties.  Discrete 
probability distributions are discontinuous in at least one point and these distributions have to be 
integrated with summation notation.  Discrete distributions are often referred to as being non-
parametric. 

 
Open and closed form probability distributions indicate whether a probability distribution has 

a finite minimum and maximum.  Open form distributions have no finite end points.  A normal 
distribution has no end points other than plus and minus infinity.  A closed form distribution has 
specified end points, such as an empirical distribution. 

 
Probability distributions are also classified as univariate or multivariate.  Univariate 

distributions refer to one variable while multivariate distributions have more than one random 
variable.  Several random variables that are independent (uncorrelated) would be included in a 
simulation model as univariate distributions.  Other random variables that are correlated to each 
other would be simulated as a multivariate distribution.  The job of estimating parameters for 
univariate distributions is the subject of Chapter 6.  Parameter estimation and simulation of 
multivariate distributions is described in Chapter 7.   

 
The mathematical and statistical properties for probability distributions frequently used for 

simulation are reviewed in this chapter.  Each distribution is presented in terms of its parameters, 
density function (pdf), cumulative distribution (cdf), key properties, and Simetar command for 
simulation.  (Recall that the cdf of a random variable is the integral of the pdf for that variable.) 
The Probability Distribution Demo.XLS and Simulate Alternative Distributions Demo.XLS 
workbooks demonstrate how to simulate most of the distributions.  Distributions not 
demonstrated in these worksheets can be found in Simulate All Probability Distributions 
Demo.XLS in Chapter 16.  Parameters, in the context of simulation, are the values that define the 
distribution.   
 
Continuous Distributions 

 
− Uniform Distribution U(min, max)   

 
Each equal length interval of X over the minimum to maximum range has an equal 

probability of being observed.  The parameters are the minimum and maximum for variable X, 
so it is a closed form distribution.  For example, a uniform random variable X distributed over 
the range of 10 to 20 is denoted as X ~ U(10,20).  Simulate a uniform distribution in Simetar 
using the command =UNIFORM (min, max). 

 
A special case of the uniform distribution is X ~ U (0,1) which produces a uniform standard 

deviate (USD).  A USD on the 0-1 scale is used to simulate random numbers for all probability 
distributions, via the Inverse Transform method of generating random variables and is covered at 
the end of this Chapter. 
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− Normal Distribution N(mean, std dev)   
 
 The normal distribution produces a bell shaped pdf with set probabilities.  The normal 
function reaches to plus and minus infinity so it is an open distribution.  This function is widely 
used and the integral of the pdf is found in the Z table in most statistics textbooks. Most analysts 
have memorized several probabilities about the normal distribution, such as: 
 
 66% of observations within " one standard deviation of X  
 95% of observations within " two standard deviations of X  
 50% of observations > X  or < X  
 
 Parameters for the normal distribution are the mean and standard deviation (X and )σ .  
Simulate a normal distribution in Simetar with =NORM (mean, standard deviation).   
 
 A special case of the normal distribution is X ~ N(0,1) which results in a standard normal 
deviate (SND).  Variations on a normal distribution is a truncated normal which cuts off one or 
both tails.  For example, a normal distribution with a finite minimum is X ~ TNORM (mean, std 
dev, min) where 8 is a minimum.  If X is a normally distributed random variable with a finite 
maximum it could be described as X ~ TNORM (mean, std dev, max). 
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Figure 5.4.  PDF and CDF for a GRKS Distribution.
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– Empirical Distribution E(sorted Xi values; P(Xi's)) 
 
 Non-parametric empirical distributions are generally used when a random variable has too 
few observations to estimate the parameters for a parametric distribution.  The distribution has a 
finite minimum and maximum based on observed values so it is closed form.  The shape of the 
distribution is defined by the data.  The function’s input data are discrete, however, interpolation 
between segments is done during simulation to make the cdf continuous. 

 
 Parameters for the empirical distribution are the sorted values of X i(or S ) and the cumulative 
probabilities for the sorted values i(P(S )).   Simulate the empirical distribution in Simetar with 
=EMPIRICAL (Si, P(Si)). 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
– GRKS Distribution GRKS(min, mid point, max) 
 
 GRKS distribution was developed by Gray, Richardson, Klose, and Schumann to simulate 
subjective probability distributions based on minimal input data.  Business managers can provide 
estimates of three points on a distribution of possible outcomes (min, mid point, max), but they 
often admit things could be worse or better than they expect.  The distribution is a closed form 
distribution.   
 
 Parameters for the GRKS are the minimum, mid point, and maximum.  Simulate the GRKS 
distribution in Simetar with =GRKS(min, mid point, max). 
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 Three parameters are used to estimate the “rest” of the parameters for the GRKS distribution, 
based on the assumed properties or shape for the GRKS.  The properties of the GRKS are: 

 
• 50 percent of the simulated observations are less than the mid point. 
• About 95 percent of the simulated observations are between the minimum and the 

maximum. 
• 2.2 percent of the simulated observations are less than the minimum and 2.2 percent 

are greater than the maximum. 
• There are four equal distance intervals between the mid point and the minimums. 
• There are four equal distance intervals between the mid point and the maximum. 
• There are two intervals below the minimum and two above the maximum and they 

are the same distance as the other intervals on their respective side of the mean. 
 
 Given a GRKS(20, 50, 60), the full parameters are demonstrated in Table 5.1.  The P(Xi) 
values are based on probabilities in a Z table for a standard normal distribution with the 
minimum and maximum being –2 and +2, respectively, standard deviations from the mid point.  
The Xi values for the distribution are defined by two formulas: 

 
• Width of intervals in the lower half of the distribution is: 
 (mid point – minimum) / 4   or   7.5 = (50 – 20) / 4 

 
• Width of intervals for the upper half of the distribution is: 
 (maximum – mid point) / 4    or    2.5 = (60 – 50) / 4 
 
 
 

Table 5.1.  Summary of Parameters for a GRKS (20, 50, 60) 
Distribution. 
Interval    X   i    P(X )  i  
  1    infinity   5.0 0.0000    
  2 12.5 .0062 
  3    minimum 20.0 .0227 
  4 27.5 .0668 
  5 35.0 .1587 
  6 42.5 .3085 
  7    mid point   50 .5000 
  8 52.5 .6915 
  9 55.0 .8413 
10 57.5 .9332 
11    maximum 60.0 .9773 
12 62.5 .9938 
13    + infinity 65.0 1.0000    
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− Exponential Exp(β) 
 
 The exponential distribution is used to simulate random values for growth or decay 

functions.  The function is simulated using the functional form 
X

1-e β
−

.   The distribution 
generates a random value with mean 2and variance .β β  
 
 Parameters for the exponential distribution are the mean (β).  Simulate the exponential 
distribution in Simetar with =EXPONINV(beta). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
– Other Continuous Distributions 
 
 There are many other continuous probability distributions that can be used for simulating 
random variables, such as:  beta, gamma, poisson, log-log, log normal, and weibull.  An Excel 
demonstration program for viewing and experimentation on these and other key probability 
distributions is provided in View Distributions Demo.XLS.   
 
 Figure 5.6 presents an example of how the View Distributions Demo.XLS program works.  
The user enters 10 observations for data series (probability distribution) to be analyzed in 
B6:B15.  Next the user selects the distributions to be tested/viewed in cells D7:D9 via drop down 
menus in each of these cells.  The user can choose among 12 distributions in each cell.  Simetar 
functions calculate the parameters for the selected distributions, simulates the distribution, and 
shows the distribution as a CDF in the chart.  The lines in the chart are color coded to match the 
colors for the three distributions the user selected.  The =CDFDEV( ) value is a loss function to 
indicate how closely the assumed distribution fits the user’s data; a zero is a perfect fit.  The 12 
distributions that can be viewed in View Distributions Demo.XLS are:  beta, double exponential, 
exponential, gamma, logistic, log-log, log-logistic, lognormal, normal, pareto, uniform, and 
weibull. 
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        Figure 5.6.  Sample Output for View Distributions Demo.XLS. 
 
 
 The Simetar functions used to simulate more than 40 probability distributions are 
summarized in Section 2.0 of Chapter 16. 
 
Discrete Distributions 
 
– Bernoulli B(p) 
 
 A Bernoulli distribution is used to simulate variables with two values, either X = 0 or X = 1. 
The probability of  X equaling 1 (or true) is the probability P and the probability of X equaling 
zero (or false) is 1-P.  This probability distribution makes a good Aon@ or Aoff@ switch for a 
conditional random variable.  For example: the variable could be rain or dry, dead cow or a live 
one, prices increase or decrease, machine fails or works, etc., each with the probability of P for a 
particular outcome. 
 
 Parameter is simply the probability of X=1 or P.  Simulate a Bernoulli distribution in Simetar 
with =BERNOULLI (P). 
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– Discrete Empirical DE (sorted Xi values) 
 
 A discrete empirical random variable X can take on fixed values with an equal probability, or 
X - DE (3.1, 4.4, 6.6, 7.8) for a random variable X which has an equal probability of being 3.1, 
4.4, 6.6, or 7.8.  The X value is not interpolated so only these Xi values can be observed.   
 
 Parameters are the sorted X values or Si from minimum to maximum.  Simulate a discrete 
empirical distribution in Simetar using =DEMPIRICAL(Si). 
 
 
 
 
 
 
 
 
 
 
 
Conditional Probability Distributions 
 
 The distributions described and demonstrated thus far in Chapter 5 are unconditional 
distributions.  In other words, the distributions are not directly dependent upon another 
distribution.  In simulation modeling we frequently encounter cases that must be modeled using 
conditional distributions. 
 
 Conditional distributions occur where a random variable can take on different distributions 
rather than just different values in one distribution.  In theoretical terms, consider the case of a 
random variable X which has two possible distributions depending upon another random 
variable Y or: 
 

 X  ~   
E(1,  2,  3,  4,  5)            if Y =  1
or
E(10,  12,  13,  14,  15)  if Y  =  0

R
S|
T|

 

 
 where  Y = 1 with probability of P and Y = 0 with probability 1-P. 
 Both X and Y are random variables but X is conditional on Y. 
 
 Conditional distributions can occur when simulating rainfall, or mechanical failures, or even 
market demand for new products.  In the case of rainfall, think of the Y (or switch) distribution 
being a true or false indicator of whether it rained or not over a particular time period.  In this 
case, X is the random quantity of rainfall, if it rained, or: 
 

 Rainfall  =   
TNORM (3.0,  1.0,  0,  4.5)  if Y =  1
or
0.0                                        if Y =  0

R
S|
T|
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 where  Y = 1 with probability of P and Y = 0 with probability 1-P. 
 
 In the case of simulating mechanical failures the Y switch distribution determines whether 
there was a failure or not, over a given period.  The X distribution could be either the time loss or 
repair cost caused by the failure.  For example, the repair cost to a generator could be $100, 
$3,000, or $5,000, with equal probability, if a mechanical failure occurs.  The probability of a 
mechanical failure is 10 percent.  This problem can be restated using the discrete uniform (DU) 
distribution as: 
 

 Cost  =   DU(100,  3000,  5000)  if Y =  1
0                                    if Y =  0
RST  

 
 where Y = 1 with probability of 10 percent and Y = 0 with a 90 percent probability. 
 
To simulate the probability of a mechanical failure and its related cost in Simetar, first use the 
Bernoulli distribution to determine if there was a breakdown and then simulate the cost of the 
repair in a second distribution.  Let cell A1 have the following formula: 

 
  =BERNOULLI(0.10) 
 
  and then use the resulting value from A1 in the A2 formula: 
 
  =RANDSORT(100, 3000, 5000) * A1 

  
The result in A2 is a random cost of repair that equals zero 90 percent of the time and either 
$100, $3,000, or $5,000 about 33.33 percent of the time.   

 
 The Conditional Probability Distribution Demo.XLS includes two examples of conditional 
probability distributions.  The first example is the mechanical failure for a generator described 
above.  The second example is a case where a salesman is paid a base monthly salary plus a 
bonus.  The bonus is equal to 8.5 percent of sales receipts after the first 1,000 units sold each 
month.  Each unit sells for $10.  Historical data for sales in the region are provided and the task 
is to estimate the probability distribution for the salesman’s salary.  The problem can be stated as 
follows: 
 

 
$5,000 + (Sales-1,000) + $10 * 0.085   if Sales > 1,000

Salary  =  or
$5,000                                                   if Sales  1,000

⎧⎪
⎨

≤⎪⎩
 

 
The first step is to estimate the probability that monthly sales exceed 1,000 units.  This is 
calculated by using the =EDF( ) function.  This yields a probability of 62.84 percent.  The 
second step is to estimate the parameters for a distribution of sales.  In this case the distribution 
is made up of sales data for only months when sales exceeded 1,000 units (see columns E and H 
in the workbook).  Because the test for normality failed to reject normality, the distribution was 
simulated as a truncated normal.  (The distribution was truncated at 1,000 to be consistent with 
the conditional nature of the distribution.)   
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 The salesman’s salary problem is simulated in two steps.  First the switch variable is 
simulated to see if sales exceed the threshold value (E65).  Second the bonus for sales over the 
threshold is calculated.  The result is that the expected salary is $5,085 per month.  See 
SimData1 for the simulated results. 
 
When are these Distributions Used? 
 
– Uniform distribution is used if each observation of the random variable between the 

minimum and maximum has an equal chance of occurrence or you have no idea what type of 
distribution to use. 

 
– Normal distribution is used if the random variable is the error term for a regression 

equation or the data have been tested statistically and you cannot reject the null hypothesis of 
a normal distribution.  Use the normal distribution if you have lots of observations and have 
tested the data to insure the variable is normally distributed.  (See Chapter 16 for Simetar’s 
tests for determining if a data series is distributed normal.)  After simulating the random 
variable test that the simulated minimums and maximums do not produce irrational results, 
such as negative prices, yields or interest rates or unrealistically large values.   

 
− Empirical distribution is used if the random variable can take on any value within a finite 

range and there are too few observations to estimate the parameters for the true distribution.  
Usually 20 or more observations are required to prove conclusely that a distribution is 
normally distributed or to estimate the parameters of a distribution with a high degree of 
certainty.  This is not usually the case in business as it is hard to get 10 observations under 
the same economic policy, management regime, farm program, or trade policy.  Simulating 
crop yields as an empirical distribution when you  

 have only 10 historical values, is a good example.  We know yield can be any positive value. 
We do not have enough observations to test for normality.  We know the 10 yields were 
observed with a probability of 1/10, or one each year, therefore the distribution looks like 
Figure 5.9.  The shape of the distribution is specified by the data which leads to the name – 
non-parametric empirical distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P(X)

Minimum Maximum X

Figure 5.9.  CDF of an Empirical Distribution.

P(X)

Minimum Maximum X

Figure 5.9.  CDF of an Empirical Distribution.
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– Exponential distribution is useful when needing to simulate a variable which is subject to 
decay or growth.  Decaying values such as the benefits of advertising or the population of 
grasses on a range site are examples of such variables.  Growth functions such as populations 
of insects or bacteria growth also can be simulated as exponential distributions. 

 
decay XP

growth
XP

X   ~  E  (Mean)
or

1X   ~  
E  (Mean)

 

 
– Bernoulli distribution is a perfect on/off switch which activates another random variable or 

a decision.  The Bernoulli distribution returns a 1 P percent of the time and 0 (1-P) percent of 
the time.  It’s therefore often used to simulate conditional distributions. 

 
– Discrete Empirical distribution is useful if the stochastic variable has a finite number of 

observations, the variable is able to take on only certain values, and there is no indication of 
alternative values the variable can take on, e.g., a factory can hire labor in fixed quantities of 
2, 4, 6 and 8 hours for each employee, or the capacity for the next cattle truck in line at a 
feedlot could be 50, 75, 100, or 125 head of steers. 

 
A variation on this problem is the one of randomly sorting a finite number of values, such as 
drawing the order of contestants.  Each contestant represents a discrete random variable that 
can be picked in any order.  This is the distribution used to simulate playing dice in a 
simulation model.  See Games Of Chance Demo.XLS and Simulate All Probability 
Distributions Demo.XLS for an example of how this distribution is used to flip a coin, roll 
dice, play poker, play Bingo, play the lottery, and spin the slot machine. 
 

– GRKS distribution is used when dealing with very limited information about the random 
variable.  The decision maker may only be able to provide values for the mid point, minimum, 
and maximum.  These three values define a subjective distribution that can be used until 
something better is developed.  It is recommended that if the GRKS distribution is used, the 
decision maker/expert be consulted regarding its simulated values during the validation process. 

 
– Triangular distribution is often used in simulation when modelers do not know better.  It is 

easy to use because it is fully defined by the minimum, mode and maximum.  The problem 
with the triangle distribution comes from the probability in the tails.  If farmers are asked 
Awhat was the minimum or maximum yield they experienced over 10 years,@ they give values 
that were actually observed 1 in 10 years.  That means the simulation model needs to 
simulate the minimum 10% of the time and the same for the maximum.  The triangle pdf will 
never simulate the minimum or the maximum with more than a 1 percent probability. An 
alternative to the triangle distribution is the GRKS distribution when dealing with subjective 
data about the random variable. 
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− Conditional distribution is used when the stochastic variable is a function of another 
variable, such as weather, market conditions, or outcomes for certain variables in the system. 
This distribution allows the model to join together different distributions to simulate a single 
variable, thus more accurately representing the real situation.  A Bernoulli distribution is 
generally used to activate a conditional distribution.  For example, a conditional pdf for 
rainfall in a given region could be simulated as: if it rains (0.25 = P(rain)) then the amount of 
rain is distributed normal with a mean of one inch and a standard deviation of 0.20 inches. 
This type of conditioning is referred to as a “Conditional Probability Distribution” and is 
dependent upon a Bernoulli distribution to determine if the event occurs. 

 
Inverse Transform Method for Simulating Random Variables 
 
 The Inverse Transform for simulating random variables is the procedure for linearly 
transforming a random uniform standard deviate (USD) into a random value for another 
distribution.  Most all random number generators use a USD and transform it to the desired 
distribution using this procedure.  The purpose of this section is to describe how the Inverse 
Transform works for uniform, normal, empirical, Bernoulli, discrete empirical, and triangle 
distributions. 
 
– Inverse Transform for the Uniform Distribution 
 

Inverse Transform Demo.XLS contains an example of how the Inverse Transform procedure 
is applied to simulate a random value distributed U(10,15).  The steps to using the Inverse 
Transform procedure for the uniform distribution are: 
 
• In cell A1 generate a USD using  

  = UNIFORM ( ) 
• In cell A2 enter the Inverse Transform formula for a uniform distribution 

  = Min + (Max – Min) * A1 
  For a random variable X ~ U (10,15) the formula in A2 is  

  = 10 + (15 – 10) * A1 
  or 
  = 10 + (15 – 10) * UNIFORM ( ) 
  Note:  The former formula is used for advanced simulation techniques when correlating 

random variables.   
 

Minimum MaximumMid point

Figure 5.10.  PDF for a Triangle Distribution.

Minimum MaximumMid point

Figure 5.10.  PDF for a Triangle Distribution.
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 The Inverse Transform procedure in the formulas above is demonstrated in Figure 5.11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Use a calculator and check the Inverse Transform formula as follows: 

 
if the USD = 0.6 
then X = 13, given that X = 10 + (5 * 0.6) 
 
if the USD = 0.2 
then X = 11, given that X = 10 + (5 * 0.2) 

 
– Inverse Transform for the Normal Distribution 

 
 A uniform standard deviate (USD) can be used to simulate (or generate) a standard normal 
deviate (SND) and a normal distribution using the Inverse Transform.  The SND transformation 
from a USD is demonstrated graphically in Figure 5.12.  A USD is generated at random between 
0 and 1 with =UNIFORM( ) and applied to the inverse normal distribution to solve for the 
number of standard deviations from the zero mean.  For example, if a USD of 0.8 is drawn the 
corresponding SND is 0.84 and if the random USD is 0.25 the random SND equals –0.67. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.11.  Inverse Transform for a Uniform Distribution.

10 11 13 15

Random Value for X

U(0,1)

Random Uniform
Standard Deviate

1

0.8

0.6

0.4

0.2

0

Figure 5.11.  Inverse Transform for a Uniform Distribution.
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Random Value for X

U(0,1)

Random Uniform
Standard Deviate

1

0.8

0.6

0.4

0.2

0

Uniform Deviate

Std. Normal Dev.- +40

0.5

1.0

0.8

0.6

0.4

0.2

4 .84

USDi

Figure 5.12.  Inverse Transform for Generating a SND from a USD.
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Figure 5.12.  Inverse Transform for Generating a SND from a USD.
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 In the Inverse Transform Demo.XLS spreadsheet a table is provided so the user can type in 
USD’s between 0 and 1 in B63-B73 to see their associated unique SNDs.  The sample Z values 
here were generated using the example table: 
 
 USD of 0.00001 yields SND of -4.26 
 USD of 0.25  yields SND of -0.67 
 USD of 0.50  yields SND of 0.00 
 USD of 0.80  yields SND of 0.84 
 USD of 0.96  yields SND of 1.75 
 USD of 0.9999  yields SND of 3.719 
 
 The Inverse Transformation formula for a SND is very complex so Excel has provided a 
function to perform this calculation.  The Excel equation to transform a USD to a SND is: 
 

= NORMSINV(USD) 
 
 The Inverse Transform procedure is used to simulate the normal distribution in Simetar.  The 
NORM command has an optional parameter which allows the analyst to supply the USD used to 
simulate the normal distribution.  This can be demonstrated three ways for simulating a normal 
distribution for X ~ N (10, 3): 
 
– Generate a USD in a cell and then use that value in the =NORM( ) function 

 
• In cell A4 enter  
 =UNIFORM( ) 
• In cell A5 enter  
 =NORM(10,3,A4) 
 

– Generate a USD in one cell, generate its associated SND in another cell, and calculate the 
random X using the Inverse Transform formula for a normal distribution 
 
• In cell A7 enter  
 =UNIFORM( ) 
• In cell A8 enter  
 =NORMSDIST(A7) 
• In cell A9 enter  
 =10+(3 * A8) 
• In this case the NORMSDIST function converts the USD to a SND 
• As a check use the equation below in a cell.  The answer will be the same as the result in 

A9. 
 =NORM(10, 3, A7) 
 

– Generate the random value in one step  
 
• In a cell enter =NORM(10, 3, UNIFORM( )) 

  or 
• In a cell enter =NORM(10, 3) 
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The first two procedures are used for more advanced simulation techniques which involve 
correlation of random variables. 
 
– Inverse Transformation for the Empirical Distribution 
 
 The Inverse Transform procedure is used to simulate the empirical distribution.  An 
empirical distribution is defined as i iX ~ E(S , F(S ))  which is the definition a CDF for a random 
variable, i.e., iS  represents the horizontal axis and iF(S )  represents the vertical axis.  With this 
in mind and the fact that iF(S )  is a series of probabilities from zero to one, it is easy to see how a 
USD can be used to simulate an iS  with the Inverse Transform procedure.  There are two 
methods for simulating empirical distributions with Simetar. 
 
– Direct simulation procedure calls for a sorted array of random values and their associated 

probabilities, referred to, respectively, as the Si and F(Si) where Si refers to the sorted 
stochastic values and F(Si) is the cumulative probability function for the Si  values.  The 
Simetar function is 
 

=EMPIRICAL (range of Si, range of F(S)) 
 

– The more detailed formula which is used for advanced simulation applications allows the 
user to specify the USD to be used for the simulation.  This form of the function is used 
when correlating random variables. 

 
 =EMPIRICAL (range of Si, range of F(S), USD) 
 
 The steps that are programmed into the EMPIRICAL function are listed below to 
demonstrate how the Inverse Transform procedure works for the empirical distribution.  
 
 

– Generate a USD using =UNIFORM( ). 
– Match the USD into its interval on the probability F(Xi) scale between FU and FL in 

Figure 5.13 and the table below. 
– Match up the corresponding X interval, between XL and XU (where XL is the X value for 

the lower part of the interval and XU is the X value for the upper part of the interval) 
– Interpolate to calculate ~X given the stochastic USD using the FU, FL, XL and XU 
– Repeat the process for additional iterations or USD values. 

 
 The formula for interpolating a USD to ~X is best demonstrated using a distribution, such as: 
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          Obs         X            F(X) 

Pmin    0  9.999    0.0
            1       10    .10
            2       13  

                        3       18
            4       22
            5       30
Pmax   6 30.001

  .30
   .50
   .70
   .90
 1.00

  

 
 
 
 
To simulate five random numbers from the example distribution, draw a sample of five USD’s 
(values in bold below) and interpolate as follows: 
 

 
Iter 

 
USD 

 
~Xi  

    The interpolation formula for the empirical cdf is: 
    ~Xi  = XL + (XU – XL) * ((USD – FL) / (FU – FL)) 

1 0.10 10.0     10 = 10 + (13 – 10) * [(.10 - .10) / (0.3 – 0.1)] 
2 0.80 26.0     26 = 22 + (30 – 22) * [(.8 - .7) / (.9 - .7)] 
3 0.55 19.0     19 = 18 + (22 – 18) * [(.55 - .5) / (.7 - .5)] 
4 0.11 10.15     10.15 = 10 + (13 – 10) * [(.11 - .10) / (.3 - .1)] 
5 0.25 12.25     12.25 = 10 + (13 – 10) * [(.25 - .10) / (.3 - .1)] 

 
 
 The formula for simulating an empirical distribution via the Inverse Transform method is 
programmed in Empirical Distribution Demo.XLS.  In the example, a simple 5 interval pdf is 
simulated for selected USDs to demonstrate the formula.  Change the sample USD’s in rows 24-
28 to see how the random Xi values change.  A second part of Empirical Distribution Demo.XLS 
shows how to use the inverse transform formula with a table lookup function to simulate an 
empirical distribution.  Step 5 in the demo program demonstrates how to simulate an empirical 
distribution using Simetar.  The actual Simetar command in B84 to simulate the distribution in 
Step 5 is displayed in cell E81. 
 
– Inverse Transform for the Bernoulli Distribution 
 
 The Bernoulli distribution can be simulated as a special case of the uniform distribution.  A 
USD is generated in one cell and an =IF statement uses the USD in another cell to determine if 
the simulated outcome is true (1) or false (0).  For example, if X is distributed Bernoulli with 
probability 0.75 it is simulated as 
 

• In cell A1 enter  
 = UNIFORM( ) 
• In cell A2 enter  
 = IF (A1 < = 0.25, 0, 1) 

 

FU

FL

XuXLPmin (X) Pmax (X) XX~

USD

1.0

0.8

0.6

0.4

0.2

0

F(X)

Figure 5.13.  CDF of an Empirical Distribution.
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XuXLPmin (X) Pmax (X) XX~
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0.4

0.2

0

F(X)

Figure 5.13.  CDF of an Empirical Distribution.
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The value in A2 will be one, 75 percent of the time and zero, 25 percent of the time.  The 
distribution can be simulated more directly using the function =BERNOULLI(0.75). 
 
 A graphical depiction of how the Bernoulli (0.75) is simulated using the Inverse Transform is 
shown in Figure 5.14.  Any USD between 0.25 and 1.0 results in a value of 1 while USD values 
less than or equal to 0.25 are assigned the value of zero.  This of course results in a value of one, 
75 percent of the time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
– Inverse Transform for the Discrete Empirical Distribution 
 
 The discrete empirical distribution assumes the random values for X can take on specific 
values x1, x2, x3, x4, etc.  As a result, interpolation as indicated in Figure 5.13 for the empirical 
distribution is not applicable for this distribution.  Random values for a distribution X ~ DE (3, 
4, 8, 10) can be simulated using the Inverse Transform as follows: 
 

• In cell A1 enter  
 = UNIFORM( ) 
• In cell A2 enter  
 = IF (A1 < = 0.25, 3, 0) 
• In cell A3 enter  
 = IF (and (A1 > 0.25, A1 < = 0.50), 4, 0) 
• In cell A4 enter  
 = IF (and (A1 > 0.5, A1 < = 0.75), 8, 0) 
• In cell A5 enter  
 = IF (A1 > 0.75, 10, 0) 
• In cell A6 enter  
 = SUM (A2:A5) 

 
 
 
 
 

Figure 5.14  Inverse Transform for a 
Bernoulli Distribution B(0.75).
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Figure 5.14  Inverse Transform for a 
Bernoulli Distribution B(0.75).
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The value in cell A6 is distributed DE(3, 4, 8, 10) with each value having a 25 percent chance of 
being observed.  The DE function simulated in the example via the Inverse Transform as 
depicted in Figure 5.15.  A USD is compared to intervals on the probability axis and assigned 
values for X.  When the USD is between 0.25 and 0.50, as indicated in the figure the random 
value for X equals 4.  If the USD is greater than 0.75 X is assigned the value of 10.  If the X 
variable has more possible values, say 10, the probability (0 to 1) axis is divided into 10 equal 
intervals and random X’s are assigned accordingly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 A short cut to simulating the discrete empirical distribution is to use the Simetar function 
rather than program the =IF( ) functions in Excel. 
 
=DEMPIRICAL(3, 4, 8, 10) 
 
– Inverse Transform for the Triangle Distribution 
 
 The triangle distribution is defined by the minimum, mean and maximum or a, b, c 
parameters, respectively.  The probability of being less than the b parameter equals P(x<b) = (b-
a)/(c-a).  To insure the random value of X is drawn from this lower quadrant a USD is used and 
then the USD is used in a split Inverse Transform formula.  An example of a triangle would be T 
~ (2, 5, 15). 

• In cell A1 enter  
 = (5-2)/(15-2) 
• In cell A2 enter  
 = UNIFORM( ) 
• In cell A3 enter  
 = IF (A2 < = A1, 2 + SQRT(USD * (15-2) * (5-2)), 0) 
• In cell A4 enter  
 = IF (A2 > A1, 15 – SQRT((1-USD) * (15-2) * (15-5)), 0) 
• In cell A5 enter  
 = SUM (A3:A4) 

 

Figure 5.15.  Inverse Transform for a Discrete Empirical 
Distribution DE(3, 4, 8, 10).
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Figure 5.15.  Inverse Transform for a Discrete Empirical 
Distribution DE(3, 4, 8, 10).
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 The CDF for the triangle distribution is not a pair of straight lines with a kink at the mean.  
Rather the square root in the function adds a curve to each segment.  Figure 5.16 depicts the 
Inverse Transform for simulating a triangle distribution, T(2, 5, 15).  For USD values greater 
than 0.23 the random value is calculated using the upper segment AB (see Figure 5.16), for 
USDs less than 0.23 the random value is calculated using segment 0A.  (The fraction 0.23 is 
arrived at by the formula (mid point-min)/(max-min) for the T(2, 5, 15) distribution.)  This 
forces the distribution to be skewed according to the min, mean, max parameters for X. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
– Summary 
 
 Based on the range of examples presented here, it should be evident that all random variables 
are generated using a USD and the Inverse Transform method.  For most distributions the 
procedure is done automatically so modelers often forget that the stochastic source of all random 
variables is a USD.  For advanced applications it is essential to explicitly deal with the USD so it 
is included as an optional parameter in the Simetar functions to simulate each random variable.  
For example, the fully defined Simetar function to simulate the most popular distributions 
described in this Chapter are: 
 

• Uniform = UNIFORM (min, max, USD) 
• Normal = NORM (mean, std. dev., USD) 
• Empirical = EMPIRICAL (Si, F(Si), USD) 
• Discrete Empirical = DEMPIRICAL (Si, USD) 
• Triangle = Triangle (min, mean, max, USD) 

 
See Chapter 16 for other probability distributions simulated by Simetar and note the optional 
parameter (USD) that can be specified for each distribution. 
 
 

Figure 5.16.  Inverse Transform for a Triangle Distribution
T(2, 5, 15).
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Figure 5.16.  Inverse Transform for a Triangle Distribution
T(2, 5, 15).
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Chapter 6 
Parameter Estimation for Univariate Probability Distributions 

 
Prior to simulating a random variable you must estimate the parameters to define the 

probability distribution (pdf) for the variable.  The parameters estimated differ from one 
distribution to another, however, the basic methodology is the same. 

 
You might ask why estimate parameters for a random variable? Or ask isn't the whole 

variable random by definition, so why estimate the parameters?  A random variable has two 
parts: a deterministic component (systematic variability) and a stochastic component (random 
variability).  The parameters basically separate and quantify these components.  In simulation we 
exogenously control or endogenously calculate the deterministic component and simulate the 
stochastic component.  Three examples of these two components of a random variable X are: 
 
− Assume X is distributed normal without a trend  
 • The deterministic component is the mean or X . 
 • The stochastic component is the unexplained variability (risk) about the deterministic 

component (e)  and is quantified by the standard deviation parameter or σ . 
 

− Assume X is distributed normal about a trend  
 • The deterministic component is the trend or ˆˆ ˆX = a + b T  
 • The stochastic component is the unexplained variability about the trend line (e)  and is 

measured by the standard deviation of the residuals about the trend line. 
 

− Assume X is distributed normal about a structural equation that relates X to exogenous 
variables Y and Z. 

 • The deterministic component is the regression equation or ˆˆ ˆ ˆX = a + b Y + c Z  
 • The stochastic component is the residual about the regression equation (e)  and is 

estimated as the standard deviation of the residuals about the econometric equation. 
 
 The deterministic component of a random variable is fixed once it is estimated, as indicated 
in the three examples.  During simulation the deterministic component of the random variable 
can be changed by the endogenous variables in the model, such as T, Y, and Z for the three 
examples.  The deterministic component of a random variable can also be changed by the user to 
analyze alternative management strategies or policies, and to conduct sensitivity analyses. 
 
 The stochastic component of X is a measure of the dispersion along the number scale and 
about the positional or deterministic parameter.  A key to stochastic simulation is correctly 
isolating the stochastic component ˆ(e)  from the deterministic component, in other words, 
separating the systematic variability from the random variability.  This process is called 
whitening the data.  We often "whiten" economic data using ordinary least squares (OLS).  In 
econometrics the objective is to estimate the best unbiased parameters for the deterministic 
component of variable X, this generally amounts to minimizing the sum of the squared residuals. 
 Unless the equations are to be simulated in a stochastic model, the stochastic component 
(residual) from the econometric model is discarded after estimating the parameters for the 
deterministic component. 
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 The first step in parameter estimation for a probability distribution is to whiten the data so 
we can sort out the deterministic and the stochastic components.  There are numerous procedures 
for "whitening" the data for a random variable and a few are outlined below for variables that 
have no trend, have a trend, are functions of other variables, or are a function of cycles and 
seasonal patterns.  Alternative methods that can be used to remove systematic variability are:   
 
 − Deviations from the mean serve to whiten data series that are too short (fewer than 10 

observations) to use an ordinary least squares (OLS) regression or data series that are 
stationary.  In this case, the parameter for the deterministic component is X  and the 
stochastic component is what is left or i iê  = X  - X  

− An OLS regression can be used to remove a systematic trend from a data series:  
ˆˆ ˆX = a + bT  which results in the stochastic component of i i i

ˆê  = X  - X  
− An OLS regression can remove systematic variability caused by association with other 

variables:  i i i
ˆˆ ˆˆ ˆ ˆX = a + bY + cZ resulting in the stochastic component of e  = X  - X  

− Time series models can explain longer-term trends and seasonal variations, 
 t t-1 t-2 i i i

ˆ ˆ ˆˆ ˆ ˆX = a + bX  + cX  + dX  + ... resulting in the stochastic component of e  = X  - X  
− First differencing the data and moving averages can also remove systematic variability, 

resulting in the stochastic component of e =  X  -  Xt t-1  
 
 If the random variable has fewer than 10 values use the residuals from the mean to whiten 
the data.  When there are 10 or more values for the random variable, check the trend OLS 
regression for a significant trend.  Use the e  residuals from the OLS trend equation only if the 
slope coefficient is statistically different from zero, otherwise use e  calculated as the residuals 
from the mean.  If the random variable is a function of other variables, use the residuals from the 
OLS equation as the stochastic component for the random variable. 
 
 This chapter provides detailed examples of how to estimate parameters for different types of 
univariate random variables.  All of these examples are presented in the Trend Regression To 
Reduce Risk Demo.XLS workbook. 
 
Random Variables Without Trend 
 
 Random variables with fewer than 10 observations and random variables with no 
statistically significant trend should be whitened using deviations or residuals from the mean.  
The mean is the deterministic portion of the random variable and the residuals from the mean are 
the stochastic component: 
 
 − Deterministic component 
  X =  ( X ) / NiΣ  
 
 − Stochastic component 
  e  =  X  -  Xi i  
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Figure 6.1.  Residuals About the Mean for a Series Without Trend. 

 Variability about the mean, or e , is the unexplained portion of the random variable.  A 
series without trend and its residuals about the mean is depicted in Figure 6.1.  The residuals 
about the mean constitute the stochastic portion of the random variable.  Note that the residuals 
about zero in the bottom panel exactly match the positive and negative variations about the mean 
in the top panel. 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Parameter estimation for simulating a random variable with few observations or has no 
trend is described in this section.  Parameters for simulating random variables that are distributed 
normal, empirical, uniform or Bernoulli are described in detail.  For each distribution the 
following steps are used: 
 

– Define the parameters for the distribution, 
– Describe the process for estimating the parameters, 
– Outline the steps for estimating the parameters in Simetar, and 
– Describe how the parameters are used in simulation. 
 

− Normal Distribution  
 
The parameters for the normal distribution are: 
– Deterministic component is the mean X. 
– Stochastic component is the measure of dispersion about the mean or σ e .   
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 Parameter estimation for the normal distribution is quite simple.  Calculate the simple mean 
for the random variable without regard for whitening.  Calculate the standard deviation for the 
stochastic component, which amounts to calculating the standard deviation of the residuals about 
the mean.  Be sure to use the population standard deviation (=STDEVP( )) rather than the sample 
statistic. 

 

 
i i

e i

ê   =  X     X  for i = 1, 2, 3, ... n

ˆˆ   =  standard deviation of the e .σ

−
  

 
 For parameter estimation of a normal distribution, in Simetar, select the Simple Statistics 
icon or menu item.  To be sure you calculate the correct standard deviation, select the option for 
the population standard deviation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are three ways to simulate the normal distribution in Simetar.  The formula for simulating 
a normal distribution is: 
 
 ~X   =   X  +     *   SNDi eσ  
 
where SND is a standard normal deviate distributed N(0.1). 
 
In a Simetar model the formula for a normal distribution can be simulated as: 
 

 
e

e

ˆ=  X  +    *  NORM ( )
or

ˆ=  NORM (X, )

σ

σ
 

 
 The steps for estimating the parameters for a normal distribution are presented in Figure 6.2 
and the Trend Regression To Reduce Risk Demo.XLS spreadsheet.  The random variable X has 
10 observations with a mean equal to 2.735.  The residuals from X  are in column D of Table 1 
of the Demo.  The standard deviation for the residuals about the mean, 1.746, is the second 
parameter for the normal distribution.   

 
 
Figure 6.2.  Parameter Estimation for a Normal Distribution. 
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Figure 6.3.  Parameter Estimation for an Empirical Distribution. 

− Empirical Distribution Without a Trend 
 
 The parameters for the empirical distribution without a trend are: 
 

− The deterministic component is the mean X . 
− The stochastic component is the dispersion about the mean, which is expressed as the 

sorted fractional residuals or Si .  
− Pseudo minimum and maximum provide end points for the distribution or 

ˆ ˆe ePmin  and Pmax . 
− Assign probabilities for each of the sorted residuals P(Si) with end point probabilities for 

the pseudo minimum and maximum equal to 0 and 1, respectively. 
 
 To estimate these parameters for the empirical distribution follow the steps outlined below 
and in Figure 6.3. 
 

1. Calculate the mean for the random variable. 
2. Calculate the residuals about the deterministic component (e )i  and then divide the 

residuals by the mean to calculate the fractional deviates (Fe )i . 
3. Sort the fractional deviates to get the sorted values Si. 
4. Calculate the pseudo minimum and maximums by multiplying the minimum and 

maximum Si  residuals by 1.0001 or: 

 ˆ ie

ˆ ie

Pmin  = (minimum S ) * 1.0001
Pmax  = (maximum S ) * 1.0001

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The parameter estimation for an empirical distribution can be done by hand using Excel 
commands as demonstrated in Figure 6.3 or by selecting the EMP icon on the Simetar toolbar.  
Next select the option to calculate the dispersion parameters as “Percentage Deviations from the 
Mean.”  This Simetar function is particularly useful when there are several random variables in 
the model that will be simulated as empirical.  The EMP icon function can calculate the 
parameters for 250 random variables in one step.  The EMP icon can also estimate the 
parameters assuming the data are different from the mean and as actual data. 
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 The formulas for simulating a univariate empirical distribution with Simetar that does not 
have a trend differs based on the form (assumption) for the iS  values. 
 

− The iS  values are actual data: 
 
 =EMP (Historical Data Series) 
 

− The iS  values are differences from the mean: 
 
 i i=X + EMP(S , P(S ))  
  

− The iS  values are fractional deviations from the mean: 
 
 i i=X * (1 + EMP(S , P(S )))  
 
 The steps for estimating these parameters are summarized in Figure 6.3 and in the Trend 
Regression To Reduce Risk Demo.XLS workbook.  The residuals, e ,  i values in column D of 
the Demo are divided by the mean to get the i iˆF  = e /X  values in column E and then column E is 
sorted in column F to get the Si  values (Figure 6.3).  The parameters for the empirical 
distribution are summarized on the right side of Figure 6.2  for an empirical distribution.  The 
mean and the sorted residuals as a fraction of the mean constitute all of the parameters for the 
distribution.  In addition to this long-hand procedure for estimating the parameters, the Simetar 
EMP procedure is demonstrated in the workbook. 
 
− Uniform 
 
 The parameters for the uniform distribution are: 
 

− Minimum 
− Maximum 
 

Parameter estimation for the uniform distribution is quite simple.  Review the data for the 
random variable and identify the minimum and the maximum.  Parameter estimation in Simetar 
is done by using the Simple Statistics icon. 
 
 The uniform distribution is simulated using the formula: 
 

 ~X   =   X   +   X     X   *  USDi min max min−b g  
 
where USD is a uniform standard deviate distributed U(0,1). 
 
With Simetar the uniform distribution can be simulated two ways: 
 

− In an Excel model the formula can be 
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( )min max min

min max

=  X   +  X     X   *  UNIFORM ( )
or
= UNIFORM (X , X )

−
 

 
See Table 4 in Trend Regression To Reduce Risk Demo.XLS for an example of how the 
parameters for a uniform distribution are calculated and simulated. 
 
– Bernoulli  
 
 The only parameter for a Bernoulli distribution is the probability that an event occurs or p.  
Parameter estimation for the Bernoulli distribution amounts to counting the number of times an 
event occurs and dividing by the number of possible outcomes in the period observed.  This 
could involve counting the number of days it rains in June over a 10 year period, or it could be 
the number of times a price is less than 2.00.  These two examples would be for simulating the 
chance of rain in June or of an unacceptably low price. 
 
 Simetar has a function that can be used to easily calculate the p parameter for a Bernoulli 
distribution.  The =EDF( ) function calculates the probability that X is less than some critical 
value or p = P(X < Critical Value).  The Simetar function is programmed as: 
 
 =EDF (Historical Data, Critical Value) 
 
where Critical Value is the cut off, such as 2.00 price in the above example. 
 
 Simulate the Bernoulli function in Simetar using the function 
 
 =BERNOULLI(P) 
 
Pressing the F9 key will produce a zero or 1.  The cell with the =BERNOULLI function has a 1 
p percent of the time and has a 0 (1-p) percent of the time. 

 
 For an example of how the Bernoulli parameter was calculated using Simetar’s EDF 
function and a critical value of 2.0, see Table 5 in Trend Regression To Reduce Risk Demo.XLS. 
 
Random Variables With a Trend  
 
 Random variables that have a significant trend must be de-trended prior to estimating 
parameters for the distributions.  Usually the best method for de-trending a random variable is to 
use an ordinarily least squares (OLS) regression with time as the dependent variable.  First 
differencing the data is an alternative method for removing a trend from the data.  See Table 6 in 
the Trend Regression To Reduce Risk Demo.XLS workbook for an example of using an OLS 
regression to de-trend a random variable.  The regression equation to de-trend a random variable 
X with a linear trend is: 
 
 X  =  a +  bTi i  
 
where  T is a series of values 1, 2, 3, …. or 
  T can be values for the years 1990, 1991, 1992, …. 
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Figure 6.4.  Residuals About Trend for a Series With a 
Trend. 

 Prior to using the trend adjusted series be sure that the slope ˆ(b)  is statistically different 
from zero, at least, at the 10 percent level.  If the random variable (X) has a statistically 
significant trend, then the deterministic and stochastic components are: 
 
 − The deterministic component is the trend predicted values for X, or 
  i i i

ˆˆ ˆX  = a + bT  for any T  
 − The stochastic component is the residual about the deterministic component, or the 

residuals from trend 

  

i i i

i i i

ˆê  = X  - X  

which is the same as

ˆˆ ˆe  = X  - (a + bT )

 

 
 A graph depicting the variability about a trend regression is provided in Figure 6.4 to show 
how residuals about a trend are the stochastic portion of the random variable.  Notice that the 
original data ranged from about 90 to more than 130 while the variability about the trend 
regression is on the range of -5 to +4.  Thus the OLS trend regression explained a large portion 
of the variability (90 to 130) for the random variable.  Parameter estimation for simulating a 
random variable that has a significant trend is described in this section.  Parameters for 
simulating random variables which are distributed normal and empirical are described in detail. 
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− Normal Distribution With a Trend 
 
 Random variables that have a statistically significant trend can be simulated as a normally 
distributed variable.  The variable itself may not be distributed normal, but the residuals about 
the trend regression will most likely be distributed normal.  The parameters for the random 
variable with a trend are calculated for the deterministic and stochastic components as follows: 
 

− Deterministic component is the trend regression or: 
  X   =   a  +   bTi i  

− Stochastic component is the dispersion about the trend or the σ e  
  
 Parameter estimation for the normal distribution starts by calculating the parameters for the 
OLS trend regression to remove the trend effect: 
 

X  =   a  +   b Ti  
 
Next, calculate the standard deviation for the residuals from the trend line to estimate the 
parameter for the stochastic component: 
 

i i i

ˆ ie

ˆê   =  X   X   for all i = 1, 2, 3, ... n
and

ˆ = StdDev Population (e )σ

−
 

 
Parameter estimation with Simetar for a normal distribution with trend is done using the Multiple 
Regression icon.  To start the process create a column of values to represent the trend as 1, 2, 3, 
…, m.  The trend values are used as the T variable in the regression i i

ˆˆ ˆX  = a + b T .   Use the 
standard deviation for the residuals eˆ( )σ  or the standard error of the prediction i(SEP ) .   
 
 To simulate the random variable with Simetar there are two options: 
 

1. Simulate the variable using the historical mean X:  
 
 eˆ=NORM(X, )σ  
 
2. Simulate the variable for forecasted values of X beyond the range of the historical data, 

such as: 
 
 T+i T+i

ˆˆ ˆX  = a + b T  
 
 Simulate the random variable T+iX  as: 
 
 T+i T+i

ˆ=NORM (X , SEP )  
 

where T+iSEP  is the standard error of prediction for time period T+i  that is calculated by 
Simetar as part of the Multiple Regression calculation. 
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 An example of simulating a random variable for the two different options is presented in 
Figure 6.5.  The first example is the case where the historical mean and the standard deviation 
for the residuals is used.  In the second example, an out of sample simulation is demonstrated for 
five years using the trend forecasted values as the mean and the standard error of the prediction 
for each year. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

− Empirical Distribution With a Trend 
 
 A random variable with a trend can be simulated using an empirical probability distribution. 
 The parameters for this type of random variable are: 
 

− The deterministic component estimated from the trend regression or: 
 
  i i

ˆˆ ˆX  = a + b T  
 

− The stochastic component is the unexplained variability about the deterministic 
component or: 

 
  i i i

ˆê  = X  - X  
 
 The iê  series is transformed to be the sorted deviations from the deterministic component 

or: 
 
  i i i

ˆˆS  = Sorted (e /X )  
 

− The empirical distribution also requires calculation of pseudo minimum and maximum 
values for the empirical distribution or: 

 

  min min

max max

P  = S  * 1.0001
P  = S  * 1.0001

 

 

 
 
Figure 6.5.  Example of Simulating a Random Variable With 
Trend as a Normally Distributed Variable. 
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− The final parameter for the empirical distribution are the probabilities, iP(S ),  for the iS  
values.  The iP(S )  range from 0 at the minP  to 1 for the maxP .  The iP(S )  = 0 indicates 
there is a zero probability that a random value of iS  will be less than minS .  By the same 
logic there is a zero probability that a random iS  will exceed maxS .   

 
 Simetar calculates the parameters for a random variable with trend that is to be simulated as 
an empirical random variable.  The EMP icon can calculate the parameters for one or more 
random variables with a trend.  If the analyst specifies that the random variable(s) has a trend, 
Simetar calculates the regression equation for a linear trend, reports the slope and intercept, the 
residuals iiˆ(e ) , calculates the fractional deviates from trend i(F ) , the sorted fractional deviates 

i(S ),  the min maxP  and P , and finally the probabilities i(P(S ))  to define the empirical distribution.   
 
 Figure 6.6 summarizes the parameter estimation process for the empirical probability 
distribution of a random variable with trend.  In the first panel the linear trend line through the 
actual data suggests the presence of a statistically significant trend.  The residuals from the trend 
regression line, as a fraction of the trend forecasted values, in the second panel show how 
removing the trend reduces the variability of the variable to plus and minus 15 percent.  The 
fractional residuals are graphed as a PDF in the third panel to show the range of variability about 
the deterministic component in simulation as a probability distribution.  The fourth panel is 
developed using the iS  and iP(S )  values to show the CDF of fractional deviates for the 
stochastic component. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The random variable can be simulated for an “in sample” or “out of sample” forecasted X̂  
value or: 
 

 
i i

T+i T+i i i

X = X * (1 + EMP (S , P(S )))
or

ˆX  = X  * (1 + EMP (S , P(S )))
 

 
 
Figure 6.6.  Parameter Estimation for a Trend Dependent Variable Assuming an 
Empirical Distribution. 
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During simulation the =EMP( ) function generates a random uniform standard deviate on the 0-1 
scale and interpolates the CDF defined by i iS  and P(S )  in panel 4 of Figure 6.6 to simulate a 

stochastic iS .   Because the iS  is a fraction of X̂  by adding iS  to 1.0 and multiplying it by the 

T+iX̂  the random value for the T+i  out of sample period can be simulated. 
 
 The result of detrending X is to reduce its variability by removing the systematic 
component.  The effect of expressing the iê 's  as a fraction of the X̂s  and simulating them as 
empirical causes the simulated Xs  for any period T+i  to have the same coefficient of variation 
(CV) as the historical period.  The benefit of a constant CV is that the simulated variables do not 
increase or decrease the relative risk in the model.  See Chapter 9 for a further discussion of this 
topic. 
 
Random Variables as a Function of Other Variables 
 
 Random variables in economic models are usually a function of other variables.  For 
example, yield and exports are considered endogenous variables in agricultural sector models.  
In stochastic simulation these endogenous variables can be treated as stochastic variables.  We 
know there is a deterministic and a stochastic component to these variables because they are not 
completely random.  The deterministic component is removed through econometrics, leaving a 
stochastic (residual) component that can be simulated as the "random" portion of the variable.   
 
 The example in Table 8 of the Trend Regression To Reduce Risk Demo.XLS workbook is 
for US wheat acreage.  Wheat acreage is a function of lagged wheat prices, lagged wheat acres, 
and wheat acres set aside or idled by the CRP.  The OLS equation for the variable is: 
 
 X  i = 30.28 + 5.88 Pi-1 + 0.29 Ai-1 - 0.285Ii 
 
The multiple regression equation defines the deterministic component of US wheat acreage for a 
random variable.  The stochastic component of US wheat acreage is the residual about the 
predicted Xi  values.  The estimated standard deviation of the residuals for US wheat acreage is 
2.697, less than half the standard deviation for wheat acreage (7.609). 
 
 A chart depicting the residuals about an OLS regression is provided in Figure 6.7 to show 
how OLS reduced the variability for the stochastic portion of the variable.  Note that the 
historical data ranged from about 45 to 80 with apparently no trend and that the residuals about 
the OLS model range from -4 to +6.  Also, note that the residuals in the bottom panel match the 
misses by the OLS regression in the top panel. 
 
 An econometric model can be simulated stochastically by simulating random error terms for 
the equations.  The analyst is cautioned to estimate the best econometric model possible for the 
deterministic component of each random variable.  It is recommended that the error term for an 
econometric model be simulated assuming it is distributed normal.  However, it is possible to 
simulate the error terms as empirical so both procedures are described in this section. 
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 When a multiple regression is used to forecast/explain a random variable, the residuals from 
the regression can be used to simulate a probabilistic forecast.  The variable has two 
components: a deterministic and a stochastic component. 
 

− The deterministic component is the forecasted X̂  value for the assumed values of the 
exogenous variables or: 

 
  i i i i

ˆ ˆˆ ˆ ˆX   =  a  +  bY   +  cZ   +  dT  
 

Alternative values for the endogenous variables Y, Z, and T result in alternative forecasts 
of iX̂ ,  which may or may not be considered out of sample forecasts. 

 
− The stochastic component is the residuals or êσ  from the regression or: 

 
 ˆ i ie

ˆ = X  - Xσ  
 
 The assumption regarding the residuals determines how the variable will be simulated.  If 
the residuals are assumed to be normally distributed then the regression model will be simulated 
as a normal distribution.  If, however, the residuals do not follow a normal distribution the model 
can be simulated as a non-parametric (empirical) distribution.  In both cases the T+iX̂  value is the 
same.  Prior to choosing a distribution for the residuals it is useful to examine the consequences 
of the two distributions. 
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Figure 6.7.  Residuals from a Multiple Regression Model. 
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− Assuming the residuals are distributed normal is consistent with the t test and F test to 
determine if the model is acceptable.  However, due to the unbounded nature of the 
normal distribution, it can result in simulated values that are outside the historical range 
for the variable.  Also, for out of sample forecasts the coefficient of variation (CV) will 
be biased relative to the historical CV. 

 
− Assuming the residuals are distributed empirical prevents the minimum and maximum 

simulated values from exceeding their relative historical counterparts.  Additionally, the 
CV for out of sample forecasts will be approximately equal to the historical CV. 

 
− Simulating a Multiple Regression Model as Normal 
 
 The parameters for simulating the stochastic component, if normality is assumed, are the 
forecasted T+iX̂  deterministic component and either the standard deviation of the residuals ê( )σ  
or the standard error of the prediction (SEP).  The êσ  is often the appropriate parameter if the 
forecast value is in the historical sample range.  The T+iSEP  is the appropriate parameter for out 

of sample forecasts of T+iX̂ .   In the Multiple Regression option of Simetar both parameters are 
calculated. 
 
 To simulate a multiple regression model for an in sample analysis, assuming the stochastic 
component is distributed normal, use the following equation and function: 
 

 t t t t

ˆt e

ˆ ˆˆ ˆ ˆX   =  a  +  bY   +  cZ   +  dT
ˆ=NORM (X , )σ

 

 
To simulate an out of sample forecast from a multiple regression use the following equation and 
function: 
 

 T+t t t t

T+i T+i

ˆ ˆˆ ˆ ˆX   =  a  +  bY   +  cZ   +  dT
ˆ=NORM (X , SEP )

 

 
When the T+iSEP  is used to simulate the out of sample values the resulting CV will 
approximately equal the historical CV. 
 
− Simulating of a Multiple Regression Model as Empirical 
 
 The parameters for simulating the stochastic component if it is assumed to be distributed as 
an empirical distribution are the forecasted T+iX̂  deterministic component and the iS  values.  

The iS  values are the sorted residuals divided by the X̂'s  or: 
 
 i i i

ˆˆS  = Sorted (e  / X )  
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The i iS  and P(S )  values define the empirical probability distribution for the stochastic 
component of the random variable (Figure 6.8).  When the residuals are expressed as a fraction 
of the predicted X̂s  the stochastic, X,  will have approximately the same CV as the historical 
data, even for out of sample X̂  values. 
 
 To simulate a multiple regression model for an in or out of sample case, assuming the 
stochastic component is distributed empirical, use the following formula and function: 
 

 T+i T+i T+i T+i

T+i i i

ˆ ˆˆˆ ˆX   =  a  +  bY   +  CZ   +  dT
ˆ= X  * (1 + EMP(S , P(S )))

 

 
This formula can be used if T+iX̂  = X  or it is the forecasted value for any period T+i . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
− Additional Options for Simulation of Multiple Regression Models  
 
 The two previous sections covered two methods for simulating the stochastic component of 
a multiple regression model.  Two more situations can be simulated using a multiple regression 
model:  stochastic betas and stochastic exogenous variables.   
 
 If the betas for the multiple regression model are stochastic, the model can be simulated as: 
 
 T+i T+i T+i T+iX̂   =  a  +  bY   +  CZ   +  dT  + e  
 
where a, b, c, and d  must be simulated as a multivariate normal distribution.  See Chapter 7 

for a description of simulating multivariate probability distributions. 
 
The e  stochastic component in the equation can be simulated normal or empirical as described 
in the previous sections.   

 
 
Figure 6.8.  Parameter Estimation for a Random Variable Dependent on Other 
Variables Assuming an Empirical Distribution. 
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 Alternatively the multiple regression model can be simulated using stochastic exogenous 
variables, such as: 
 
 T+i T+i T+i T+i

ˆ ˆˆ ˆ ˆX  = a + bY  + cZ  + dT  + e  
 
where the Y, Z, and T  exogenous variables are stochastic and simulated from their own 

distributions. 
 
The exogenous variables can be distributed independent univariate or multivariate.  An example 
of this type of model is simulating a local price based on the stochastic national price or: 
 
 T+i T+i

ˆˆL  = a + b N  + e  
 
where L is the local price and N is the exogenous stochastic national price. 
 
Random Variables a Function of an Autoregressive Structure 
 
 Time series models provide a convenient method for forecasting univariate random 
variables. Such models estimate the parameters for the deterministic component of a random 
variable.  Residuals from a time series model represent the stochastic component for the random 
variable.  Therefore time series models can be simulated stochastically to provide probabilistic 
forecasts for future periods.   
 
 The procedure for simulating a time series model follows the steps outlined in the previous 
section for a random variable that is a function of other variables.  It is recommended that the 
error term for a time series model be simulated, assuming the residuals are distributed normal. 
 
Estimating Parameters for Other Distributions 
 
 Parameters for distributions other than normal and empirical are generally more difficult to 
estimate.  The parameters are often estimated using a maximum likelihood estimator or a 
methods of moments estimator owing to the fact that the functions for the parameters are 
generally not solved directly for a single value.  Simetar provides a Univariate Parameter 
Estimator (UPE) that estimates the parameters for 16 parametric probability distributions.  The 
UPE assumes the data for a random variable has no trend (i.e., that the data are stationary).  
Parameters are calculated for the following distributions, if they are applicable: 
 

- Beta 
- Double Exponential 
- Exponential 
- Gamma 
- Logistic 
- Log-Log 
- Log-Logistic 
- Lognormal 
- Normal 
- Pareto 
- Uniform 
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- Weibull 
- Binomial 
- Geometric 
- Poisson 
- Negative Binomial 

 
 Simetar calculates the parameters for each distribution using a maximum likelihood 
estimator (MLE) and a method of moments estimator (MOM).  Also, Simetar prepares the 
functions for simulating the random variables using the calculated parameters.  If the random 
variable does not conform to a particular distribution type the parameters are not reported.  For 
example, the random variable evaluated in Figure 6.9 does not conform to a Binomial so the 
parameters are not reported.  The parameters reported in Figure 6.9 are calculated both as MLE 
and as MOM.  The functions for simulating the random variable, assuming MLE or MOM 
parameters, are provided in the two right hand columns (Figure 6.9). 
 
 The results of a simulation test on the ability of the different distributions and their 
associated parameters to simulate the random variable are summarized in Figure 6.10.  The 
CDFDEV values are scalars from a loss function and indicate how closely the simulated 
distribution fits the random variable.  If the simulated distribution is a perfect fit, the CDFDEV 
value is zero.  The results in Figure 6.10 suggest that if MLE parameters are used, the uniform 
and beta distributions would be best, while if MOM parameters are used the beta is best. 
 
 An interactive Simetar assisted program is available in Test Parameters Demo.XLS.  An 
example of using the program to visualize a normal distribution with the same mean but three 
standard deviations is presented in Figure 6.11.  To use Test Parameters Demo.XLS the user 
selects the distributions in cells A7-A9 from drop down menus and then types in parameters in 
cells B7-C9.  Simetar approximates the specified distributions and displays them as CDFs and 
PDFs (Figure 6.11).   
 
 The interactive Simetar program can be used to view a particular distribution with three 
alternative parameters assumptions, as in Figure 6.11 or to compare distributions.  For example, 
three alternative distributions (e.g., beta, gamma, and normal) can be compared and parameters 
specified so each has the same mean.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 6.9.  Sample Output for the Univariate Parameter Estimator. 



--- Chapter 6 --- 

 

18 

 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
                             
 
 
 
 
 
 

 
 
Figure 6.10.  Comparison of Simulating a Random Variable with 
Alternative Distributions Using MLE and MOM Estimates of the 
Parameters. 

 
 
Figure 6.11.  Sample Output for Test Parameters Demo.XLS. 
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Summary 
 
 The procedure for estimating parameters for a univariate probability distribution can be 
summarized as follows: 
 

– Estimate the best model possible to quantify the deterministic component of the random 
variable.  This model may range from the mean (X)  to a multiple regression 
(a +  bY +  cZ).  

– Calculate the stochastic component for the random variable by subtracting the 
deterministic forecasted values from their respective observed values to get e.  

– Calculate the appropriate parameter(s) to quantify e.    The parameter for a normal 
distribution is the standard deviation ( )σ  while the parameters for the empirical 
distribution are sorted fractional deviates (S )i  and their associated probabilities 
P(S )ib g . 

 
 These steps are logical if you think about separating a random variable into its two 
components:  the deterministic and stochastic parts.  The deterministic component is the 
systematic variability and the stochastic component is the uncontrollable or random variability. 
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Chapter 7 
Parameter Estimation for Multivariate Probability Distributions 

 
 
 Univariate probability distributions are for individual random variables so multivariate 
(MV) probability distributions are for two or more random variables that are dependent on one 
another. Multivariate distributions are the rule in economic analysis models because most 
variables are correlated to each other.  The purpose of this chapter is to describe and demonstrate 
how to estimate and apply parameters for multivariate distributions.  This chapter builds on 
Chapter 6, which describes how to simulate univariate probability distributions.  
 
 The chapter is separated into three parts:  multivariate normal (MVN) distributions, 
multivariate empirical (MVE) distributions, and simulating very large MVE distributions.  The 
MVN and MVE sections deal with correlating random variables within years or intra-temporal 
correlation.  For the problem of simulating inter-temporally correlated random variables see 
Chapter 8, after working through this chapter.  Chapter 8 provides a comprehensive treatment of 
intra- and inter- temporal correlation and is recommended for advanced work in simulation.   
 
Ignoring Correlation 
 
 If two random variables are correlated and their correlation is ignored in simulation the 
model will either over or under state the variance and mean for the system’s KOVs.  The 
direction of the bias introduced on the variance is inversely related to the correlation.  Ignoring a 
positive correlation between X and Y  will understate the variance for Z if Z = X + Y .  Ignoring 
a negative correlation between X and Y  will overstate the variance for Z in the same case. 
 
 The reason why the variance of Z is inversely biased relative to the correlation between X 
and Y is due to the variance formula for variable Z: 
 
 Let Z = X + Y where X and Y are random variables, 
 
the expected value of Z is 
 
 E(Z) = E(X) + E(Y) 
 
the variance for Z is 
 
 2 2 2 2

X Y X Y xy x yV(Z) =  +   + 2 Cov (X, Y) =  +  + 2  * * σ σ σ σ ρ σ σ  
 
where xyρ  is the correlation between X and Y. 
 
When X and Y are negatively correlated the Cov(X,Y), or xyρ  is negative and reduces V(Z) so 
ignoring the correlation overstates the true variance of Z.  The opposite is true when X and Y are 
positively correlated because the Cov(X,Y) or xyρ  is positive.  In both cases the mean, E(Z), is 
unbiased by ignoring the correlation between X and Y. 
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Figure 7.1.  Statistical Test of Correlation Coefficients. 

 On the other hand if the KOV is a function of products of random variables, as Z = X * Y , 
the mean will be biased if correlation between X and Y is ignored.  In this case the expected 
value and variance of Z is: 
 
 xy x yE(Z) = E(X) + E(Y) + Cov(X,Y) = E(X) + E(Y) + 2  *  * ρ σ σ  

 2 2 2 2
X Y X Y xy x yV(Z) =  +   + 2 Cov (X, Y) =  +  + 2  * * σ σ σ σ ρ σ σ  

 
The mean and variance for Z are over or under estimated, inversely with respect to the sign on 
the correlation coefficient, if correlation is ignored in simulation. 
 
 As demonstrated in this chapter simulating a multivariate probability distribution is very 
easy and automatically corrects for the potential of biasing the mean and variance.  The 
procedure described for simulating multivariate distributions insures that the random variables 
are “appropriately” correlated, meaning that the historical correlation is maintained in the 
simulation process. 
 
Multivariate Normal (MVN) Distribution 
 
 Two or more normally distributed random variables that are correlated must be simulated as 
a MVN distribution to prevent biasing the model results.  Check for correlation of the random 
variables by calculating the simple correlation coefficients among the variables.  If the 
correlation coefficients are significantly different from zero the variables must be simulated 
MVN.  A Student-t test is used to test each correlation coefficient in the correlation matrix to 
determine if it is statistically different from zero at, say, the 95 percent level.  Simetar provides a 
Student-t test of correlation coefficients when calculating the correlation matrix (Figure 7.1).  
(See Chapter 16 and Correlation Demo.XLS for an example of this test.)  The example in Figure 
7.1 uses a critical t value of 2.20 for a 95% confidence test.  The calculated t-statistics (in the 
lower matrix) which are larger than the critical value indicate their corresponding correlation 
coefficient is statistically different from zero.  For ease of interpretation these calculated t values 
are bold. 
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 A MVN distribution has three parameters (components) to be quantified and is described 
here for a model with four random variables.  The three components for a four variable MVN 
distribution are:  
 

– Deterministic component for each of the four variables is the mean, or forecast, or jX̂  
for j = 1, 2, 3, 4. 

– Stochastic component for each of the four variables is the standard deviation about the 
mean or forecast, or σ ej  for j = 1, 2, 3, 4 

– Multivariate component for the four variables is represented by a 4x4 correlation matrix, 
or ρ  (or the covariance matrix or ).Σ  

 
– Parameters for a MVN Distribution 
 
 The deterministic component of a MVN can be the mean or the predicted value from a trend 
regression, multiple regression, or time series model for each of the random variables, such as: 

 

ij 1 i 2 i-1 3 i
ˆ ˆ ˆˆ ˆX  = a  +  b T   +  b  X   +  b Z  

 
or simply the mean 
 

 ij ijX̂  = X  
 

where Xij  are the predicted values for all random variables Xj, j = 1, 2, 3, … m, and 
  i denotes the periods (years, months, etc.) over which the variable is to be simulated. 
 
 The stochastic component for the MVN distribution is the measure of the dispersion about 
the deterministic component.  The dispersion measure for a normal distribution is the standard 
deviation ê( ).σ   The standard deviation is calculated using the residuals about the mean or 
forecast and is defined for each j variable in the distribution as: 

 
e   =   X     X

  =   standard deviation for the e 's.

ij ij ij

ej ij

−

σ
 

 
where σ ej  is the standard deviation of the residuals for each of the random variables Xj, j = 1, 

2, 3, … m.   
 
The σ ej  is calculated over the T historical periods used to calculate the deterministic component, 

j
ˆthe X . 

 
 The multivariate component for the MVN distribution is generally the correlation matrix of 
rank m for the m random variables.  The correlation matrix must be calculated using the 
residuals (e ),ij  i.e., the stochastic component.  For a 4 variable model the ρ  matrix is: 
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    ρ
ρ ρ ρ

ρ ρ
ρ  =  

1.0 12 13 14

23 24

34

1 0
1 0

1 0

.
.

.

L

N

MMMM

O

Q

PPPP
 

 
 An alternative method for simulating a MVN distribution uses the covariance matrix for the 
multivariate component.  For a 4 variable MVN model the covariance matrix, ,  is:Σ  
 

  

2
11 12 13 14

2
22 23 24

2
33 34

2
44

σ σ σ σ
σ σ σ

  = 
σ σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑  

 
– Parameter Estimation for the MVN Distribution 

 
 The steps for estimating the parameters for a MVN distribution are: 
 

1. Calculate the best model possible to predict each of the random variables, whether this is 
simply the mean, a trend regression, a multiple regression, or a time series model. 

 
 Xij  = econometric model 
 
2. Calculate the residuals, ijê ,  from the econometric forecast for each random variable. 
 

3. Calculate the standard deviations, σ j , for each random variable using their residuals. 
 

4. Calculate the correlation matrix ρ( )  and calculate the covariance matrix Σ( )  for the 
random variables using the residuals.  (Note:  Use the residuals to calculate the matrices 
because the residuals are the stochastic component of the variables to be correlated.  
Calculating the correlation and covariance matrices from the actual data is equivalent to 
calculating the multivariate measures about the mean which is not the same as the 
correlation for the residuals.) 

 
– Parameter Estimation Using Simetar 
 
 The Simple Statistics and Multiple Regression options in Simetar will most often be used to 
estimate the deterministic components for MVN distributions.  When the Multiple Regression 
function is used, Simetar forecasts the random variable, ijX̂ ,  and estimates the standard deviation 
for the residuals, σ j .  Additionally, Simetar calculates the standard error of prediction, 

jp, j or SEPσ̂  which should be used in place of a standard deviation of the residuals for simulating 
a variable distributed normal. 
 
 
 



--- Chapter 7 --- 

 

5 

 Use the residuals provided in the Multiple Regression function’s output to calculate the 
correlation matrix and the covariance matrix.  Simetar provides a Correlation function for 
calculating the ρ  matrix and the Σ  matrix and testing the correlation coefficients for 
significance.  
 
 An example of estimating the parameters for a 3 variable MVN distribution is included in 
Multivariate Normal Distribution Demo.XLS.  Each of the four steps for MVN parameter 
estimation are identified and the distribution is simulated different ways using Simetar.  The 
example begins with the data for the three random variables in rows 8-34.  In Step 1, OLS 
regression results show significant trends for all three random variables.  The residuals from 
trend for each random variable are calculated using the Simple Regression option in Simetar in 
Step 1.  Standard deviations for the residuals are calculated using an Excel function in line 108.  
The unsorted residuals are used in Step 2 to calculate the correlation matrix. 

 
– Simulating a MVN Distribution 
 
 Three methods for simulating a MVN probability distribution are presented here.  The 
technical description of what is involved in simulating the MVN distribution is provided in an 
Appendix at the end of this Chapter. 
 
 The first method for simulating a MVN distribution uses the correlation matrix to simulate 
CUSD’s.  An example of this method for a three variable MVN distribution is presented in 
Figure 7.2 (see Multivariate Normal Distribution Demo.XLS).  For this method a vector of 
CUSD’s is simulated using =CUSD (Correlation Matrix).  The CUSD’s are used individually to 
simulate MVN random variables using the Simetar function: 
 
 j j j

ˆ=NORM (X , StdDev , CUSD )  
 
 
 
 
 
 
 
 
 
 The second method for simulating a MVN distribution uses the covariance matrix to 
simulate stochastic correlated deviations (or CDEVs).  A CDEV is the number of deviations 
from the mean that the random value lies.  For this method a vector of CDEV’s is simulated 
using =CSND (Covariance Matrix).  The CDEV’s are used individually in the formula: 
 
  i i i

ˆX   =  X  + CDEV  
 
This method is demonstrated for simulating a three variable MVN distribution in Figure 7.3.  
(See the Multivariate Normal Distribution Demo.XLS for this example.) 

 
Figure 7.2.  Simulating a MVN Distribution Using the Correlation Matrix. 
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 The third method for simulating a MVN distribution does it all in one step using Simetar’s 
MVNORM function.  The one step formula is the easiest method for simulating a MVN 
distribution over a multiple year planning horizon.  The MVNORM function simulates the MVN 
values for the thi  forecast period as: 
 
 ij ij

ˆX   = MVNORM (Vector of X , Covariance Matrix)   
 
The one step method for simulating a MVN distribution is demonstrated in Figure 7.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 The one step method for simulating a MVN distribution is demonstrated in Figure 7.5 for a 
three variable MVN distribution that is simulated for four years. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7.3.  Example of Using Covariance Matrix to Simulate MVN Distribution in Two 
Steps. 

 
 
Figure 7.5.  Example of the One Step Procedure for Simulating a 
MVN Distribution for Four Years. 

 
 
Figure 7.4.  Example of the One Step Procedure for Simulating a MVN Distribution 
for One Year. 
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− Results of Simulating MVN Distribution 
 
 After simulating a multivariate probability distribution one must first test the simulated 
values to be sure they are appropriately correlated.  This involves calculating the correlation 
matrix for the simulated random variables and comparing this correlation matrix to the original.  
Simetar includes a statistical test to assist in validating the correlation of multivariate 
distributions.  The validation procedure for a MVN distribution is demonstrated using the 
example in Multivariate Normal Distribution Demo.XLS.  
 
 The correlation test used in validation compares the correlation matrix used for the 
simulation to the implicit correlation matrix in the simulated variables.  For a model with three 
random variables the Check Correlation in Simetar’s Hypothesis Testing for Data menu, the user 
provides the location for the three simulated random variables, say B:8; B108 of the SimData 
worksheet and the location for the correlation matrix to simulate the three random variables.  The 
null hypothesis for the test is that each correlation coefficient for the simulated variables equals 
the original or assumed correlation coefficient or: 
 

 0 ij ijˆH :    =  ρ ρ  
 
The test uses a Student –t test and the critical value at the alpha equal 5% or less based on 
sample size.  To reject the null hypothesis the calculated t-test statistic must exceed the critical 
value of, say, 2.43 at the 98.3% confidence level.  The calculated t-test statistics in Figure 7.6 are 
all less than 2.43 so we fail to reject the null hypothesis and say the simulated correlation 
coefficients are statistically equal to the assumed (historical) correlation coefficient at the 98% 
level.  This test must be done for each year simulated by the MVN distribution.   
 
 
 
 
 
 
 
 
 
 
 
 
 Simetar provides three non-parametric tests for validating MVN distributions.  The tests are: 
 

• Two Sample Hotelling 2T  Test – tests the historical mean vector vs. the mean vector 
for the simulated variables. 

• Box’s M Test – tests the historical covariance matrix vs. the covariance matrix for 
the simulated variables. 

• Complete Homogeneity Test – simultaneously tests the historical means vector and 
covariance matrix vs. the means vector and covariance matrix for the simulated 
variables. 

 
 

 
 
Figure 7.6.  Example of a Student –t Test for a Correlation 
Matrix. 
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The tests are described in Chapter 3 and 16 in more detail.  If the tests “Fail to Reject the Null 
Hypothesis” that the simulated parameters equal the historical parameters, then the simulation 
process simulated the MVN distribution appropriately.  An example of using the non-parametric 
tests to validate a MVN distribution is provided in Figure 7.7.  When the Test Values are less 
than the Critical Values, the tests will Fail to Reject the null hypothesis and this is what we want. 
 
 
 
 
 
 
 
 
 
 
Multivariate Empirical (MVE) Distribution 
 
 Two or more correlated random variables can be simulated as a multivariate distribution, 
even if the variables are not normally distributed.  For example, non-normal MV distributions 
can be simulated as a MVE distribution.  The generalized MV procedure presented here for the 
MVE distribution allows one to correlate non-normal distributions in a simulation model. 
Richardson and Condra first introduced the procedure in 1978 and an extension of their original 
procedure is used here and expanded upon in Chapter 8.  King later reported the procedure to 
simulate a multivariate beta distribution.  The workbook Multivariate Empirical Demo.XLS 
demonstrates the steps for MVE parameter estimation and simulation described in this section. 
 
 A MVE distribution has three parameters or components to be estimated.  The MVE is 
described here for a model with four random variables, eventhough the procedure can easily be 
expanded for an m variable MVE.  The three components/parameters are:  
 

– Deterministic component for each of the four variables, jX̂  for j = 1, 2, 3, 4. 
– Stochastic component for each of the four variables, Sej  for j = 1, 2, 3, 4 
– Multivariate component for the four variables ρ4x4 . 

 
– Parameters for a MVE Distribution 
 
 The deterministic component is the projected value based on the mean, trend regression, 
multiple regression, or time series model for each of the random variables, such as: 

 

ij 1 i 2 i-1 3 i
ˆ ˆ ˆˆ ˆX  = a  +  b T   +  b X   +  b Z  

 
or simply the mean: 
 
 ij iijX̂  = X  

 
 

 
 
Figure 7.7.  Non-Parametric Tests for Testing Simulated Values from MVN Distributions. 
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where Xij  are the predicted values for all random variables Xj, j = 1, 2, 3, … m, and i denotes 
the periods (years, months, etc.) over which the variable is to be simulated. 

 
 The stochastic component for the MVE distribution is the measure of the dispersion about 
the deterministic component or Se .  The dispersion measure for an empirical distribution is the 
vector of sorted deviations from the deterministic component, expressed as a fraction of the 
forecasted values at each historical period i.  The êS  values are calculated for each random 
variable as: 

 
ij ij ij

ˆ ij ijeij

ˆ ˆeij eij

ˆê   =  X     X

ˆˆF   =  e /X

S   =  Sorted (F )

−

 

 
where êijS  are the sorted fractional residuals for each of the random variables Xj, j = 1, 2, 3, 

…, m over the historical period i = 1, 2, 3, …, T 
 
 Multivariate component for the MVE distribution is the correlation matrix of rank m for the 
m random variables.  The correlation matrix must be calculated using the unsorted residuals 
(e ),ij  i.e., the stochastic component.  For a 4 variable model the ρ  matrix is: 

 

  ρ
ρ ρ ρ

ρ ρ
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– Parameter Estimation for the MVE Distribution 

 
 The steps for estimating the parameters for a MVE distribution are: 
 

1. Calculate the best model possible to predict each of the random variables, whether this is 
simply the mean or a complex econometric model, such as, a trend regression, a multiple 
regression, or a time series model. 

  Xij  = econometric model 
 

2.  Calculate the residuals, ijê ,  from the econometric forecast for each random variable. 
 

3.  Calculate the mxm correlation matrix for all of the random variables using the unsorted 
residuals.  (Note:  Use the residuals to calculate the correlation matrix because the 
residuals are the stochastic component of the variables to be correlated.  Calculating the 
correlation matrix from the actual data is equivalent to calculating the multivariate 
measures about the mean which is not the same as the correlation for the residuals.   
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4.  Calculate the fractional residuals for each variable and then sort these values for each of 
the random variables.  Calculate the pseudo minimums and maximums for each variable 
using the sorted fractional residuals. 

 
5. Assign probabilities to each of the sorted fractional residuals including a zero to the 

pseudo minimum and a one to the pseudo maximum. 
 
– Parameter Estimation Using Simetar 
 
 The EMP icon on the Simetar toolbar can be used to calculate all of the parameters for an 
MVE distribution.  The EMP icon calculates the êijS  values for multiple variables assuming the 
MVE uses either actual data, deviations from mean or deviations from trend.  If more complex 
forecasting models are needed to project ijX̂ , use the residuals from the econometric model and 
select the Actual Data option in the EMP icon to estimate the parameters. 
 
 The steps for estimating the parameters for a MVE distribution are presented in Multivariate 
Empirical Demo.XLS.  The worksheet starts with six random variables and goes through the 
steps described above for estimating the parameters.  The data do not have statistically 
significant trends so fractional deviations from the mean are used to estimate the Si  parameters 
for the empirical distributions.  The resulting MVE distribution is simulated three different ways 
in Steps 7-9. 

 
– Simulating a MVE Distribution 
 
 A MVE distribution can be simulated several ways in Excel using Simetar functions.  Three 
methods are presented here starting with the easiest and proceeding to the most complex.  But 
first the general procedure is described in matrix notation for completeness.   
 
 The first step is to simulate an Mx1 vector of correlated uniform standard deviates or 
CUSD’s.  The Simetar array function =CUSD( ) performs the necessary calculations and 
simulation.  In its most simple form the CUSD function is =CUSD (Correlation Matrix) so the 
result is m cells with CUSDs as demonstrated in Figure 7.8. 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7.8.  Example of Simulating a Vector of CUSD’s. 
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 The final step in simulating a MVE distribution is to use the CUSD’s in an empirical 
distribution.  The formula varies depending upon the format of the jS  values: 
 
 - jS  are actual data  
 
  j j j jX  = EMP (S , P(S ), CUSD )  
 
 - jS  are absolute deviations from means  
 
  j j j j jX  = X  + EMP (S , P(S ), CUSD )  
 
 - jS  are fractional deviations from means  
 
  j j j j j jX  = X  + X  * EMP (S , P(S ), CUSD )  
 
 - jS  are fractional deviations from a forecast 
 
  j j j j j j

ˆ ˆX  = X  + X  * EMP (S , P(S ), CUSD )  
 
The EMP( ) Simetar function simulates an empirical distribution defined by j jS  and P(S )  using 
the uniform standard deviate indicated by the jCUSD . 
 
 There are two ways to simulate the MVE distribution with Simetar.  The first method uses 
the =MVEMP( ) function and it takes only one step.  The one step method calculates all of the 
parameters in the background and also generates the CUSD’s.  Program the one step MVE 
distribution function as: 
 
 =MVEMP(Actual Data,,,,Forecasted Xs, Code) 
 
where: Actual Data is the location for the original historical data, 
  The ,,,, must be provided and indicate optional parameters that are not provided, 
  Forecasted Xs represent the ijX̂  for the thi  period to simulate, 
  Code is a switch to specify the format for the Sjs, as 0 for actual data, 
  1 for fractional deviates from mean,  
  2 for fractional deviates from trend, and 
  3 for differences from mean. 
 
The =MVEMP( ) function is an array function so highlight m cells representing the m random 
variables in the MVE distribution.  Additionally, the function is completed by pressing Control 
Shift Enter.  An example of simulating a six variable MVE distribution using the one step 
method is presented in Figure 7.9. 
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 The second method for simulating an MVE distribution with Simetar is a two step process.  
First generate an mx1 vector of CUSD’s.  Next use the CUSD’s in the EMP function applying  
the appropriate formula based on the form of the jS  to each of the m random variables: 
 
 j j j j j

ˆ ˆ=X  + X  * EMP (S , P(S ), CUSD )  
 Repeat this formula for each of the m variables in the distribution. 
 
This method is demonstrated in Figure 7.10 for a six variable MVE distribution where the jS 's  
are specified as fractional deviations from the mean. 
 
 
 
 
 
 
 
 
 
 
 
 If there is a one step method, what is the need for the two step method?  The two step 
method is used when not all of the random variables have the same form for the jS 's.   For 
example, if the first three Xs have no trend so they are simulated as actual data and the next three 
X’s have a trend and must be simulated as fractional deviations from trend. 
 
– Results of Simulating MVE Distribution  
 
 A validation test to insure that the random variables are appropriately correlated should be 
done before using the random values in a decision model.  Simulate the MVE distribution 
collecting values for the stochastic variables and then test the correlation implicit in the 
simulated values against the correlation matrix for the historical data.  Validation of the 
simulated random variables is particularly important for non-normal distributions because the 
procedure is not widely used and understood.  Simetar provides a correlation test and three non-
parametric tests for validating MVE distributions.  All four tests should be used to validate all 
multivariate distributions. 

 
 
Figure 7.9.  One Step Method to Simulate an MVE Distribution. 

 
 
Figure 7.10.  Example of Using a Two Step Method to Simulate a MVE Distribution. 
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 The six variable MVE distribution simulated in the Multivariate Empirical Demo.XLS is 
used to demonstrate the four validation tests in the SimData worksheet.  The results of the four 
tests are summarized in Figure 7.11.  The results of the correlation test reveal that all of the 
correlation coefficients implicit in the simulated variables are statistically equal to their 
counterparts in the actual data’s correlation matrix, at the 99% level.  Additionally the mean 
vectors and covariance matrices for the simulated data and the actual data are statistically equal 
at the 95 percent level.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mixed Multivariate Probability Distributions 
 
 When parameter estimation (or the problem being analyzed) requires simulation of a 
distribution where the random variables are not all normal or all empirical, what do you do?  
Ignoring the correlation of these variables would bias the key output variables in the model by 
over-or under-stating their means and risk.  The procedure presented in this section allows for 
the appropriate correlation of random variables with different distributions.  For example, one 
variable can be normal, another can be empirical, and another can be uniform or beta and yet the 
probability distribution can be appropriately correlated in simulation, so historical variability and 
correlation will be observed in the simulation.  Richardson and Condra reported this procedure in 
1987. 
 
– Parameter Estimation 
 
 The deterministic component for each random variable must be quantified using the best 
model possible, such as, mean, trend regression, multiple regression, or time series model.  The 
stochastic component for each variable is the residual from the deterministic component and 
must be calculated for each variable in the MV distribution, i.e., estimate the e 's.ij   The 
multivariate component of the MV distribution (ρ  matrix) must be estimated using the unsorted 
residuals or e 's.ij   The parameters to quantify the stochastic component for each of the random 
variables are estimated based on the appropriate parameters for each variable’s assumed 
distribution, i.e., σ  for the normal, i iS  and P(S )  for the empirical, minimum and maximum for 
the uniform, and so on. 
 
 
 

 
 
Figure 7.11.  Validation Tests for MVE Distributions. 
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– Simulation Steps 
 
1. Generate m correlated uniform standard deviates using the correlation matrix and the Simetar 

command =CUSD for an mx1 array of iCUSD ,  where i = 1, 2, 3, … m. 
2. Use the inverse transform formulas to simulate random values for each variable by applying 

the appropriate parameters for the variable’s deterministic and stochastic components and the 
variable’s respective iCUSD . 

 
– Simulating a Mixed Multivariate Distribution 
 
 Assume the mixed MV distribution to simulate has 4 random variables, defined and 
distributed as follows: 
 

( )

( )
i i

i i

ˆX  ~  Normal (X, )

Y  ~  Empirical S , P(S )

Z  ~  Empirical S , P(S )

W  ~  Uniform (min, max)

σ

 

 
 The multivariate component for the mixed MV distribution is the correlation matrix for the 
four random variables.  The correlation coefficients for the ρ  matrix must be estimated using 
the residuals from the deterministic component for the X, Y, and Z variables and the historical 
data for variable W.  The actual historical data has to be used for W because of the nature of the 
uniform distribution.  The resulting correlation matrix is: 
 

ρ

ρ ρ ρ ρ
ρ ρ ρ

ρ ρ
ρ

  =   

,  ,  ,  
,  ,  

,  

ex t ex t ex t ey t ex t ez t ext,wt

ey t ey t ey t ez t eyt,wt

ez t ez t ezt,wt

wt,wt

L

N

MMMM

O

Q
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 Generate a vector of correlated uniform standard deviates (CUSDs) of size mx1 using the 
array function =CUSD as follows: 
 
Block a 4x1 array and type the command 
=CUSD (Correlation Matrix Range), then 
press the Control Shift Enter keys. 
 
The resulting 4x1 array has four values that change as the F9 key is pressed and during 
simulation, Simetar will generate new values for each iteration.  The four values in the array are 
correlated based on the correlation matrix. 
 
 Apply the appropriate Simetar function to simulate the random numbers for each random 
variable being sure to use each variables iCUSD ,  
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( )
( )

1

yi i 2

zi i 3

4

ˆ ˆX = NORM(X + ,  CUSD )

ˆ ˆY = Y + Y * EMP S , F(S ), CUSD

ˆ ˆZ = Z + Z * EMP S , F(S ), CUSD

W = UNIFORM(Min, Max, CUSD )

σ

 

 
 The Simetar functions for generating random variables all allow for specification of a 
random uniform standard deviate (see Chapter 16).  In the case of a MV distribution you must 
specify a CUSD rather than an independent USD. 
 
 The Multivariate Mixed Probability Distribution Demo.XLS spreadsheet provides an 
example of how to simulate random variables that have different probability distributions, as a 
multivariate distribution.  The first variable is assumed to be normally distributed, the second 
and third are distributed empirical and the last is distributed uniform.  The MV distributions 
simulated as indicated in (cells B79-B82) use their respective CUSD’s in the inverse transform 
formulas Figure 7.12.   
 
 
 
 
 
 
 
 
 
 
 Four validation tests were used to statistically determine if the MV mixed distribution 
reproduced the historical correlation matrix, means vector, and covariance matrix.  The null 
hypothesis that the simulated test statistic ( , X and )ρ Σ  equal their historical counterparts were 
not rejected, indicating that the procedure worked.  The test statistics are reported in Figure 7.13.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7.12.  Example of Simulating a MV Mixed Distribution Using CUSD’s and the Inverse 
Transform Functions. 

 
 
Figure 7.13.  Validation Tests for a MV Mixed Distribution. 



--- Chapter 7 --- 

 

16  

Simulating Large Multivariate Distributions 
 
 For multivariate (MV) distributions containing a large number of variables, it is often 
impossible to use the procedures described for the MVN and MVE distributions.  The symptom 
that the MVE and MVN methods will not work, is that Excel returns “# VALUE” in the CUSD 
or CSND arrays.  The function fails because the correlation matrix is not positive definite, and 
therefore the correlation matrix ( )ρ  can not be factored by the square root method (Choleski 
decomposition).  A factored matrix ( )ρ  is required to simulate the MVE and MVN distributions. 
 The equations for simulating the MVE and MVN distributions show the dependence of the 
method on the R matrix: 
 

(NxN) (NxN)

(Nx1) (NxN) (Nx1)

(Nx1) (NxN) (Nx1)

Let  = NxN corrrelation matrix             

and R  =                                  

CSND  = R  * ISND            
also CUSD  = ERF (R  * ISND )

ρ

ρ
 

 
where: ERF is the error function for intergrating the area under a standard normal distribution 

from - ∞  to z and is calculated using Excel’s function =NORMSDIST. 
 
 
The Choleski decomposition of the correlation matrix is calculated in Simetar using the 
=MSQRT (Correlation Matrix) function.  If the correlation matrix is positive definite, the 
MSQRT function will return a non-zero value in every cell in the upper right triangle and the 
main diagonal of the result matrix.  On the other hand, if MSQRT returns a matrix with zeros in 
the upper right triangle or main diagonal (or #VALUE) the distribution cannot be simulated 
using the MVE or MVN procedure.  See the correlation matrix and its factored matrix in Figure 
7.14 for an example of a matrix which is not positive definite.  The example comes from the Bad 
Correlation Matrix Demo.XLS. 
 
 As a further test of a problem matrix, the determinate of the full symmetric correlation 
matrix or the covariance matrix should be calculated to make sure it is positive or that it is not so 
close to zero it causes exponent overflows in =MSQRT.  The correlation icon on the Simetar 
toolbar can be used to calculate the full symmetric correlation or covariance matrix.  The 
determinate of a square matrix can be calculated using the determinate function in the Simetar 
Matrix Operations dialog box.  If the determinate for either the correlation or covariance matrix 
is negative or almost zero the matrix cannot be factored.  This result is generally due to the fact 
that there are too many “large” correlation coefficients or the number of correlation coefficients 
outside the ± 0.50 causes the MV distribution to be over specified. 
 
 When the MVE and MVN procedures described in this Chapter cannot be used, there are 
two options for simulating a MV distribution:  (a) use a bootstrap simulation technique or (b) re-
arrange the correlation matrix. 
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– Bootstrapping a Multivariate Distribution 
 
 Bootstrap methodology can be used to simulate a multivariate empirical distribution if there 
are a large number of observations for the random variables.  Bootstrap simulation is based on 
Elfon’s (1979) work on bootstrapping univariate distributions.  For a complete description of 
univariate bootstrapping see Chapter 11.  If applied properly bootstrap simulation of MV 
distributions maintains not only the correlation among variables, but also higher order moments 
and any multi-modal characteristics of the variables.  To simulate a MV distribution using 
bootstrap simulation methodology, do the following: 
 

1. Prepare the historical data in a table with all random variables contiguous and in the 
proper temporal order, 1i 2i miX ,  X , ... X  for m variables, with years i for the rows.  See 
Figure 7.15 for a data table in the proper format. 

 
2. Use Simetar’s =BOOTSTRAPPER function to randomly draw rows from the data matrix. 

The array function is programmed as: 
 

=BOOTSTRAPPER(Data Matrix, TRUE) 
 
where: TRUE instructs Simetar to draw m values from the m columns of the Data Matrix and 

that all of M values must come from one row. 
 
 Simetar draws rows of values from the data matrix at random if the function is used properly 
as an array function and is concluded by pressing Control Shift Enter.  See the example in Figure 
7.15 taken from the Bootstrap Multivariate Distribution Demo.XLS. 
 
 

 
 
Figure 7.14.  Example of a Correlation Matrix that Can Not be Factored by the 
Square Root Method. 
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Figure 7.16.  Validation Tests and PDFs for a Bootstrapped MV Distribution. 

 
 
 
 
 
 
 
 
 
 
 The benefits to the bootstrap simulation methodology for a MV empirical distribution are:  
(a) it draws random jX  observations in historically observed paired groups so the historical 
intratemporal correlation is maintained, (b) the historical data are used to simulate each 
variable’s distribution so no assumptions about distributional shapes or types are required, and 
(c) the method is efficient in that no parameters must be calculated.  The disadvantage to the 
methodology is that the values simulated are the discrete historical values because interpolation 
between observed points is not employed.  To minimize this being a significant disadvantage, the 
original sample in the data matrix must be sufficiently large to define the population being 
simulated, as no new values are generated by interpolating among observed values.   
 
 
 
 
 
 
 
 

 

 
Figure 7.15.  Using the Bootstrapping Function to Simulate a MV Distribution. 
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 When using bootstrap simulation it is recommended that the number of iterations should be 
expanded to 1000 or more (Conover).  The question remains, how well does this method work?  
For the example MVE in Figure 7.15, the results from a 1,000 iteration simulation are 
summarized in Figure 7.16.  The means for the simulated and historical series are statistically 
equal as are the covariance matrices, based on three non-parametric validation tests.  The 
skewness for the distributions are also very similar between the simulated and the historical 
distributions.  The PDFs for four of the random variables are presented to show that the 
simulated distributions conform closely to the historical distributions.  In particular the PDFs 
show that the multi-modal aspects of the historical distributions are matched by the simulated 
values. 
 
– Two Stage Correlation for Multivariate Distributions 
 
 The second method for simulating a MV distribution defined by a correlation matrix that 
will not factor is to make two correlation matrices and factor the two matrices.  The new 
correlation matrix is re-estimated after eliminating one or two variables and a second correlation 
matrix between the deleted variables and one remaining variable is estimated. 
 
 To demonstrate the procedure, the 10x10 correlation matrix in Figure 7.14 is used because it 
will not factor.  The 3rd variable in the original data set is removed and a new correlation matrix 
is estimated (Figure 7.17).  The 3rd variable was deleted because of its large number of 
correlation coefficients outside the ± 0.5 range.  (The 5th variable could have been the eliminated 
variable for the same reason.)  The resulting 9x9 correlation matrix factors as demonstrated by 
the third part of Figure 7.17.  The second correlation matrix is a 2x2 between variables 3 and 5 
(or any other variable remaining in the 9x9) (see Figure 7.18). 
 
 Once the two correlation matrices have been estimated and factored, the CSNDs for the 10 
variables are generated in three steps. 
 

1. Use the first correlation matrix and the =CSND (9x9 Correlation Matrix) function to 
generate an array of nine CSNDs (Step 1 in Figure 7.18). 

 
2. Use the second correlation matrix and the =CSND (2x2 Correlation Matrix, 2x1 ISND 

Array) function to generate two CSNDs for variables 3 and 5 (Step 2 in Figure 7.18).  
The two ISNDs in the CSND function are actually one ISND for variable 3 (=NORM( )) 
and the CSND5 generated for variable 5 in Step 1. 

 
3. Assemble the 10 CSNDs into a final 10x1 array using the CSNDs for variables 1-2 and 4-

9 from Step 1 and variable 3’s CSND from Step 2.  In Figure 7.18 the final array is 
G96:G105. 

 
The assembled 10x1 CSND array can be used to generate MVN values or converted to CUSDs 
using =NORMSDIST( ) and used to generate MVE values.   
 
 

 



--- Chapter 7 --- 

 

20  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Before using the CSNDs for generating random numbers, they need to be tested to insure 
that they are appropriately correlated. To test the correlation select the assembled array of 
CSNDs as the simulation output variables, simulate the workbook, and test the implicit 
correlation for the simulated values against the original 10x10 correlation matrix.  The results of 
the correlation test for the problem in Figure 7.18 indicate that all but two of the correlation 
coefficients in the matrix are statistically correlated as they were over the historical period.  If 
the correlation test indicates that many of the correlation coefficients are statistically different 
from the original matrix, select a different variable to eliminate and repeat the process.  
Experience suggests that the variable with the most large correlation coefficients is the best 
candidate for elimination and for some problems more than one variable must be eliminated and 
then added back via the second matrix.  The variable selected to correlate back to (5 in this 
example) must be highly correlated to the eliminated variables and to the remaining variables in 
the correlation matrix.  The Bad Correlation Matrix Demo.XLS workbook contains the example 
described in this section. 
 

 
 
Figure 7.17.  Correlation Matrix and Its Factored Matrix After Deleting 
Variable Three. 
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Figure 7.18.  Steps for Simulating CSNDs from a 9x9 and a 2x2 
Correlation Matrix. 
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Appendix Figure 7.1.  Simulation of a MVN Distribution. 

Appendix:  Simulation of a MVN Distribution 
 
 
 In matrix notation a four variable MVN distribution is simulated using the R matrix, which 
is the factored correlation matrix.  The Choleski decomposition can be used to factor the 
correlation matrix, i.e., to calculate the square root of the correlation matrix.  Appendix Figure 
7.1 shows the matrix notation for the steps to simulate a four variable MVN distribution.  The 
ISND vector is an Mx1 vector of independent standard normal deviates which is multiplied by 
the R matrix to calculate a vector of correlated standard normal deviates (CSND’s).  Multiplying 
the MxM standard deviation diagonal matrix by a vector of CSND’s and adding the product to 
the means gives a vector of correlated stochastic values that are distributed MVN.  The CSND 
vector is not presented in Appendix Figure 7.1 as this is an intermediate step, and is shown in 
Step 8 of the Multivariate Normal Distribution Demo.XLS. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 The MVN distribution simulation depicted in Appendix Figure 7.1 can be written as 
individual equations for each random variable, much like a univariate normal variable.  Recall 
that a univariate normal variable is simulated as: 

 

ê
ˆX  =  X  +   * SNDσ  

 
where SND is an independent standard normal deviate distributed N(0,1). 
 
For a MVN distribution each random variable is simulated as: 
 
 ˆi i iej

ˆ ˆX   =  X   +    *  CSNDσ  
 
where iCSND  is the thi  correlated standard normal deviate in the CSND vector. 
 
Simetar calculates the CSND vector two ways.  Both methods are used in Multivariate Normal 
Distribution Demo.XLS and are described here: 
 
 
 



--- Chapter 7 --- 

 

23 

1. The user can specify the vector of ISND’s.  The 3 variable MVN distribution example in 
Appendix Figure 7.2 shows that the vector of ISND’s is provided as input in column I.  
The CSND function is an array function so highlight 3 cells and enter the function 
=CSND (correlation matrix, ISND vector) and press Control Shift Enter. 

 
 
 
 
 

 
 
 
 
 
 
2. The user does not specify the vector of ISND’s.  The 3 variable MVN distribution 

example in Appendix Figure 7.3 shows that the CSND vector is calculated using only 
the correlation matrix as input.  In this case Simetar generates the ISND’s without the 
user explicitly including this step. 

 
 
 
 
 
 
 
 
 
 

 
 
Appendix Figure 7.2.  Example of CSND Calculated With the ISND Vector Provided as 
Input. 

 
 
Appendix Figure 7.3.  Example of CSND Vector Calculated Without Explicitly Providing 
the ISND Vector. 
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Chapter 8 
Simulating Inter- and Intra- Temporal Multivariate Distributions 

 
 The general procedure described in this section is a repeat of some of the material found in 
previous sections and is intended for more advanced students.  The procedure described here is 
used by FLIPSIM, Farm Assistance and several other large simulation models.  The procedure 
has been developed over the past two decades.  Recent variations and improvements in the 
procedure benefited from my work with Steven Klose and Alan Gray.  The three of us wrote an 
invited paper on the topic for the SAEA Annual Meeting in 2000.  The description presented in 
this section draws heavily on that invited paper. 
 

Some of the special problems facing firm level simulation modelers are:  
 
$ non-normally distributed random yields and prices, 
$ intra-temporal correlation of production across enterprises and fields, 
$ intra- and inter-temporal correlation of output prices, 
$ heteroskedasticity of random variables over time due to policy changes,  
$ numerous enterprises that are affected by weather and carried out over a lengthy growing 

season,  
$ government policies that affect the shape of the price distributions, and   
$ strategic risks associated with technology adoption, competitor responses, and contract 

negotiations. 
 

 The focus of this section is to describe and demonstrate an applied simulation approach for 
dealing with the first four problems in the list.  A portion of the literature in the area of farm 
level simulation is reviewed prior to describing a generalized procedure for generating 
appropriately correlated random numbers in firm simulation models. 
 
 The relevant phrase is “appropriately correlated” and it means that what ever 
procedure used to simulate random variables must insure that the historical relationship 
between all variables is maintained in the simulated variables.  This concept can be 
extended to include coefficient of variation stationarity which means that the relative 
variability for the random variables must not be changed by the simulation process. 
 
Review of Literature 
 

Agrawal and Heady (1972) provided a cursory treatment of simulation in their operations 
research book but no details were provided on how to construct a firm level simulation model.  
Anderson, Dillan and Hardaker (1977) suggested simulation as a tool for analyzing risky 
decisions but provided no detail for addressing the unique modeling problems listed above.  
Richardson and Nixon (1986) described the types of equations and identities used to construct 
the Farm Level Income and Policy Simulation Model (FLIPSIM), but provided a minimum 
amount of detail on how the random variables were simulated.  More recently Hardaker, Huirne, 
and Anderson (1997) have suggested that simulation can be used as a possible tool for helping 
farmers cope with risk, but they did not provide details on how to build a farm level simulation 
model or how to simulate the random variables facing farmers. 
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Eidman (1971) edited a bulletin on farm level simulation that included a description of the 
Hutton and Hinman simulation model and various random number generation schemes.  
Eidman’s bulletin became the basic reference material for farm level modelers during the 70s.  
The General Farm Simulation Model developed by Hutton and Hinman (1971) addressed many 
of the problems faced by farm level simulators today but did not address the problems of 
correlating random yields and prices and dealing with heteroskedasticity.  Law and Kelton 
demonstrate that ignoring the correlation of random variables biases the variance for output 
variables as follows:  a model over estimates variance if a negative correlation between 
enterprises is ignored, and vise versa.   

 
Clements, Mapp, and Eidman (1971) proposed using correlated random yields and prices 

for firm level simulation models.  However, the procedure described by Clements, Mapp, and 
Eidman for correlating two or more random variables only works if the variables are normally 
distributed; not the case for yields and prices for most agricultural firms.  Richardson and Condra 
(1978 and 1981) reported a procedure for simulating intra-temporally correlated random prices 
and yields that are not normally distributed.  Working independently, King (1979) reported a 
similar procedure for correlating multivariate non-normal distributions.  King’s procedure was 
included in an insurance evaluation program by King, Black, Benson and Pavkov (1988).1  
Taylor (1990) presented his own procedure for simulating correlated random variables that are 
not normally distributed. 

 
A procedure for simulating inter-temporally correlated random variables was described by 

Van Tassel, Richardson, and Conner and demonstrated for simulating monthly meteorological 
data from non-normal distributions.  Their procedure relied on mathematical manipulation of the 
random deviates to correlate variables from one year to the next and therefore was difficult to 
expand beyond two or three years for problems involving a large number of random variables. 

 
Simulating Multivariate Non-Normally Distributed Random Variables 

 
Assume we are faced with the analysis of a farm that has four enterprises, corn, soybean, 

wheat, and sorghum.  This means the model will have to simulate eight variables:  four yields 
and four prices.  The farm in question only has ten years of yield history (Table 8.1).  Therefore, 
we have an eight variable probability distribution that must be parameterized with only ten 
observations.  To make the problem realistic, assume the model is to be simulated for three 
years, thus requiring the parameters for a multivariate distribution with 24 random variables. 

 
With the limitation of only having ten observations the use of standardized probability 

distributions can be ruled out because there are too few observations to prove the data fit a 
particular distribution.  The distribution we recommend in this situation is the empirical 
distribution defined by the ten available observations.2  Assuming the data are distributed 
empirical avoids enforcing a specific distribution on the variables and does not limit the ability 
of the model to deal with correlation and heteroskedasticity.  

                                                 
1 Fackler (1991) reported that the procedure described by King was similar to Li and Hammand’s procedure 

reported in 1975. 
 2 Law and Kelton provide an overview of the F(x) function for an empirical distribution and the inverse 
transform method of simulating from the F(x) for an empirical distribution. 
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Parameter Estimation for a MVE Probability Distribution 
 
The first step in estimating the parameters for a multivariate empirical (MVE) distribution is 

to separate the random and non-random components for each of the stochastic variables.  There 
are two ways to remove the random component of a stochastic variable:  (a) use regression (or 
time series) analysis to identify the systematic variability, or (b) use the mean when there is no 
systematic variability.  Yield is often a function of trend so an ordinary least squares (OLS) 
regression on trend may identify the deterministic component of a random yield variable.  When 
an OLS regression fails to indicate a statistically significant non-random component, then use the 
simple mean (X)  of the data as defined in equations 1.1 or 1.2 and shown in column 3 of Table 
8.2.3   (The steps for parameter estimation described here correspond to the steps identified in 
Complete Correlation Demo.XLS and the rows in the workbook are indicated for each step.) 

 
(1) Non-Random Component of the Historical Values (rows 20-40) 
 

  

(1.1)    X   =   a  +   b  *   Trend   +   c  *   Z
or

(1.2)    X   =   X
           for each random variable X  and each year t.

it t t

it i

i

   

 
The second step for estimating parameters for a MVE distribution is to calculate the random 

component of each stochastic variable.  The random component is simply the residual (e)  from 
the predicted or non-random component of the variable (column 4 of Table 8.2).  It is this 
random component of the variable that will be simulated, not the whole variable.   

 
(2) Random Component (rows 43-54) 
 

  (2.1)    e   =   X   -   X
           for each random variable X  and each year t.

it it it

i
 

 
The third step is to convert the residuals in equation 2.1 (e )it  to relative deviates about their 

respective deterministic components.  Dividing the eit  values by their corresponding predicted 
values in the same period results in fractions that express the relative variability of each 
observation as a fraction of the predicted values (column 5 in Table 8.2).   

 
(3) Relative Variability of each Observation (Deviates) (rows 57-68) 
 

  (3.1)    D  =  e  /  X
           for each of the 10 years t and for each random variable X .

it it it

i
 

 

                                                 
 3 Stochastic prices in a farm level model present a unique problem. The farm receives local prices that are a 
function of national prices and a wedge or basis.  Due to the effect of farm policy on prices, the model must simulate 
the national prices and then use the wedge to convert stochastic national prices to stochastic local prices.  This is 
particularly important when simulating the affects of policy changes on farms in different regions because all of the 
farms must be impacted by the same prices. 
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The fourth step is to sort the relative deviates in equation 3.1 and to create pseudo- 
minimums and pseudo-maximums for each random variable.  The relative deviates, Dit, are 
simply sorted from the minimum deviate to the maximum to define the points on the empirical 
distribution for each random variable Xi (column 6 in Table 8.2).  In a standard empirical 
distribution the probability of simulating the minimum or maximum of the data is equal to zero 
(Law and Kelton).  In reality these points were each observed in history with a ten percent 
probability, for a variable with ten years of data.  The problem can be corrected by adding two 
pseudo observations.  Pseudo-minimum and pseudo-maximum values are calculated and added 
to the data resulting in a 12 point empirical probability distribution.  The pseudo- minimum and 
maximums are defined to be very close to the observed minimum and maximum and cause the 
simulated distribution to return the extreme values with approximately the same frequency they 
were observed in the past. 

 
(4) Sorted Deviates and Pmin and Pmax (rows 71-84) 
 

(4.1) Sit = Sorted [Dit from min to max]    
for all years t and each random variable Xi. 

 
(4.2) Pmini = Minimum Sit * 1.000001 

 
(4.3) Pmaxi = Maximum Sit * 1.000001 

 
The fifth step is to assign probabilities to each of the sorted deviates in equations 4.1-4.3.  

The probabilities for the end points (Pmin and Pmax) are defined to be 0.0 and 1.0 to insure that 
the process conforms to the requirements for a probability distribution (column 7 in Table 8.2).  
Each of the ten observed deviates had an equal chance of being observed (1/T) in history so in 
the simulation process that assumption must be maintained.4  The intervals created by the 
addition of the Pmin and Pmax deviates are assigned one half of the probability assigned to the 
other intervals.  Based on this empirical formulation, outcomes approximating the minimum are 
realized about 10 percent of the time, and the same for the maximum.  Equation 5 illustrates the 
assigning of probabilities for each of the deviates. 

 
(5) Probabilities of Occurrence for the Deviates (rows 87-100) 
 

(5.1) P(Pmini)   =  0.0 
(5.2) P(Si1) =  (1/T) * 0.5 
(5.3) P(Si2) = (1/T) + P(Si1) 
(5.4) P(Si3) =  (1/T) + P(Si2) 

         . . . 
(5.11) P(Si10) =  (1/T) + P(Si9) 
(5.12) P(Pmaxi) = 1.0 

 

                                                 
 4 However, the flexibility of this procedure allows for assigning any probability between 0 and 1 to the sorted 
deviates. Thus, elicitation processes can be incorporated to reflect management’s/experts opinions about the 
distributions for each variable. 
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The sixth step for estimating the parameters for a MVE distribution is to calculate the MxM 
intra-temporal correlation matrix for the M random variables (Table 8.3).5  The intra-temporal 
correlation matrix is calculated using the unsorted, random components (e )it  from equation 2.1 
and is demonstrated for a 2x2. 

 
(6) Intra-Temporal Correlation Matrix for Xi to Xj (rows 103-112) 
 

  ρ
ρ ρ

ρ
ij

 (e e e e

(e e

  =   
        ,  

       0           

it it it jt

jt jt

, )

, )

L

N
MM

O

Q
PP  

 
The seventh step is to calculate the inter-temporal correlation coefficients for the random 

variables.  The inter-temporal correlation coefficients are calculated using the unsorted residuals 
(e )it  from equation 2.1 lagged one year, or the correlation of eit  to ei t-1  (Table 8.3).  The inter-
temporal correlation coefficients are used to create a separate matrix for each random variable.  
The inter-temporal correlation matrices are 3x3 for a three-year simulation problem.  A zero in 
the upper right most cell of the inter-temporal matrix assumes no second order autocorrelation of 
the variables, a reasonable assumption given only ten observations. 

 
(7) Inter-Temporal Correlation Matrix for Variable Xit’s Correlation to Xit-1 (rows 115-

124) 
 

  ρ

ρ

ρi(t,t-1)

( e e

( e e  =     

 1                          0

                     1             

                                         1

it it -1

it it -1

, )

, )

L

N

MMMM

O

Q

PPPP
 

 
 The seventh step completes the parameter estimation for a MVE distribution.  The 
parameters used for simulation are summarized in equation 8. 
 

 

(8)    X    ,    S   ,  Pmin  ,   Pmax   ,   P(S )  ,    and  

        for random variables X ,  i = 1,  2,  3,  .  .  .  ,  M,

        historical years t = 1,  2,  3,  ...  ,  T,

        and simulated years k = 1,  2,  3,  ...  ,  K.

ik it i i it ij(MxM) i(t,t-1)(KxK)

i

ρ ρ

 

 
The completed MVE probability distribution can be simulated in Excel using Simetar or in any 
other computer language that generates independent standard normal deviates (i.e., values drawn 
independently from a normal distribution with a mean of 0.0 and a standard deviation of 1.0).  
The steps to simulate the MVE are provided next to demonstrate how the parameters are used to 
simulate a MVE probability distribution. 
 

                                                 
 5 When using the data to estimate the correlation coefficients, Fackler (1991, p. 1093) agrees that one should 
estimate the rank correlation coefficient directly and then calculate the appropriate random values. 
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 Prior to simulation, the square root of the intra-temporal ( )ijρ  correlation matrix and each 
of the inter-temporal ( )it-1ρ  correlation matrices must be calculated.  The square root procedure 
for factoring a covariance matrix, described by Clements, Mapp and Eidman, is used to factor 
the correlation matrices (one intra-temporal and M inter-temporal) and is named MSQRT.6   
 

 
 (9)    Factored Correlation Matrices (rows 129 -164 and 167 -176)
          (9.1)         R   =    MSQRT ( )
          (9.2)         R   =    MSQRT ( )       

ij(MxM) ij(MxM)

i(t,t-1)(KxK) i(t,t-1)(KxK)

ρ
ρ

 

 
Simulation of a MVE Probability Distribution 

 
The first step for simulating a MVE distribution is to generate a sample of independent 

standard normal deviates (ISND).  The number of ISNDs generated must equal the number of 
random variables, in the case of this example 24 ISNDs are needed for eight variables and three 
years.  The best solution to the problem of generating ISNDs is to use Simetar to generate the 
ISNDs.  By using Simetar to generate the ISNDs, one can take advantage of Simetar’s ability to 
manage the iterations and calculate statistics for the model’s output variables, while controlling 
the process to simulate stochastic variables.  During the simulation process Simetar fills the 
ISND vector each iteration with a new sample of random standard normal deviates and Excel 
calculates the equations for correlating the deviates.7 

 
(10) Vector of ISNDs (rows 181-188) 
 

ISNDi(24x1)  = Norm( ) 
generate 24 ISNDs by repeating the Simetar formula in 24 cells. 

 
 The second step for simulating a MVE distribution is to correlate the ISNDs within each 
year of the simulation period (k=1,2, … k) by multiplying the factored correlation matrix (Rij) 
and eight of the values in the ISND vector.  The matrix multiplication is repeated once for each 
year (k) to be simulated, using the same Rij matrix each time but a different set of eight ISNDs.  
The resulting eight values in each of three vectors are intra-temporally correlated standard 
normal deviates (CSNDs) (see Richardson and Condra (1978)).  For large samples (number of 
iterations) the correlated standard normal deviates in equation 11 exhibit similar intra-temporal 
correlation to that observed in the ρ ij  correlation matrix in equation 8.  

 
(11) Correlated Standard Normal Deviates for Simulated Years 1-3 (rows 191-225) 

 
  (11.1) CSND  =   R   *   ISND  for the first eight ISND values,i (8x1)

k=1
ij (8x8) i (8x1)  

  (11.2) CSND  =   R   *   ISND  for the second eight ISND values,  andi (8x1)
k=2

ij (8x8) i (8x1)  

  (11.3) CSND  =   R   *   ISND  for the last eight ISND values.i (8x1)
k=3

ij (8x8) i (8x1)  

                                                 
 6 MSQRT is a function in Simetar to factor a correlation matrix by the square root method. 
 
 7 While Simetar includes a correlation function, the simulation is much faster if the correlation matrices are 
factored ahead of time rather than having to refactor them for each iteration. 
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The third step in simulation is to capture the inter-temporal correlation of the random 
variables.  The values in the three 8x1 vectors of CSNDs (equation 11) are used in a second 
matrix multiplication to add the inter-temporal correlation to each random variable.  Equation 12 
is repeated for each of the eight variables and does not significantly diminish the intra-temporal 
relationship established in equation 11.8  A single step approach to correlating random variables 
that combines equations 11 and 12 into one 24x24 correlation matrix would be superior.  
However, the problem with a single-step approach is that even for small models the (MTxMT) 
correlation matrix can be impossible to factor.  The two-step correlation process in equations 11 
and 12 overcomes that problem and allows for a large number of random variables to be 
appropriately correlated in a multi-year simulation model.9 

 
(12) Adjusted Correlated Standard Normal Deviates for Variable Xi in Simulated Years 1-3 

(rows 228-261) 
 

  
(12.1)  

ACSND

ACSND

ACSND

   =   R  *    

CSND

CSND

CSND

           for each of the i random variables.

i
k=3 

i
k=2 

i
k=1 

it-1 (3x3)

i
k=3

i
k=2

i
k=1

L

N

MMMMM

O

Q

PPPPP

L

N

MMMMM

O

Q

PPPPP
 

 
The fourth step in simulating a MVE distribution is to transform the ACSNDs from equation 

12 to uniform deviates.  This step is accomplished using Excel’s command =NORMSDIST 
(CSNDi) for each of the 24 values and is demonstrated in Figure 8.1.  Most simulation languages 
contain a similar error function which can be used to integrate the standard normal distribution 
from minus infinity to the ACSNDi.  Because the input for the error function (ACSND) is 
appropriately correlated, the output is a vector of correlated deviates distributed uniform zero-
one. 

 

                                                 
 8 The two step approach is an improvement over Van Tassel, Richardson, and Conner’s mathematical 
manipulation of deviates one year at a time, because it permits a large number of variables to be correlated over 10 
or more years. 
 
 9 The ACSNDs can be used to simulate multivariate normal (MVN) random variables by applying the adjusted 
correlated deviates as follows: 
 
~X   =   X   +     *   ACSND

for each random variable X  and

where  is the standard deviation for X .

ik ik i ik

i

i i

σ

σ

 

 
This procedure for simulating MVN distributions incorporates both inter- and intra- temporal correlation for large 
scale models with numerous variables and years in the planning horizon.  If the model being simulated contains both 
normal and non-normal distributions, the normal distributions use the above equation and the ACSNDs while the 
non-normal distributions use equation 15.  In this manner the procedure outlined here is capable of appropriately 
(intra- and inter- temporally) correlating any distribution and any combination of distributions. 
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(13) Correlated Uniform Deviates (rows 265-290) 
 

CUDi(24x1) = NORMSDIST(ACSNDi(24x1) ) 
 

The fifth step in simulation is to use the CUDis to simulate random deviates for the empirical 
distribution of each variable Xi.  Using the CUDi along with the respective variable’s Si and P(Si) 
one simply interpolates among the Si values to calculate a random deviate for variable Xi (see 
Figure 8.2 for a graphical interpretation).  In Excel the interpolation can be accomplished using a 
table lookup function for each random variable Xi, thus calculating 24 fractional deviates.10  The 
interpolation process does not affect the correlation implicit in the CUDi’s so the resulting 
random deviates are appropriately correlated fractional deviates (or CFDi).  

 
(14) Interpolation of an Empirical Distribution for Variable Xi Using the CUDi  (rows 294-

319)  
 

CFD   =   

Pmin 0.0
S P(S )
S P(S )
S P(S )
S P(S )
S P(S )
S P(S )
S P(S )
S P(S )
S P(S )
S P(S )
Pmax 1.0

      CUDik

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

ik

L

N

MMMMMMMMMMMMMM

O

Q

PPPPPPPPPPPPPP

←  

 
The sixth step in simulating a MVE distribution is to apply the correlated fractional deviates 

to their respective projected means and make any needed adjustment for heteroskedasticity.  
Projected mean yields for years 1-3 can be the historical means or the projected values from the 
OLS regressions in equation (1).  Projected mean prices for years 1-3 can be from the OLS 
results in equation (1) or from projections by FAPRI or any other macro model that projects 
national prices.  The CFDi values are fractions of the mean so as the mean changes, the MVE 
distribution keeps the relative variability or coefficient of variation constant.11  An expansion 
factor (Eik) is included in equation 15 to allow for managing of the coefficient of variation over 
time.  If the variable is assumed to have the same relative variability over time the Eik factors are 
1.0 for all years t, however if the relative risk is assumed to increase ten percent per year the Eik 
factors are 1.1, 1.2, and 1.3, respectively, for the first three years. 

 
(15) Simulate Random Values in Year k for Variable XI  (rows 322-347) 
 
  ~X   =   X   *  ( 1 +  CFD  *  E )ik ik ik ik  

                                                 
 10 Addin software for Excel to simplify the interpolation step is available from the authors. 
 11  An explanation of coefficient of variation stationarity for the empirical distribution is provided by 
Richardson (1999, pp. 104-111).  The use of heteroscedasticity adjustments to simulate random variables is 
explained in the same paper (pp. 140-144). 
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 Excel repeats the process described in simulation steps 1-5 automatically as @Risk© 
simulates each iteration.  The resulting random values can be used in the firm level simulation 
model to simulate receipts and other variables of interest.  The process described here to estimate 
the parameters and simulate a MVE probability distribution is easily expanded to accommodate 
models with a large number of random variables. It should be noted that as the correlation matrix 
gets larger it often becomes difficult to factor.  
 

Random variables generated from the MVE distribution described here have the following 
properties. 

 
$ The variables are intra-temporally correlated the same as the historical period. 
$ The variables are inter-temporally correlated the same as the historical period.  
$ The variables have the same means, minimums, and maximums as their parent 

distributions, if the Xik  values in equation (15) equal their respective historical means 
and the Eiks equal one.  If the Xik  in equation 15 is not equal to the historical mean the 
random variable’s average will equal the Xik  and the minimum will be less than the 
mean by the same percentage as observed in the historical data.  

$ The random variables are coefficient of variation (CV) stationary over time if the 
expansion factors (Eik) are equal to 1.0 for all years.   

$ When the expansion factors (Eik) are not equal to 1.0 the coefficient of variation in any 
year t equals the historical coefficient of variation (CVo) times the expansion factor, or  
CVt = CVo * Eik. 

$ The standard deviations for the output variables are less likely to be overstated or 
understated due to ignoring the correlation among enterprises and across years. 

$ The distributions for the random variables are similar to their parent distributions in 
terms of shape. 

 
 Once the parameters for the MVE are estimated, the distribution can be used to simulate a 
variety of assumptions about the predicted means without changing the relative variability for 
the variables.  This feature is particularly useful for analyzing technological changes that assume 
changes in the mean yields.  An added feature is that the MVE procedure allows one to 
experiment with alternative levels of relative variability in the future, due to policy changes and 
or new varieties which may have more or less risk.   

 
The steps for parameter estimation and simulation of MVE distributions are robust and 

perform efficiently for large scale, agricultural economics simulation models.  In addition, the 
procedure is easily adapted to a variety of programming languages and/or software.  The MVE 
procedure is used by FLIPSIM, Farm Assistance, POLYSYS’s crops model, and FAPRI’s crops 
model (Richardson and Nixon 1985; Klose and Outlaw; Ray, et. al.; and Adams).  Gray (1998) 
was the first to apply the MVE procedure to a large scale agribusiness simulation model in 
Excel.  Richardson (1999, pp. 184-245) demonstrates the use of the MVE procedure in several 
agricultural economics oriented simulation models that are programmed in Excel.    

 
Numerical Application of the MVE Distribution 

 
The Excel worksheet used to demonstrate the generalized MVE procedure presented in this 

section is provided in Complete Correlation Demo.XLS.   
 



--- Chapter 8 --- 10 

A simple farm level simulation example is presented in this section.  Ten years of actual 
yields for a farm growing corn, soybeans, sorghum, and wheat are combined with ten years of 
national prices to develop an MVE yield and price distribution for a farm (Tables 8.1-8.3).  The 
farm is simulated for three years using stochastic yields and prices to estimate the distribution of 
total crop receipts for the farm, assuming 100 acres planted to each crop.  

 
The MVE distribution is simulated for three years using historical mean yields and projected 

national prices for 2000-2002 from the FAPRI November 1999 baseline.  For the simulation, it 
was assumed that the relative variability of yields would be the same in the future as it has been in 
the past.  However, the relative variability of crop prices is assumed to be 40 percent greater in the 
last year of the historical period.  The results of the simulation are summarized in Tables 8.4 and 
8.5. 

 
A comparison of the simulated and historical distribution statistics can validate the MVE 

procedure.  The simulated means for each crop’s yield in year 1 compare very favorably to the 
historical means as do the other statistics.  The simulated mean national prices are very close to 
the mean forecasts provided by FAPRI. By separating the non-random component from the 
random component, the MVE has the flexibility to impose the historical variability on any 
assumed mean.  The simulated mean yields in years 2 and 3 reflect the 2 percent per year 
increase in the assumed mean yields.  

 
 The simulated coefficient of variation (CV) is the same as the historical CV for all yields 
and the first 2 years of all prices, where the expansion factors were 1.0.  Using the percentage 
deviations as parameter estimates in the MVE forces the CV stationary process, even when the 
mean changes from year to year.  The standard deviation for corn yield increases from 25.93 to 
26.83 as the simulated mean rises from 118.61 to 121.02, in year 1 and 2, respectively, thus 
maintaining a 0.22 CV (Table 8.4).  A process that uses a constant standard deviation would 
generate a declining CV.  The price distributions show the CV stationary process between year 1 
and 2.  However, in year 3 the CV increases by 40 percent reflecting the assumed expansion 
factors of 1.4 (Table 8.3).  Again, the flexibility of this procedure allows one to control the 
stochastic process in many dimensions. 
 
 The results in Table 8.4 indicate that the stochastic procedure does a good job of simulating 
the given means, historical relative variability, and provides flexibility in controlling the 
relative variability overtime.  However, a significant contribution of this research centers 
around the multivariate process.  Table 8.5 reports the simulated 24x24 correlation matrix for 
the random variables.  The intra-temporal correlation coefficients, in the triangular areas below 
the outlined blocks, can be compared directly to the intra-temporal correlation matrix in Table 
8.3.  The bold numbers along the diagonal of each outlined box are the simulated first-order 
inter-temporal correlation coefficients that can be compared to the input inter-temporal 
correlation coefficients shown in Table 8.3. 
 
 The simulated yields and prices for 500 iterations in the SimData worksheet (Table 8.5) 
were tested against the original 24x24 correlation matrix using the Simetar function for 
comparing correlation matrices.  The results of this t-test are presented in SimData and show that 
the inter-temporal correlation coefficients for the simulated data are not statistically different 
from the historical correlation coefficients, at the 95 percent level.  The t-tests for other 
correlation coefficients in the simulated data reveal that most of the coefficients are statistically 
equal to their historical counter parts (see SimData). 
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 The most encouraging result is that this procedure can incorporate a complete correlation 
matrix into the multivariate simulation for a non-normal distribution with limited historical data. 
With limited data it is often impossible to estimate a non-singular 24x24-input correlation matrix 
that can be factored.  For this reason, among others, using the simple inter-temporal correlation 
procedures in Chapter 8 or using @Risk© may not work.  However, the two-stage procedure 
described here avoids the singular matrix problem, incorporates first-order inter-temporal 
correlation, and produces acceptable intra- and inter-temporal correlation for all of the random 
variables. 
 
 To illustrate the importance of capturing the intra and inter-temporal correlation affects, a 
simulation of the joint distribution of revenue for the example was conducted.  Assuming the 
farm plants 100 acres each of corn, soybeans, wheat, and sorghum, the joint distribution of price 
times yield was simulated 10,0000 iterations.12  This simulation was repeated for four scenarios 
with the assumptions of no correlation, only intra-temporal correlation, only inter-temporal 
correlation, and complete correlation. 
 
 The results of simulating the total receipts for a three crop farm are summarized in Table 
8.6.  The alternative assumptions about the correlation of the random yields and prices have very 
little impact on the mean of cash receipts (198.72 – 199.43).  However, the inclusion/exclusion 
of correlation changed the minimum from a low of 126.65 with complete correlation to 135.56 
with no correlation.  The coefficient of variation was actually understated by ignoring the 
correlation, in this example, because of the positive intra- and inter-temporal correlations of the 
random variables.  The reverse would have been the case if negative correlation among the 
variables had been prevalent across the correlation matrices. 
 
SUMMARY 
  
 An application of the method was conducted using 10 years of actual farm-level historical 
data for corn, soybeans, wheat, and sorghum.  The simulation model was run for 10,000 
iterations and the simulated statistics and correlation matrix were compared to the historical 
input values.  Analysis of the simulated statistics showed that the stochastic procedure does a 
good job of simulating the given means, historical relative variability, and provides flexibility for 
controlling the stochastic process.  Further evaluation of the simulated correlation matrix 
indicated that the expected signs on the correlation were attained and the order of magnitude for 
both the intra- and inter-temporal coefficients were consistent. 
 

Finally, an illustration of the impact of including multivariate stochastic processes was 
conducted using the joint distribution of revenues for an example farm.  By including both intra- 
and inter-temporal correlation coefficients, the spread of the joint PDF increased dramatically.  
This result suggests that including correlation in stochastic simulation models that deal with 
analysis of risk management alternatives is critical.  The process described in this section allows 
applied researchers to address risk management analysis using simulation when historical data is 
limited and not normally distributed. 

 
 

                                                 
 12 Effects of the loan deficiency payments were ignored in this analysis to illustrate the impact of multivariate 
simulation on the ability to more accurately characterize the joint distribution of total revenue before any risk 
management intervention. 
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Table 8.1.  Historical Yields and Prices for a Representative Farm. 

 Yields National Prices 
Years Corn Soybean  Wheat Sorghum Corn Soybean Wheat Sorghum 

 bu. bu. bu. cwt. $/bu. $/bu. $/bu. $/cwt. 
1 100 29.0 48.0 45.0 2.540 7.42 3.72 2.27 
2 155 38.0 46.0 61.0 2.360 5.69 3.72 2.10 
3 165 40.0 48.0 55.0 2.280 5.74 2.61 2.12 
4 112 33.0 54.0 75.0 2.370 5.58 3.00 2.25 
5   80 28.0 65.0   5.0 2.070 5.56 3.24 1.89 
6 109 40.0 52.0 37.0 2.500 6.40 3.26 2.31 
7 145 45.0 50.0 25.0 2.260 5.45 3.45 2.13 
8   90 26.0 48.0 12.0 3.050 6.76 4.37 2.91 
9 117 47.0 72.0 60.0 2.710 7.35 4.30 2.24 

10 114 46.0 50.0 59.0 2.600 6.50 3.45 2.34 
         

Summary Statistics        
Mean 118.700 37.200 53.300 43.400 2.474 6.245 3.512 2.256 
Std Dev 26.435 7.386 8.050 21.919 0.261 0.712 0.516 0.251 
Coef Var 0.223 0.199 0.151 0.505 0.105 0.114 0.147 0.111 
Minimum 80.000 26.000 46.000 5.000 2.070 5.450 2.610 1.890 
Maximum 165.000 47.000 72.000 75.000 3.050 7.420 4.370 2.910 
 
 
  
Table 8.2.  Steps for Estimating the Parameters for an Empirical Distribution. 
 

 
 

Observation 

 
Random 
Variable 

Xit  

 
Deterministic
Component 

X t  

 
Stochastic 

Component 
e t  

 
Relative 

Variability 
Dit  

 
Sorted 

Deviates 
Sit  

 
Probability of
Occurrence 

P(S )it  
 

Pmin 
 

 
 

 
 

 
 

 
 

-0.1370 
 

0.00  
1 

 
48.0 

 
53.3 

 
-5.30 

 
-0.0994 

 
-0.1370 

 
0.05  

2 
 

46.0 
 

53.3 
 

-7.30 
 

-0.1369 
 

-0.0994 
 

0.15  
3 

 
48.0 

 
53.3 

 
-5.30 

 
-0.0994 

 
-0.0994 

 
0.25  

4 
 

54.0 
 

53.3 
 

0.70 
 

0.0131 
 

-0.0994 
 

0.35  
5 

 
65.0 

 
53.3 

 
11.70 

 
0.2195 

 
-0.0619 

 
0.45  

6 
 

52.0 
 

53.3 
 

-1.30 
 

-0.0243 
 

-0.0619 
 

0.55  
7 

 
50.0 

 
53.3 

 
-3.30 

 
-0.0619 

 
-0.0244 

 
0.65  

8 
 

48.0 
 

53.3 
 

-5.30 
 

-0.0994 
 

0.0131 
 

0.75  
9 

 
72.0 

 
53.3 

 
18.70 

 
0.3508 

 
0.2195 

 
0.85  

10  
 

50.0 
 

53.3 
 

-3.30 
 

-0.0619 
 

0.3508 
 

0.95  
Pmax 

 
 

 
 

 
 

 
 

 
0.3508 

 
1.00 
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Table 8.3.  Parameters for a Sample MVE Probability Distribution. 

Sorted Fractional Deviates (Dit) and Probability of Occurrence (P(Sit))  
 Yields National Prices  

Observation 
 

Corn 
 

Soybean  
 

Wheat 
 

Sorghum 
 

Corn 
 

Soybean 
 

Wheat 
 

Sorghum 
Probability 

of 
Occurrence  

Pmin 
 

-0.3260 
 

-0.3011 
 

-0.1370 
 

-0.8848 
 

-0.1633 
 

-0.1273 
 

-0.2568 
 

-0.1622 
 

0.00  
1 

 
-0.3260 

 
-0.3011 

 
-0.1370 

 
-0.8848 

 
-0.1633 

 
-0.1273 

 
-0.2568 

 
-0.1622 

 
0.05  

2 
 

-0.2418 
 

-0.2473 
 

-0.0994 
 

-0.7235 
 

-0.0865 
 

-0.1097 
 

-0.1458 
 

-0.0691 
 

0.15  
3 

 
-0.1575 

 
-0.2204 

 
-0.0994 

 
-0.4240 

 
-0.0784 

 
-0.1065 

 
-0.0774 

 
-0.0603 

 
0.25  

4 
 

-0.0817 
 

-0.1129 
 

-0.0994 
 

-0.1475 
 

-0.0461 
 

-0.0889 
 

-0.0718 
 

-0.0559 
 

0.35  
5 

 
-0.0564 

 
0.0215 

 
-0.0619 

 
0.0369 

 
-0.0420 

 
-0.0809 

 
-0.0177 

 
-0.0071 

 
0.45  

6 
 

-0.0396 
 

0.0753 
 

-0.0619 
 

0.2673 
 

0.0105 
 

0.0248 
 

-0.0177 
 

-0.0027 
 

0.55  
7 

 
-0.0143 

 
0.0753 

 
-0.0244 

 
0.3594 

 
0.0267 

 
0.0408 

 
0.0592 

 
0.0062 

 
0.65  

8 
 

0.2216 
 

0.2097 
 

0.0131 
 

0.3825 
 

0.0509 
 

0.0825 
 

0.0592 
 

0.0239 
 

0.75  
9 

 
0.3058 

 
0.2366 

 
0.2195 

 
0.4055 

 
0.0954 

 
0.1769 

 
0.2244 

 
0.0372 

 
0.85  

10  
 

0.3901 
 

0.2634 
 

0.3508 
 

0.7281 
 

0.2328 
 

0.1882 
 

0.2443 
 

0.2899 
 

0.95  
Pmax 

 
0.3901 

 
0.2634 

 
0.3508 

 
0.7281 

 
0.2328 

 
0.1882 

 
0.2443 

 
0.2899 

 
1.00 

    
Intra-Temporal Correlation Matrix   
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Soybean  
 

Wheat 
 

Sorghum 
 

Corn 
 

Soybean 
 

Wheat 
 

Sorghum 
 

 
Corn 

 
1 

 
0.5826 

 
-0.3793 

 
0.4829 

 
-0.3111 

 
-0.3977 

 
-0.3591 
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Soybean  

 
0 

 
1 

 
0.1621 

 
0.4597 

 
-0.0856 

 
-0.0164 

 
-0.0796 
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0 

 
0 

 
1 

 
-0.0744 

 
-0.0797 

 
0.2014 

 
0.2297 
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0 

 
0 

 
0 

 
1 

 
-0.0062 

 
0.0726 

 
-0.2146 

 
-0.1445 

 
 
Corn 

 
0 

 
0 

 
0 

 
0 

 
1 

 
0.7274 

 
0.7489 

 
0.9252 
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0 

 
0 

 
0 

 
0 

 
0 

 
1 
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0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
1 

 
0.5656 
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0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
1 

 

    
Inter-Temporal Correlation Coefficients   
Corn 

 
0.0536 

 
 
     

 
  

 
Soybean  

 
-0.1810 

 
 
     

 
  

 
Wheat 

 
-0.1187 

 
 
     

 
  

 
Sorghum 

 
0.0132 

 
 
     

 
  

 
Corn 

 
0.1531 

 
 
     

 
  

 
Soybean 

 
0.1426 

 
 
     

 
  

 
Wheat 

 
0.4231 

 
 
     

 
  

 
Sorghum 

 
-0.1577 

 
 
     

 
  

    
Projected Means for Simulation Period   

 
 

Yield 
 

Prices 
 

Years Corn Soybean  Wheat Sorghum Corn Soybean Wheat Sorghum  
 bu. bu. bu. cwt. $/bu. $/bu. $/bu. $/cwt.   

2000 
 

118.7 
 

37.2 
 

53.3 
 

43.4 
 

1.960 
 

4.520 
 

2.910 
 

3.232 
 

  
2001 

 
121.1 

 
37.9 

 
54.4 

 
44.3 

 
2.000 

 
4.710 

 
2.990 

 
3.375 

 
  

2002 
 

123.5 
 

38.7 
 

55.5 
 

45.2 
 

2.060 
 

4.870 
 

3.090 
 

3.482 
 

 
    

Assumed Expansion Factors  
 Yield Prices  

Years 
 

Corn 
 

Soybean  
 

Wheat 
 

Sorghum 
 

Corn 
 

Soybean 
 

Wheat 
 

Sorghum 
 

  
2000 

 
1.0 

 
1.0 

 
1.0 

 
1.0 

 
1.0 

 
1.0 

 
1.0 

 
1.0 

 
  

2001 
 

1.0 
 

1.0 
 

1.0 
 

1.0 
 

1.0 
 

1.0 
 

1.0 
 

1.0 
 

  
2002 

 
1.0 

 
1.0 

 
1.0 

 
1.0 

 
1.4 

 
1.4 

 
1.4 

 
1.4 
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Table 8.4. Results of Simulating Yields and Prices for Three Years. 
 

 
 

Yields 
 

National Prices 
 

 
 

Corn 
 
Soybean  

 
Wheat 

 
Sorghum

 
Corn 

 
Soybean 

 
Wheat 

 
Sorghum

 
Year 1 

 
 

 
 
    

 
 

 
 

 
Mean 

 
118.61 

 
37.17 

 
53.29 

 
43.29 

 
1.96 

 
4.52 

 
2.91 

 
3.23 

 
Std Deviation 

 
25.93 

 
7.29 

 
7.83 

 
21.65 

 
0.20 

 
0.51 

 
0.42 

 
0.34 

 
Coef Var. 

 
0.22 

 
0.20 

 
0.15 

 
0.50 

 
0.10 

 
0.11 

 
0.14 

 
0.11 

 
Minimum 

 
80.00 

 
26.00 

 
46.00 

 
5.00 

 
1.64 

 
3.94 

 
2.16 

 
2.71 

 
Maximum 

 
165.00 

 
47.00 

 
72.00 

 
75.00 

 
2.42 

 
5.37 

 
3.62 

 
4.17 

        
Year 2 

 
 
 

 
   

 
 

 
 

 
 

 
 
Mean 

 
121.02 

 
37.99 

 
54.30 

 
44.31 

 
2.00 

 
4.71 

 
2.99 

 
3.37 

 
Std Deviation 

 
26.38 

 
7.46 

 
7.96 

 
22.03 

 
0.21 

 
0.53 

 
0.43 

 
0.36 

 
Coef Var. 

 
0.22 

 
0.20 

 
0.15 

 
0.50 

 
0.10 

 
0.11 

 
0.14 

 
0.11 

 
Minimum 

 
81.60 

 
26.52 

 
46.92 

 
5.10 

 
1.67 

 
4.11 

 
2.22 

 
2.83 

 
Maximum 

 
168.30 

 
47.94 

 
73.44 

 
76.50 

 
2.47 

 
5.60 

 
3.72 

 
4.35 

        
Year 3 

 
 
 

 
   

 
 

 
 

 
 

 
 
Mean 

 
123.55 

 
38.74 

 
55.41 

 
45.14 

 
2.06 

 
4.86 

 
3.09 

 
3.48 

 
Std Deviation 

 
27.20 

 
7.55 

 
8.12 

 
22.60 

 
0.30 

 
0.76 

 
0.62 

 
0.51 

 
Coef Var. 

 
0.22 

 
0.19 

 
0.15 

 
0.50 

 
0.14 

 
0.16 

 
0.20 

 
0.15 

 
Minimum 

 
83.23 

 
27.05 

 
47.86 

 
5.20 

 
1.59 

 
4.00 

 
1.98 

 
2.69 

 
Maximum 

 
171.67 

 
48.90 

 
74.91 

 
78.03 

 
2.73 

 
6.15 

 
4.15 

 
4.90 

 
 
 



 

 



 

 

  
Table 8.5. Correlation Matrix Calculated from Simulation Results for Yields and Prices Over Three Years. 

         

 
Yields for Year 3 

 
Prices for Year 3 

 
Yields for Year 2 

 
Prices for Year 2 

 
Yields for Year 1 

 
Prices for Year 1 

 
Corn 

 
Soybean 

 
Wheat 

 
Sorghum 

 
Corn 

 
Soybean 

 
Wheat 

 
Sorghum

 
Corn 

 
Soybean 

 
Wheat

 
Sorghum

 
Corn 

 
Soybean 

 
Wheat 

 
Sorghum

 
Corn 

 
Soybean 

 
Wheat

 
Sorghum

 
Corn 

 
Soybean

 
Wheat

 
Sorghum

 
1.000 

 
0.519 

 
-0.318 

 
0.440 

 
-0.279 

 
-0.342 

 
-0.297 

 
-0.273

 
0.045

 
0.026

 
-0.011

 
0.019

 
-0.012

 
-0.015

 
-0.018 

 
-0.011

 
0.003

 
-0.002

 
-0.009

 
0.005

 
0.008

 
-0.001

 
-0.008

 
0.013

 
 
 

1.000 
 

0.133 
 

0.403 
 
-0.064 

 
-0.007 

 
-0.058 

 
-0.224

 
-0.088

 
-0.166

 
-0.024

 
-0.077

 
0.002

 
-0.014

 
-0.002 

 
0.027

 
0.001

 
-0.004

 
-0.017

 
0.008

 
0.009

 
0.005

 
-0.007

 
0.013

 
 
 

 
 

1.000 
 

-0.080 
 
-0.061 

 
0.152 

 
0.158 

 
-0.226

 
0.060

 
-0.002

 
-0.087

 
0.013

 
-0.010

 
-0.042

 
-0.031 

 
0.008

 
-0.003

 
0.004

 
-0.008

 
0.013

 
0.006

 
0.009

 
0.004

 
0.004

 
 
 

 
 

 
 

1.000 
 
-0.004 

 
0.068 

 
-0.170 

 
-0.130

 
-0.005

 
0.000

 
0.010

 
-0.002

 
0.003

 
-0.004

 
0.003 

 
0.001

 
-0.008

 
-0.021

 
-0.007

 
-0.013

 
0.002

 
-0.004

 
-0.007

 
0.012

 
 
 

 
 

 
 

 
 

1.000 
 

0.683 
 

0.684 
 

0.827
 

-0.054
 

-0.016
 

-0.020
 

-0.010
 

0.158
 

0.112
 

0.101 
 

0.148
 

0.018
 

-0.007
 

-0.007
 

-0.001
 

-0.012
 

-0.013
 

-0.022
 

-0.010
 

 
 

 
 

 
 

 
 

 
 

1.000 
 

0.576 
 

0.409
 

-0.054
 

-0.003
 

0.007
 

0.003
 

0.102
 

0.120
 

0.073 
 

0.080
 

0.010
 

-0.003
 

-0.007
 

0.015
 

-0.006
 

-0.007
 

-0.015
 

-0.007
 

 
 

 
 

 
 

 
 

 
 

 
 

1.000 
 

0.416
 

-0.151
 

-0.019
 

0.088
 

-0.093
 

0.325
 

0.277
 

0.396 
 

0.239
 

-0.002
 

-0.003
 

0.001
 

0.010
 

-0.008
 

-0.004
 

-0.013
 

-0.008
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1.000
 

0.038
 

0.026
 

0.028
 

0.017
 

-0.118
 

-0.050
 

-0.067 
 

-0.119
 

0.016
 

-0.006
 

0.000
 

-0.009
 

-0.005
 

-0.011
 

-0.008
 

-0.003
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

1.000
 

0.517
 

-0.306
 

0.443
 

-0.298
 

-0.352
 

-0.308 
 

-0.285
 

0.057
 

0.031
 

-0.030
 

0.025
 

-0.003
 

-0.013
 

-0.008
 

-0.005
 

 
 

 
 

 
 

 
 

 
 

 
 

 
   

1.000
 

0.139
 

0.415
 

-0.071
 

-0.002
 

-0.055 
 

-0.224
 

-0.091
 

-0.155
 

-0.032
 

-0.059
 

0.025
 

0.020
 

0.017
 

0.050
 

 
 

 
 

 
 

 
 

 
 

 
 

 
    

1.000
 

-0.053
 

-0.054
 

0.165
 

0.164 
 

-0.233
 

0.033
 

-0.009
 

-0.077
 

0.018
 

0.009
 

-0.009
 

-0.026
 

0.031
 

 
 

 
 

 
 

 
 

 
 

 
 

 
     

1.000
 

-0.014
 

0.060
 

-0.194 
 

-0.133
 

0.015
 

0.017
 

-0.016
 

0.013
 

0.001
 

0.003
 

-0.007
 

-0.007
 

 
 

 
 

 
 

 
 

 
 

 
 

 
      

1.000
 

0.677
 

0.681 
 

0.831
 

-0.037
 

-0.005
 

-0.019
 

0.010
 

0.138
 

0.092
 

0.081
 

0.125
 

 
 

 
 

 
 

 
 

 
 

 
 

 
       

1.000
 

0.574 
 

0.403
 

-0.042
 

-0.001
 

0.015
 

0.024
 

0.090
 

0.118
 

0.067
 

0.062
 

 
 

 
 

 
 

 
 

 
 

 
 

 
        

1.000 
 

0.415
 

-0.143
 

-0.029
 

0.079
 

-0.068
 

0.308
 

0.259
 

0.395
 

0.226
 

 
 

 
 

 
 

 
 

 
 

 
 

 
        

 
 

1.000
 

0.046
 

0.039
 

0.040
 

0.013
 

-0.141
 

-0.082
 

-0.100
 

-0.141
 

 
 

 
 

 
 

 
 

 
 

 
 

 
        

 
  

1.000
 

0.537
 

-0.304
 

0.440
 

-0.279
 

-0.346
 

-0.332
 

-0.275
 

 
 

 
 

 
 

 
 

 
 

 
 

 
        

 
   

1.000
 

0.139
 

0.419
 

-0.075
 

-0.014
 

-0.076
 

-0.223
 

 
 

 
 

 
 

 
 

 
 

 
 

 
        

 
    

1.000
 

-0.066
 

-0.089
 

0.140
 

0.185
 

-0.252
 

 
 

 
 

 
 

 
 

 
 

 
 

 
        

 
     

1.000
 

0.009
 

0.066
 

-0.202
 

-0.115
 

 
 

 
 

 
 

 
 

 
 

 
 

 
        

 
      

1.000
 

0.682
 

0.715
 

0.880
 

 
 

 
 

 
 

 
 

 
 

 
 

 
        

 
       

1.000
 

0.606
 

0.435
 

 
 

 
 

 
 

 
 

 
 

 
 

 
        

 
        

1.000
 

0.513
 

 
 

 
 

 
 

 
 

 
 

 
 

 
        

 
         

1.000
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Table 8.6.  Sum of Present Value of Total Revenue Assuming Alternative Levels of Correlation Among the 
Random Variables. 
 

  
No Correlation 

Only Inter-Temporal 
Correlation 

Only Intra-Temporal 
Correlation 

 
Total Correlation 

 ------------------------------------- $1,000 ------------------------------------------------- 

Mean 199.41 199.43 198.74 198.72 

Minimum 135.56 134.88 126.69 126.65 

Maximum 264.33 263.01 279.06 274.61 

Coefficient of 
Variation 0.0883 0.0898 0.1101 0.1110 
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Figure 8.1.  Conversion of a Standard Normal Deviate to a Uniform
Random Number.
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Figure 8.1.  Conversion of a Standard Normal Deviate to a Uniform
Random Number.
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Figure 8.2.  Illustration of the Inverse Transform to
Simulate on Empirical Distribution.
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Chapter 9 
Coefficient of Variation Stationarity and 
Simulating Heteroskedastic Error Terms 

 
 When validating a simulation model the developer must verify that the simulated values 
accurately reproduce the historical deterministic and stochastic components for each random 
variable, i.e., the simulated values should have the same means and standard deviations as the 
historical data.  When the mean for the planning horizon is assumed to change over time the 
coefficient of variation (CV) will not be the same as observed over history.  As a result the 
model will not reflect the same relative risk that was observed for the past.  By over-or under-
stating the relative risk in the out years, the model will not provide a reasonable approximation 
of the risk facing the system being studied. 
 
 Relative risk of the random variables, as defined by the coefficient of variation (CV), should 
remain constant over the planning horizon.  When probability distribution miss-specification 
occurs the CV increases or decreases over the planning horizon, thus changing the risk relative 
to what was observed in the original data.  CV stationarity should be checked in the model 
validation/verification phase.  The first two sections of this chapter deal with CV stationarity for 
the normal distribution and the empirical distribution. 
 
 A related topic is that of purposely simulating a random variable so the CV will increase or 
decrease over the planning horizon.  Accommodating this type of problem could occur when 
simulating a random variable which is assumed to have more or less relative variability in the 
future than over the historical period.  A procedure for simulating random variables with more or 
less relative variability than was observed for the historical period is described in the third 
section of this chapter. 
 
CV Stationarity for the Normal Distribution 
 
 The normal distribution is easy to use but one of its faults is that the relative variability 
(CV) changes as the mean changes.  This is particularly a problem when the mean of a random 
variable, such as prices, increases or decreases over the planning horizon.  When simulating a 
normally distributed random variable with an increasing mean and a fixed standard deviation, the 
CV decreases by definition; thus increasing the relative confidence in the projected values as the 
planning horizon lengthens.  To demonstrate this problem observe the (CVs) for a probability 
distribution when the mean increases from 3.4 to 4.0 over a 5 year period in Table 9.1. 
 
  

Table 9.1.  Coefficient of Variation for a Distribution with Increasing Means.
 2001 2002 2003 2004 2005 
Meant 3.40 3.50 3.70 3.80 4.00 
Std. Dev. 0.34 0.34 0.34 0.34 0.34 
C.V. 10.0% 9.7% 9.1% 8.9% 8.5%        
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Using the projected mean prices in the example and simulating the variable with a constant 
standard deviation will actually reduce the relative price risk (CV) five years in the future!  This 
is just the opposite of conventional wisdom regarding future price risk -- risk usually increases 
over time as we are less and less certain of our forecasts.  
 
 If the mean price decreases over the simulation period, the CV for simulated prices actually 
increases as the standard deviation remains constant.  Thus the normal distribution generates 
non-CV stationary simulated results when the standard deviation is held constant and the mean 
changes. 
 
 A simple adjustment to the standard deviation used to simulate the price for each year will 
correct the non-stationarity relative risk problem.  The adjustment or correction is made by 
multiplying the standard deviation for each year, t, by the “J-Factor” defined as: 
 

t
t

h

h

t

XJ   =   
X

where X  is the historical mean of  the distribution used                                     
to calculate the standard deviation, and                                                

X  is the mean for each year t = 1, 2, 3, ... T in the planning horizon.        

 

 
 Using the example in Table 9.1, the J-Factors are calculated in Table 9.2, assuming the 
historical mean is 3.4.  The standard deviations used for simulation after correction for the J-
factor are in the fourth line of Table 9.2.  The coefficient of variation equals 10 percent in each 
year, once the standard deviation is adjusted annually by the appropriate J-Factor.  The five 
normal distributions in Table 9.1 are simulated using the Meant and the corrected standard 
deviations for each year in CV Stationarity Normal Demo.XLS.  The Simetar commands used to 
simulate the five random variables are: 
 
 = NORM (3.4, (0.34 * 1.0)) 
 = NORM (3.5, (0.34 * 1.0294)) 
 = NORM (3.7, (0.34 * 1.088)) 
 = NORM (3.8, (0.34 * 1.1176)) 
 = NORM (4.0, (0.34 * 1.1764)) 

 
Table 9.2.  Corrected Standard Deviations to Make a Normal Distribution CV 
Stationary When Means Change Over Time. 
 2001 2002 2003 2004 2005 
Meant      3.40     3.50     3.70     3.80     4.00 
Std. Dev.      0.34     0.34     0.34     0.34     0.34 
J-Factor      1.00     1.0294     1.088     1.1176     1.1764 
Corrected Std. Dev.      0.34     0.35     0.37     0.38     0.40 
C.V.      10.0%     10.0%     10.0%     10.0%     10.0% 
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 The CV Stationarity Normal Demo.XLS workbook demonstrates how a CV non-stationarity 
result differs from one that is CV stationary, assuming the random variable is normally 
distributed.  A five year simulation of the problem presented in Table 9.2 is presented in CV 
Stationarity Normal Demo.XLS.  The spreadsheet equations demonstrate how to calculate the Jt 
Factors and how to apply them in the Simetar.  The Simetar output variables are in cells B30-
B34 and B50-B54.  Results for simulating the model are summarized in rows 61-65.  Note the 
calculated coefficient of variation values for both the corrected and non-corrected variables.  The 
CVs for the corrected variables are approximately equal to the historical value (10.0) in all years. 
 
CV Stationarity and the Empirical Distribution 
 
 An empirical distribution that is expressed in terms of the actual data (Table 9.3) will suffer 
from a non-stationary CV if the mean changes over the simulation period.  Use random variable 
X for this example. 
 

Table 9.3.  Empirical Probability Distribution 
Expressed as Actual Numbers. 
 Xi P(Xi) 
Pmin 2.09 0.00 
 2.10 0.10 
 4.20 0.30 
 7.30 0.50 
 11.20    0.70 
 14.10    0.90 
Pmax 14.11   1.00 
Historical mean 7.78   

 
    
If the distribution in Table 9.3 is simulated using the empirical formula in Simetar for multiple 
years with an increasing mean, the CV will actually decrease over time.  The recommended 
correction is to re-specify the distribution in terms of fractions of the mean. 
 
 Expressing the cumulative distribution values as fractions of the mean and then simulating 
the distribution as fractions automatically corrects for CV stationarity when means are assumed 
to increase or decrease over the planning horizon.  The simple MVE distribution in Table 9.3 is 
converted to a CV stationary form in Table 9.4 to demonstrate the concept. 
 
       Table 9.4.  Empirical Distribution Corrected to be CV Stationary. 

                   X               X                e               e  /  X                            S                  P(S )t t xt xt t i i  
      Pmin -0.73015 0.0 
 1  4.2 7.78 -3.58 -0.460154  -0.730077 0.1 
 2 2.1 7.78 -5.68 -0.730077  -0.460154 0.3 
 3 14.1 7.78 6.32 0.812339  -0.061697 0.5 
 4 11.2 7.78 3.42 0.439589  0.439589 0.7 
 5 7.3 7.78 -0.48 -0.061697  0.812339 0.9 
      Pmax 0.812421 1.0 
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 Simulate the corrected empirical distribution for any mean value of Xt  using the Simetar 
simulation formula: 

~X  +  X  *  Empirical S ,  P(S )t t i i =  Xt b g
 

 
Proof that CV stationary holds for CV Stationary empirical distributions, Si  is provided by 
calculating the statistics for the sorted fractional deviates, as follows: 
 

  Sorted X                         Sorted Deviates S                P St i ib g  
                            Pmin Si -.73015                          0.0    
  2.1  -.730077 .1 
  4.2  -.460154 .3 
  7.3  -.061697 .5 
  11.2  .439589 .7 
  14.1 .812339 .9 
                             Pmax Si .812421 1.0 
 
 

X =  7.78                        X =  0.0             
 =  4.931                        =  0.6317        

CV =  .6317                    CV =  undefined
σ σ  

 
Simulate random variable X using the formula: 
 

 
~ ~

~
X  =   X  *   (1 +  S)       

where S  =   Empirical S ,  P(S )i ib g  
 

− The statistics for Xt and Si above show that the expected value of ~S  is zero and the 
expected standard deviation of ~S  is 63.17% of the mean because of the way ~X  is 
simulated in the equation. 

− Therefore if X  is 7.78 and ~S  is 63.17% of X  the standard deviation is 4.91 and the CV 
equals its historical value of 0.6317.  Changing the mean to 10.0, the simulated ~S  will 
be 6.317 or 63.17% of the mean.  The CV remains constant regardless of the mean 
because the CV formula can be re-written as: 

 
  σ  =   X *   CV   
 

This formula to calculate σ  demonstrates that the σ  will change in proportion to X  so 
the CV always remains constant across any X  values. 

 
 Another way to correct an empirical distribution so it is CV stationary is to do the correction 
during the simulation process.  This procedure allows one to use a raw (or historical) data 
empirical distribution as follows: 



--- Chapter 9 --- 

 

5 

  ~X  =   X   *  Empirical X ,  P(X ) / Xt i i hb g  
 
where Xt   is the assumed mean for year t in the planning horizon, 
 
  Xi  is the sorted historical observations for the random variable, 
 
  P(Xi)  is the probability of the Xi values, and  
 
  Xh   is the mean of the raw or historical data. 
 
During the simulation process Simetar generates an empirically distributed random ~Xi  value and 
then Excel transforms the value to a fraction of the historical mean prior to multiplying it by the 
mean for year t.  This is actually the same process outlined in Table 9.4, but it is done here 
during the simulation process rather than ahead of time.  For large models with numerous 
random variables it is recommended that the procedure in Table 9.4 be used to speed up the 
model by not doing the transformation for each iteration. 
 
 Both procedures for simulating CV stationary empirical distributions are presented in CV 
Stationarity Empirical Demo.XLS. 
 
Controlling Heteroskedasticity for Simulation 
 
 Heteroskedasticity occurs when the risk (or variability) of a random variable changes 
(increases or decreases) over time.  It has been suggested that yields for corn and wheat are more 
variable over the past few years than the previous 10-20 years (Atwood, Baquet and Watts).  
Also, research by Ray, et. al. has suggested that changing the farm bill in 1996 will lead to more 
variable crop prices than experienced over the past 15 years. 
 
 Heteroskedastic variability may also be a feature that the decision maker wants to impose on 
the model.  Consider the case where the decision maker wants to analyze the effects of switching 
to a new bio-tech enhanced seed which has 25 percent less yield risk, half way through the 
planning horizon.  Imposing heteroskedastic risk on prices could be considered if the decision 
maker is more certain about projections in the first two years than in years 3-10. 
 
 The recommended procedure for controlling the relative variability of a random variable is 
to first convert the distribution to be CV stationary and then use the appropriate Expansion 
Factor to increase or decrease the CV.  For the normal distribution, this involves using the J-
Factor to correct the standard deviation first and then using the appropriate Expansion Factor 
E .i   The Expansion Factor Ei  is one plus the fractional change assumed for the CV for a 
particular year.  For example, if the CV is to be the same as the historical period for years 1 and 
2 but increase 50 percent each year for years three and four, the Ei  factors are:  1.0, 1.0, 1.5, and 
1.5. 
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 The simulation of a normally distributed random variable for four years, assuming different 
means and CVs each year is used to demonstrate how to control the CV over time.  Let the 
random variable have a historical mean of 10 and standard deviation of 3, or X ~ N(10,3).  Next 
simulate the variable assuming the mean is 10, 15, 20, and 25, so the equations in the model are: 
 
 ~X1    = 10  +  3  *  SND 
 ~X2   = 15  +  3  *  SND 
 ~X3    = 20  +  3  *  SND 
 ~X4    = 25  +  3  *  SND 
 
Correcting these equations to simulate a normally distributed random variable X so that it is CV 
stationary requires multiplying the standard deviation by the J i -Factor where: 
 
 i t hJ   =  X  / X  
 
 ~Xi  = X   +     *   SND  *   Ji iσ  
 ~X1   = 10  +  3  *  SND  *  1.0 
 ~X2   = 15  +  3  *  SND  *  1.5 
 ~X3   = 20  +  3  *  SND  *  2.0 
 ~X4   = 25  +  3  *  SND  *  2.5 
 
 To control the degree of heteroskedasticity for the X variable, simply multiply the corrected 
standard deviation by an Expansion Factor (E ).i   The expansion factor is one plus the fractional 
change in the CV assumed for the simulated values.  For example, if the CV is to remain 
constant at its historical level in years 1 and 2 the Ei  is 1.0 and if the CV is to increase 50 
percent in years 3 and 4 the Ei  is set to 1.5 for these years.  Adding the Ei  factors to the CV 
stationary equations above yields:  
 
 ~X   =   Xi i   +  σ  *  SND  *  Ji   *  Ei 
 
 ~X1   =  10  +  3  *  SND  *  1.0  *  1.0 
 ~X2   =  15  +  3  *  SND  *  1.5  *  1.0 
 ~X3   =  20  +  3  *  SND  *  2.0  *  1.5 
 ~X4   =  25  +  3  *  SND  *  2.5  *  1.5 
 
 The Expansion Factor can be calculated as the ratio of the coefficient of variation (CV) for a 
particular period (years 15-20) and the coefficient of variation for the full period (years 1-20) 
when simulating a variable with a heteroskedastic historical data series: 
 
 Ei  =  CV15-20 / CV1-20 
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 A warning about using the expansion factor for incorporating heteroskedasticity, is namely: 
 The equation must be corrected to be CV stationary prior to incorporating the expansion 
factor. 
 
 The heteroskedasticity adjustment factor can be incorporated into the empirical distribution 
by multiplying the random fractional deviations by Ei  or: 
 

 { }
( )

i i i i

i i i

X   =  X   * 1 +  S  *  E  

where    S  = EMPIRICAL S , P(S )

⎡ ⎤⎣ ⎦  

 
 The Excel/Simetar equations for simulating random variables that include an expansion 
factor are presented here for the normal and empirical distributions. 
 
− Normally distributed random numbers 
 
 = Norm  X ,  (  *  J  *  E )i i iσc h   
 
− Empirically distributed random numbers 
 
 ( )i i i i i= X  + X  * EMPIRICAL S , P(S )  * E⎡ ⎤⎣ ⎦  

 assuming that Si  are sorted fractional deviates and not actual values. 
 
 An Excel spreadsheet named Heteroskedasticity Demo.XLS is provided to demonstrate how 
to simulate random variables that have heteroskedastic relative variability.  Three random 
variables are simulated for five years in two different experiments.  In the first experiment the 
random variables are simulated with the historical relative risk (CV) in years 1-3 and then the 
relative risk for years 4 and 5 was reduced to by a fraction (56, 18, and 49.9 percent, respectively 
for the three variables).  In the second experiment the relative risk for the random variables is 
increased by 50 percentage points per year for each year 2-5.  Results for both experiments are 
presented at the bottom of the second page of the Heteroskedasticity Demo.XLS. 
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Chapter 10 
Simulating Alternative Scenarios and 

Selecting the “Best” Scenario 
 
 The word scenario has been adopted by economists and business analysts to mean an 
alternative strategy or policy action.  A complete analysis of the alternative strategies a business 
manager or policy maker wants to consider generally consists of simulating multiple scenarios.  
Each scenario in a simulation analysis is unique because it is based on a different set of 
assumptions for the exogenous or control variables.  Each scenario results in unique distributions 
for the key output variables. 
 
 As a risk analyst, it is not your job to tell the decision maker which scenario to pick.  It is, 
however, your job to educate the decision maker as to the consequences of choosing alternative 
scenarios or strategies.  In simulation and risk analysis this means your role is to help the 
decision maker choose the best scenario for their situation. 
 
 The analyst’s job of ranking alternative risky scenarios in simulation thus becomes one of 
comparing and ranking the empirical distributions estimated by the simulation model.  The 
purpose of this chapter is to describe, demonstrate, and critique alternative methods that can be 
used to rank distributions for risky alternatives. 
 
Simulating Multiple Scenarios 
 
 The question of how do I generate or simulate multiple scenarios for ranking can be 
answered with a simple example.  The Business Model With Risk Demo.XLS model described 
in Chapter 3 (Figure 3.2) is restated for a 4 scenario analysis as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                         

Fi (100, 150, 200, 250) Ci (0.40, 0.60, 0.80, 1.00)

Q ~ N(150, 25)

P ~ N(3.25, 0.40)

VC = Ci * Q
TR = P * Q
PR = TR – VC - Fi

~

~

~
~ ~

Fi (100, 150, 200, 250) Ci (0.40, 0.60, 0.80, 1.00)

Q ~ N(150, 25)

P ~ N(3.25, 0.40)

VC = Ci * Q
TR = P * Q
PR = TR – VC - Fi

~

~

~
~ ~

 

 
Figure 10.1.  Schematic of Business Model With Risk Demo.XLS. 
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In Chapter 3, the model was simulated for 500 iterations to estimate the parameters for the profit 
(PR) function assuming that Ci = 0.90 and Fi = 100.0.  The 500 iteration simulation for this pair 
of Ci and Fi values constituted one scenario for the model and generated one estimate of the pdf 
for the profit (PR) variable. 
 
 The model can also be run for alternative assumptions for C and F, as indicated in Figure 
10.1.  The model is depicted in Figure 10.1 as having four scenarios based on the values in Table 
10.1.  Each scenario results in a unique estimate of the pdf for PR that the analyst must compare 
and help the decision maker rank.  For a large scale analysis with N scenarios, the simulation 
results from Simetar might resemble the information in Table 10.2. 
 
 

Table 10.1.  Scenario Table of Four Scenarios 
with Two Control Variables, for the Model in 
Figure 10.1. 

Scenario No. iC  iF  
1 
2 
3 
4 

0.70 
0.85 
0.90 
1.00 

120 
100 
  90 
  80 

 
 
 
 
Table 10.2.  Simulation Results for 
Simulating N Scenarios. 

Scenarios 1 - N 
1 2 NPR for S      PR for S    . . .   PR for S

X X X
S.D.             S.D.               S.D.
C.V. C.V. C.V.
Min Min Min
Max Max Max
PR:1 PR:2 PR:N
1 1 1
2 2 2
3 3 3
. . .
. . .
. . .
500 500 500

 

 
 
 
 The number of scenarios for the Profit Model included in Scenario Analysis Demo.XLS is 
set at 4 to demonstrate a point, however, in actuality the decision maker may want to compare 
dozens of scenarios, as depicted in Figure 10.2 and Table 10.2.  In addition to changing the 
control variables C and F, the decision maker may want to see the effects of different parameters 
for ~ ~Q and P.  

1.0

0

Pr

Prob. 
Sn 

S1

S2

Figure 10.2.  CDF’s for Simulating a 
Model for N Scenarios. 
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 To facilitate this type of scenario analysis the Simetar simulation engine includes a Scenario 
option.  (See Chapter 16 for further details about using the Scenario option in Simetar.)  In the 
simulation dialog box the user may specify the number of scenarios to simulate the model.  
When the number of scenarios is greater than 1, Simetar reruns the model with the alternative 
values for the control variables, using the same random values for every random variable, to 
insure the results between scenarios differ only by the scenario values specified by the analyst.  
The analyst specifies the alternative control values for Ci and Fi (and all other scenario control 
variables) using the =SCENARIO( ) function.  An example of the =SCENARIO( ) function for 
two control variables and a 4 scenario analysis of the model depicted in Figure 10.1 is: 
 
 = SCENARIO (0.75, 0.85, 0.90, 1.00) 
 
 = SCENARIO (120, 100, 90, 80) 
 
Instead of typing numbers in the =SCENARIO( ) function, cell references [e.g., 
=SCENARIO(A1:A4)] should be entered so the Ci and Fi values can be changed easily.  When 
Simetar simulates the model in this fashion (see the SimData worksheet in Scenario Analysis 
Demo.XLS) the results are presented in scenario order for each output variable in SimData.  In 
other words, if there are three output variables (Q, P, and PR) for two scenarios the results would 
be presented as: 
 
    Q:1          Q:2          P:1         P:2          PR:1          PR:2   

 
  Figure 10.3.  Results for Three Output Variables Simulated for Two Scenarios. 
 
Ranking Risky Alternatives 
 
 After using a simulation model to simulate multiple scenarios (risky alternatives) the 
decision maker is faced with the problem of which scenario is best.  Much has been written in 
the economics and business literature about this problem, but it is still a mystery.   
 
 Alternative procedures for selecting the “best” strategy are discussed here; but realize the 
preferred method may change from one situation to the next, depending on the decision maker.  
The scenario ranking procedures presented here go from the easiest to the most difficult.  The 
problem with using a cookbook procedure for ranking strategies is that you as an analyst cannot 
make the decision for another person because you do not face their risk/income preferences, you 
do not have their assets/liabilities, and you do not have their age/life time experiences that go 
into making a decision.  Thus use caution in implementing these scenario comparison 
procedures.  Run each of the procedures and present them to the decision maker so they can 
make an informed decision. 
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 The Excel spreadsheet, Best Demo.XLS, performs the scenario rankings described in this 
section for a five scenario problem.  The spreadsheet is programmed to rank 5 scenarios that 
have 50 observations and are entered into columns A-E starting in row 9 (Table 1 of the 
spreadsheet).  All but two of the scenario ranking procedures are completely programmed to 
operate on the raw data while the remaining ranking procedures require that the analyst type in 
the rankings after checking the charts and tables in the spreadsheet. 
 
Mean Only  
 
 Risky alternatives can be ranked from best to worst based on the means for the key 
output variable, say NPV.  A problem with using the Means Only procedure is that the benefits 
of stochastic simulation are lost because the risk for each scenario is ignored.  This procedure 
ranks the five scenarios in Table 10.3.  The rankings suggest selecting Strategy E, then Strategy 
B, and so on.  This criteria provides a unambiguous ranking and is based on the economic 
principal that more is preferred to less, regardless of the risk for each scenario.  The procedure 
also assumes the decision maker is risk neutral.  (See Table 2 in Best Demo.XLS for this ranking 
procedure.) 
 
  Table 10.3.  Rankings of Five Risky  
  Alternatives Based on Means Only 
  Procedure. 

Scenario            X             Rank  
 
     A 19.90 3 

           B  29.73  2 
      C  14.86    4 
      D  9.97    5 
      E  34.83    1 

 
 
Standard Deviation  
 
 Scenarios are ranked strictly based on their absolute risk, i.e., their standard deviations.  The 
ranking ignores the level of income generated by the alternative scenarios.  The five scenarios 
are ranked in Table 10.4 based on the simulated standard deviations.  Using this criteria the 
decision maker should select scenario D.  (See Table 3 of the Best Demo.XLS spreadsheet.) 
 
    Table 10.4  Rankings Based on Standard  
    Deviation Procedure. 

    Rank        Scenario              σ  
  2 A  2.90 
  5 B  7.74 
  3 C  3.87 
  1 D  0.55 
  4 E  4.84 
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Mean Variance (MV) 
 
 Strategies can be ranked based on how much income they produce relative to the risk 
associated with earning that income.  The measure of risk is the standard deviation (or variance). 
 The mean variance method can be displayed in a graph showing the means and variances (or 
standard deviations) for all scenarios.  In the case of a five scenario decision you can display the 
results in a format such as Table 10.5. 
 
Table 10.5.  Ranking Based on Mean Variance  
Procedure. 

Scenario        X                     Rank by MV2σ  
  A  19.90  8.42         1   
     B  29.73  59.89         3 
     C  14.86  14.97         2 
     D  9.97  0.29         1 
     E  34.83  23.39         1 

 
 
 The rule for selecting strategies under the mean variance criteria is to get as far to the right 
on the X (income) axis and as low as possible on the 2σ  (risk) axis.  This can be restated as 
“always select the strategy which has no other strategy in its southeast quadrant.”  Strategy A is 
preferred to C because it provides a higher return for less risk.  Strategy E satisfies this criteria as 
no other strategy is in its southeast quadrant.  Strategy B is probably least preferred because it is 
associated with the largest risk and less income than E.  However, strategy D may be preferred 
over the other three for someone who is very risk averse because it offers the least risk.  As you 
see the MV ranking is dependent upon the decision maker’s preference for the trade off between 
income and risk.  Additionally, mean variance often results in more than one alternative in the 
efficient set of preferred alternatives, i.e., it results in ties like in Table 10.5.  
 
Minimum and Maximum (or Worst and Best Case) 
 
 Several procedures have been suggested that utilize the minimum and maximum values for 
the key output variable.  A distinct disadvantage to these procedures is that they focus the 
decision on the worst or the best cases and ignore the probabilities of observing these extreme 
outcomes.  When decision makers base their choices on the best or the worst outcomes, then 
results of a stochastic simulation are largely ignored as these procedures ignore 98 percent, or 
more, of the iterations.  Additionally, these procedures put all of the weight for ranking a 
strategy on a single iteration, which had a 1 percent (or less) chance of being observed. 
 
− Minimum Only (Worst Case) 
 Rank the strategies based only on their simulated minimums.  The strategy with the smallest 

minimum (C) is least preferred and the one with the largest minimum (E) is the most 
preferred (Table 10.6).  This procedure ignores the average level of income for the scenarios 
and the dispersion of income (risk) about the mean.  Strategy E is preferred over all the rest 
in our example (Table 10.6).  Figure 10.4 depicts the problem with using the worst case 
method for ranking risky alternatives. 

8

6

4

2

0
10 20 30 40

D

A

C

E

B

X

F (risk)

(income)

2



--- Chapter 10 --- 6 

A

B

A

B

 
 
 
Figure 10.4.  Worst Case Scenario  
Method Ranks A over B. 

B

A
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Figure 10.5.  Best Case Scenario  
Method Ranks B over A.

A
B

X X

A
B

XX XX  
 
Figure 10.6.  Min-Max Ranks A 
over B to Minimize Distance from 
Mean to Minimum. 

− Maximum Only (Best Case) 
 The Maximum Only Strategy is the reverse of Minimum Only.  For the five scenarios being 

ranked in this Chapter, scenario B is preferred over all the others, because the maximum for 
B is the largest of the five (Table 10.6).  See Figure 10.5 for an example where the Best Case 
ranking procedure may make the wrong ranking. 

 
− Mini - Max 
 Rank the strategies based on minimizing the chance of a maximum error.  Minimize the 

chance of selecting the wrong strategy (regret) by choosing a strategy that has the smallest 
minimum range between the mean and the minimum, in our case it is scenario D (Table 
10.4).  See Figure 10.6 for an example of how this procedure could give an incorrect ranking 
of two risky alternatives. 

 
Table 10.6.  Ranking Based on Minimums, Maximums, and Min-Max. 

 
Scenario 

 
Mean 

 
Minimum 

 
Maximum 

Range of 
Mean-Min 

Rank by 
Minimum

Rank by 
Maximum 

Rank by 
Mini-Max 

A 19.90 14.3 27.7 5.57 3 3 2 
B 29.73 14.9 50.5 14.85 2 1 5 
C 14.86 7.4 25.3 7.43 5 4 3 
D 9.97 9.1 10.9 0.90 4 5 1 
E 34.83 25.6 47.8 9.28 1 2 4 

 
 
 

 
 
Relative Risk (CV) 
 
 The coefficient of variation (CV) is defined here as the absolute ratio of the standard 
deviation and the mean, or the relative risk associated with a scenario.  Ranking risky 
alternatives based on CV calls for selecting the scenario with the lowest absolute CV.  The 
advantage to this procedure over Mean Only is that it considers the average risk for each 
scenario.  Its advantage over the Mean Variance procedure is that it simplifies the criteria to one 
value (CV) for each scenario and it eliminates the ambiguity of multiple alternatives in the 
efficient set.  Table 10.7 shows that the strategies receive a unambiguous ranking unless there is 
a tie between two or more CV’s.  Break ties by assigning a higher rank to the scenario with the 
larger mean.  The Relative Risk procedure works well if the means of all the alternatives are 
similar and not close to zero.  If the range of the variables includes zero the CV is not a reliable 
procedure for ranking scenarios.  A disadvantage to the Relative Risk procedure is that it ignores 
the skewness and extreme downside risks associated with some strategies. 
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Table 10.7.  Rankings Based on Absolute Relative Risk. 

Rank        Scenario           CV               X                  σ  
 3 A 14.6 19.9 2.90 
 4 B 26.0 29.7  7.74 
 5 C 26.0 14.9  3.87 
 1 D 5.4 9.9  0.55 
 2 E 13.9 34.8  4.84 

 
 
Probabilities of Target Values 
 
 This procedure was suggested by Richardson and Mapp when they demonstrated the use of 
probabilistic cash flows and the probability of economic success for deciding among risky 
scenarios.  The probability of success was defined as the probability that NPV is positive so the 
business earns a rate of return greater than the discount rate.  Probabilistic cash flows examine 
the probability that ending cash reserves in each year will be positive or will exceed the decision 
maker’s reservation level.  
 
 Other probabilities can be simulated and calculated for each scenario, such as the 
probability of remaining solvent, and the probability of increasing real net worth.  For the 
example problem we can use the EDF function in Simetar to calculate probabilities of interest to 
the decision maker.  (See Table 7 in Best Demo.XLS for an example of calculating a Target 
Value table.)  The probability results can be summarized in a table like Table 10.8. 
 
Table 10.8.  Rankings Based on Probabilities of Target Values for Rates of Return. 

        Alternative Scenarios                       
   Rate of Return      A        B        C         D        E      
                     (percent) 
   Prob (X > 20%)  49.6 89.5 6.5 0 100 
   Rank wrt P(X>20%) 3 2 4 5 1 
 
   Prob (X>30%) 0 49.6 0 0 83.2 
   Rank wrt P(X>30%) 3 2 4 5 1 
  
   Prob (X>35%) 0 27.6 0 0 49.6 
   Rank wrt P(X>35%) 2 3 4 5 1 

 
 The results in a probability setting such as this communicate to the decision maker the chance 
of earning a return that is greater than his/her minimum rate of return, say 20 percent.  The 
decision maker will most likely select the strategy which yields the largest probability that the rate 
of return will exceed his/her minimum rate of return.  Strategy D has a 100% chance of a return 
greater than 20%. Strategy E provides the highest probability (zero) of earning a rate of return 
greater than 35%. 
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Figure 10.7.  Example of a StopLight Chart. 

 The =EDF( ) function in Simetar can be used to calculate the probability that the Xi values 
will be less than the target (20.0 in this case).  Because the maximum value for Scenario E is 
greater than 20.0 there is a 100 percent chance of exceeding the target.  The reverse situation exists 
for Scenario D.   
 
 The StopLight function in Simetar can also be used to develop probability ranking tables (see 
the StopLight1 worksheet in Best Demo.XLS).  The StopLight table summarizes the probabilities 
that the scenarios will be less than the lower target of 15  (in red) and the probabilities that the 
risky alternatives will exceed a maximum target of 25 (in green).  The probability of each scenario 
falling between the two targets is reported in the table in amber.  StopLight facilitates the ranking 
of scenarios by providing a table of the probabilities as well as graphically showing the 
probabilities of each range.  The graphical display of probabilities of a risky alternative exceeding 
an upper target and falling below a lower target have proven a very powerful tool for helping 
decision makers rank risky alternatives.  The target values in Simetar’s StopLight worksheet can 
be changed to accommodate different decision makers and the probabilities will be updated 
instantly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Complete Distribution - CDF Chart 
 
 The first seven risk ranking procedures rely on summary statistics for the output variable.  A 
superior procedure is one which utilizes all of the simulated outcomes; in other words, one which 
considers the full range of possible outcomes rather than just the mean or standard deviation.  A 
graph of all simulated values drawn with a probability scale (0 - 1.0) on the Y axis and the output 
variable on the X axis (a cumulative distribution function or CDF chart) facilitates full 
distribution comparison.  The CDF chart for the five scenarios are displayed in rows 125-148 of 
Best Demo.XLS and in Figure 10.8.  The CDF graph shows that the E scenario lies more to the 
right than the other four scenarios.  This result suggests that scenario E should be preferred over 
the others because at each probability level scenario E is associated with higher rates of return 
(or values for the KOV).  Scenarios D lies further to the left than the others so it is the least 
preferred for the same reason.  Although the CDF Graph procedure is superior to the first seven 
strategies it does not always result in an unambiguous ranking of the strategies.  Generally, when 
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Figure 10.8.  Example of Comparing CDFs for 
Risky Scenarios. 

the CDF lines cross there is no clear ranking.  When this occurs the strategies need to be ranked 
based on expected utility.  The graphical display of the CDFs would rank the strategies as 
indicated in Table 10.9. 
 
 
Table 10.9.  Ranking Based on CDF Charts. 

Rank by 
CDF Chart 

 
Scenarios 

3 A 
2 B 
4 C 
5 D 
1 E 

 
 
 
Expected Utility (EU) 
 
 Von Neumann and Morgenstern (1944) put forth the idea of using expected utility to rank 
risky alternatives.  Their hypothesis was that individuals maximize their expected utility.  
Expected utility refers to the analysis of an economic model under the assumption that utility is 
maximized.  Arrow (1965) demonstrated that EU could be used to predict risky portfolio 
decisions.  Pratt (1965) proposed measures of absolute and relative risk aversion similar to 
Arrow.  Hadar and Russell (1969) and Hanock and Levy (1969) added to the EU literature and 
by the early 70’s EU was an accepted decision analysis tool.  
 
The EU decision analysis paradigm has three components (Meyer).  The utility function used to 
calculate EU depends on a vector of variables or 

 
U (X, )α  
  
where X  is a random variable and α  is a choice variable for decision makers. 
 

The utility function is also written as: 
 
U (Z) 
 
where Z depends on X  and α .   

 
So the utility function can be re-written as: 

 
U (Z) = U(Z(X, ))α  

 
For stochastic simulation models Z is wealth or net income for the economic decision and X  are 
the random variables while α  is (are) the decision makers control variable(s). 
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In a simulation modeling context we re-write the utility function as: 
 
 i i iU (Z ) = U(Z (X, ))α  
 
with iα  represents the alternative scenarios (i) for the control variables.  The iZ  variables are 
thus the empirical probability distributions (CDFs) derived from the stochastic simulation model. 
 Expected utility theory holds that the decision maker will pick the iα  scenario which maximizes 
expected utility.  The Z (X, )α  function is often restricted.  The outcome variable (KOV) is 
commonly assumed to be monotonic in the random parameter (X)  and concave in the decision 
variable ( )α  for all X and α .  Meyer suggests that this assumption holds for stochastic rates of 
return and prices but may not hold for weather. 
 
 The restrictions on the utility function are: 
 

1 11U (Z)  0 and U (Z)  0.≥ ≤  
 

The first restriction indicates that decision makers prefer more to less, which is consistent with Z 
being income or wealth.  The second assumption is imposed to explain (insure) the commonly 
observed behavior of risk aversion. 
 
 The negative exponential utility function is the most commonly used utility function for EU 
analysis. 
 
 aU (Z) = 1 - exp (-r Z)  
 
where ar  is the absolute risk aversion coefficient (RAC). 
 
 Arrow (1965) proposed that the relative risk aversion coefficient is R(Z)  1≤ , where Z is 
wealth.  The utility function is expressed in terms of absolute risk aversion which is calculated as 

a rr  = r /Z  where rr  is Arrow’s relative risk aversion coefficient. 
 
 Bernoulli proposed an “everyman’s” utility function had a rr  of 1.  Anderson and Hardaker 
(1992) proposed a classification of rr  levels about the normal value of 1.0: 
 

- 0.5 hardly risk averse, 
- 1.0 normal or somewhat risk averse, 
- 2.0 rather risk averse, 
- 3.0 very risk averse, and 
- 4.0 extremely risk averse. 

 
McCarl and Bessler (1989) proposed the following rules for assigning ranges for rr  values: 
 

- 2 * (coef var) / std. dev. 
- 5 / std. dev. 
- 5.14 / std. dev. 
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Figure 10.9.  FSD Ranking of Risky Alternatives. 

- 28 / std. dev. 
 
 The remainder of this section discusses several risk ranking procedures based on the 
expected utility principle. 
 

- stochastic dominance 
  -- first degree stochastic dominance, 
  -- second degrees stochastic dominance,  
  -- generalized stochastic dominance 

- confidence premiums, 
- certainty equivalents, 
- breakeven risk aversion coefficients, 
- stochastic efficiency with respect to a function, and 
- risk premiums. 

 
− First Degree Stochastic Dominance (FSD) 
 
 Hadar and Russell (1969) proposed the concept FSD for ranking risky alternatives.  The 
problem is set up in terms of ranking two risky alternatives F(z) and G(z).  (In simulation 
modeling, F(z) and G(z) are CDFs of Z(X, )α  for two assumed 's.)α   For FSD, F(z) is preferred 
to G(z) if [G(z) – F(z)] ≥  0 for all z in [a, b].  In Figure 10.9 the F(z) distribution is always to the 
right of G(z) at all iz  values which satisfies the FSD condition.  All classes of decision makers 
prefer F to G, whether risk averse, risk neutral, or risk loving. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
− Second Degree Stochastic Dominance (SSD) 
 
 Hadar and Russell (1969) proposed SSD for ranking risky alternatives for risk averse 
decision makers.  They proposed that F(z) is preferred to G(z) if  
 
 

 

 
[G(s) - F(s)] ds  0 for all z in [a, b].

b

a
≥∫  
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Figure 10.10.  Example of SSD and FSD for Ranking Five Risky 
Alternatives. 

The condition is that F(s) lies to the right more than the G(s) if we sum the differences over all 
values of s.  The SSD ranking can be calculated in Excel by calculating the sum of the 
differences between the distributions, s, over all iterations for the two CDFs. 
 

N

1
s = (G(z) - F(z))∑  

 
If s is positive G is preferred to F, if s is zero G and F are indifferent and if s is negative F is 
preferred to G. 
 
 
 Simetar calculates FSD and SSD for risky alternatives.  The results of the stochastic 
dominance menu calculations are presented in the StochSum worksheet.  An example of using 
SSD and FSD to rank five risky alternatives is provided in Figure 10.10.  The SSD table is read 
by row.  If an alternative for a row is SSD over another alternative, the dominated alternative’s 
name appears in its respective column.  The five risky alternatives example for this chapter in 
Figure 10.10 indicates that E is SSD over A, B, C, and D and E is FSD over A, C, and D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
− Generalized Stochastic Dominance (SDRF) 
 
 Generalized stochastic dominance was introduced by Meyer (1977) and is generally referred 
to as stochastic dominance with respect to a function (SDRF).  Meyer proposed ranking risky 
alternatives for a class of decision makers, i.e., for decision makers who’s utility function is 
defined by a lower risk aversion coefficient 1(LRAC or r )  and an upper risk aversion coefficient 

2(URAC or r )  which is denoted as 1 2U(r (z), r (z)).   The condition for F preferred to G under SDRF 
is : 
 
 2 2

1 1

 r  r

 r  r
u(z) dF(z)  U(z) dG(z)≥∫ ∫  
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Figure 10.11.  Example of SDRF to Rank Five Alternatives. 

which is often expressed as: 
 

2

1

 r 1

 r
[G(z) - F(z)] u (z) dz  0≥∫  

 
The SDRF criteria indicates that utility is calculated for each z value and the sum of the 
weighted utilities is used to rank F and G.  The preferred risky alternative is calculated for the 
LRAC and for the URAC.  If the same risky alternative is preferred for both RACs it is 
considered to be in the risk efficient set which is generally shortened to the “efficient set.”  In the 
event that the SDRF ranking is different for the LRAC and the URAC, the decision makers with 
these RACs are said to be indifferent between the two alternatives or the efficient set contains 
both alternatives.  The SDRF criteria is useful for ranking risky alternatives who’s CDFs cross.  
A limitation of SDRF is that it is a pairwise ranking of risky alternatives not a simultaneous 
ranking of all alternatives.  Another limitation is that if the LRAC and URAC are set to far apart 
the procedure will not result in a consistent ranking at both RACs and only one alternative in the 
efficient set.  However, the 
incentive in setting RACs 
for SDRF is to set them as 
far apart as possible to 
include a larger class of 
decision makers. 
 
 Simetar includes 
SDRF as a tool for ranking 
risky alternatives.  An 
example of Simetar’s 
SDRF output is presented 
in Figure 10.11.  In the 
example, alternatives B and 
E are in the efficient set 
because they are ranked 1 
and 2 in reverse order for 
the two RACs.  The least 
preferred alternative is D 
for both RACs. 
 
 The scenario rankings 
for the upper RAC are 
presented in the right side 
of the stochastic dominance 
output table.  The degree of 
risk aversion is reported at 
the top of each section of 
output.  The larger the risk 
aversion coefficient (RAC) 
the greater the degree of 
risk aversion and thus the  
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more weight stochastic dominance places on the risk between scenarios when preparing the 
ranking. Experiment with alternative RAC levels by changing the value (in Cell C5 or G5) and 
observing the results in the StochSum1 worksheet in Best Demo.XLS. 
 
− Confidence Premiums (CP)  
 
 Mjelde and Cochran (1988) took advantage of constant absolute risk aversion properties to 
extend the stochastic dominance literature by introducing confidence premiums.  If SDFR results 
imply that F(x) is preferred to G(x) because the expected utility for F is greater than for G, 
Mjelde and Cochran proposed subtracting a constant value, Π, from each value of F(x) until the 
decision maker is indifferent between F and G at the LRAC or:  expected utility for F(x - Π)  =  
expected utility for G(x).  The value of Π where indifference occurs is the lower confidence 
premium and indicates the minimum amount a decision maker would have to be paid to switch 
from the preferred strategy (F) to the inferior strategy (G).  The maximum premium the decision 
maker places on F relative to G is found by evaluating F(x - Π) = G(x) using the URAC. Mjelde 
and Cochran’s confidence premiums are interpreted as follows: 
 

− both premiums are positive occurs when F is initially preferred to G at both the LRAC 
and the URAC, 

− negative lower bound premium and a positive upper bound premium occurs when G is 
initially preferred at the LRAC and F is initially preferred at the URAC.  (In this case 
increase the LRAC or lower the URAC until both RACs yield the same ranking.) 

− positive lower bound premium and a negative upper bound premium occurs when F is 
initially preferred at the LRAC and G is preferred at the URAC, and 

− both premiums are negative implies unreliable results so change the RACs. 
 
 The lower and upper bound confidence premiums are provided for all pair-wise 
combinations of the risky strategies in Simetar’s stochastic dominance output table (Figure 
10.11). Changing the RACs causes Excel to recalculate the confidence premiums as it updates 
the rankings.  Mjelde and Cochran suggested using the premiums to value information used in a 
risky decision.  In keeping with this type of application, you can use the premiums to indicate 
how much a risk averse decision maker values F(x) over G(x) or how much to pay decision 
makers to get them to switch from the preferred strategy.  If the confidence premium is small 
relative to the mean value for F(x), then the stochastic dominance ranking (preference) is not 
strongly held or not very important for the type of decision maker represented by the RAC’s.  
The confidence premiums will change (increase or decrease) as you change the RACs so use 
caution in setting these values. 
 
− Certainty Equivalence (CE) 
 
 Hardaker (2000) proposed using certainty equivalence to rank risky alternatives.  The basic 
principle of ranking with CE is the same as ranking with SDRF, more is preferred to less.  
Hardaker proposed that the expected utility of any risky alternative can be expressed through the 
inverse utility function as a CE.  Freund (1956) defined the CE for a risky alternative as: 
 
 aCE = Z - 0.5 r  V  
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where Z  is expected income or wealth, ar  is absolute risk aversion, and V is the variance of 
income or wealth.  The CE is calculated for the negative exponential utility function and for the 
power utility function by Simetar in the SDRF worksheet (Figure 10.11).  Based on CE rankings 
for the risky alternatives in the example would put B and E in the efficient set for the exponential 
utility function and E in the efficient set for the power utility function. 
 
 The stochastic dominance ranking for the five scenarios is presented in the SDRF1 
worksheet of Best Demo.XLS and in Table 10.10 assuming a LRAC of zero (risk neutral) and a 
URAC of 1.0 or risk averse.  The stochastic dominance results were generated using the 
Stochastic Dominance option in Simetar.  Simetar’s results of the stochastic dominance analysis 
are presented in four sections:  Lower Risk Aversion ranking, Upper Risk aversion ranking, 
confidence premiums, and certainty equivalents (Figure 10.11).  The scenario ranking for a 
decision maker with a risk aversion coefficient (RAC) equal to the lower RAC is provided in the 
left side of the Simetar table of stochastic dominance results (Figure 10.11).   
 
Table 10.10.  Rankings of Five Alternative Scenarios Based on Stochastic Dominance. 
       Confidence Exp. Utility 
     LRAC = -1  URAC = +1 Premium      Certainty                
Scenarios   Risk Neutral Risk Averse B to Alter.  Equivalence 

 A 3 3 22.63   –    1.38 24.00 – 17.12 
 B 1 2 ---   –       --- 46.63 – 18.51 
 C C 4 25.20   –    7.63 21.43 – 10.55 
 D 5 5 36.51   –    8.67  10.12 –   9.83 
 E 2 1 2.68   – -10.36 43.95 – 28.86 

 
 The confidence premiums in the stochastic dominance output table (Figure 10.10) indicate 
the relative conviction that the decision maker has to a particular scenario ranking.  In other 
words a confidence premium of 2.68 to -10.36 between scenario B (the dominate one) and E (the 
second ranked one) is how much the decision maker would have to be paid to accept E over B 
(Table 10.10 and Figure 10.11).  The value of 2.68 may not seem very large but it amounts to 
9.02 percent of the mean for scenario B.  As we move down the table of confidence premiums 
we find that scenario B is even more highly valued relative to scenario C and D.   
 
Break Even Risk Aversion Coefficients (BRACs) 
 
 McCarl (1988) proposed a procedure for ranking risky alternatives by finding the RAC 
where the decision maker would be indifferent between two risky alternatives, i.e., the BRAC.  
Like SDRF, McCarl’s procedure is a pairwise ranking of risky alternatives.  All decision makers 
less risk averse than the BRAC prefer one alternative and all decision makers more risk averse 
than the BRAC will prefer the other alternative.  McCarl’s BRAC work showed that if two CDFs 
cross once there will be one BRAC.  If the CDFs for two alternatives cross more than once, there 
will be multiple BRACs. 
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Figure 10.12.  Example of a SERF Table for 
Comparing Five Scenarios.

 McCarl’s research explains why the efficient set for a SDRF analysis may contain more 
than one risky alternative.  When two alternatives are in an efficient set it means that there is a 
BRAC between the two RACs or: 
 
 LRAC  BRAC  URAC≤ ≤  
 
This is the reason that increasing LRAC or 
decreasing URAC to make the range smaller 
will frequently change the SDRF ranking so 
only one alternative is in the efficient set. 
 
Stochastic Efficiency Respect to a Function 
(SERF)  
 
 Hardaker, Richardson, Lien and 
Schumann (2004) merged the use of CEs and 
Meyer’s range of risk aversion coefficients to 
create stochastic efficiency with respect to a 
function (SERF).  SERF assumes a utility 
function with a risk aversion range of, 
( )1 2U r (z), r (z) ,  but instead of evaluating CEs 

at the two extreme RACs, it evaluates CEs 
for many RACs between the LRAC and the 
URAC.  The SERF ranking is performed on 
many risky alternatives simultaneously, 
however, in keeping with the notation thus 
far it is described in terms of ranking two 
alternatives. Two risky alternatives, F and G, 
can be compared and ranked at each iRAC  as 
follows: 
 

− F(z) preferred to G(z) at iRAC  if Fi GiCE  > CE  
− F(z) indifferent to G(z) at iRAC  if  Fi GiCE  = CE  
− G(z) preferred to F(z) at iRAC  if Fi GiCE  < CE  

 
 SERF extends the lower RAC and upper RAC case to use a large number of RAC’s 
uniformly distributed between two extreme RACs.  In other words, define the lower RAC and 
the upper RAC and then divide the range of the RAC’s into 23 equal intervals and evaluate the 
CEs for all risky alternatives at each interval.  This series of calculations produces 25 CEs for 
each alternative so one can check the ranking of all alternatives at 25 RACs (Figure 10.12).  An 
advantage of SERF over SDRF is that SERF simultaneously compares several risky alternatives 
while SDRF is a pairwise comparison.  The values for the resulting SERF table can be converted 
to a SERF chart with the RACs on the horizontal axis and the CEs on the vertical axis (Figure 
10.13.)  Read the SERF chart as follows for two risky alternatives F(x) and G(x): 
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− F(x) is preferred to G(x) over the range of RACs where the FCE  line is above the GCE  
line,  

− G(x) is preferred to F(x) over the range of RACs where the GCE  line is above the FCE  
line, and 

− decision makers are indifferent between G and F at the RAC where the CE lines 
intersect. 

 
 If a CE line in the SERF chart remains positive then rational decision makers will prefer the 
risky alternative over a risk free alternative.  However, if the CE line goes negative at RAC jr , 
then decision makers with RACs greater than jr  would prefer a risk free alternative.  
 
 The SERF chart displays the rankings of risky alternatives that are consistent with particular 
RAC values for different types (classes) of decision makers.  Rankings based on SERF charts are 
easy to explain because one can identify ranges of RAC levels over which a scenario is preferred 
to other contenders.  For example, if the FCE  line remains above the GCE  line for the RAC 
range of 0 to 4.0 then it is highly likely that all risk neutral and risk averse decision makers will 
prefer scenario F over this range of risk aversion. 
 
 The SERF procedure uses the absolute risk aversion coefficient or ARAC or ar .  The 
discussion of risk aversion coefficients earlier in this chapter indicated that the relative risk 
aversion coefficients for risk neutral to extremely risk averse range from zero to 4.0 and that 

a rr  = r /Z.  Using this formula the analyst can run the SERF analysis for the range of ar  (0.0, 
4/Z),  where Z  is the average wealth for the decision maker.  This type of range tests the 
rankings for decision makers who are risk neutral, moderately risk averse, to extremely risk 
averse. 
 
 The SERF table and SERF chart method for ranking risky scenarios is analogous to 
performing 25 separate SDRF analyses using very small RAC intervals.  After each stochastic 
dominance analysis, one would record the F vs. G ranking and then report the results in a table 
and a chart before proceeding with the next comparison of F to H. 
 
 Simetar’s SERF option takes advantage of Excel’s power to update calculations and allows 
the user to interactively experiment with alternative RACs and utility functions.  The SERF 
Chart provides a visual depiction of how decision makers with different levels of risk aversion 
will likely rank risky scenarios.  Change the min RAC and max RAC to test the range of the 
rankings and to add precision to identifying the RACs where the rankings switch.  Use the SERF 
Table to determine the BRAC where decision makers become indifferent between two scenarios, 
i.e., where the differences between the CE’s is zero. 
 
 An example of a SERF analysis is provided in Figure 10.13 and in SERFTb1 worksheet of 
Best Demo.XLS.  The SERF table is calculated for 25 RAC values ranging uniformly between 
the LRAC   (-1) and the URAC (2) (Figure 10.13).  Comparing the CEs across the scenarios for a 
particular RAC show the absolute preference or ranking. For example, when the RAC is 0.875 
the E scenario is ranked first with a CE of 29.20 while B is ranked second with a CE of 18.94 
(Figure 10.13). 
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Figure 10.13.  Example of a SERF Chart. 

 
Figure 10.14.  Example of a Risk Premium 
Table.   

 Using a RAC range of –1 to +2 
in Figure 10.12 reveals that 
scenario B is ranked higher than 
(preferred to) E when the RAC is 
less than -0.375,  but E is preferred 
over B once the RAC increases 
beyond -0.25. This result indicates 
a ranking switch between –0.375 
and –0.25. To make the rankings 
easier to see, a SERF chart is 
calculated by Simetar in SERFTbl1 
worksheet (Figure 10.13).  At each 
RAC value the scenario that has the 
largest CE line in the SERF chart is 
ranked first, as it has the highest 
CE.  At the 0.50 RAC we can see 
that the order of ranking for the five 
scenarios is E, B, A, C, and D in the 
SERF Chart (Figure 10.13).  From Figure 10.13 we can see that there is a BRAC between 
scenarios C and D at about 1.25.  The vertical distance between the CE lines is the degree of 
conviction or confidence premium of the dominate strategy over the other scenarios. 
 
 An advantage of using the SERF 
ranking strategy is that it is dynamic and 
updates itself each time the minimum and 
maximum RACs or the utility function are 
changed.  Changing the utility function 
from the Exponential to the Power Utility 
function may change the rankings.  
Simetar’s default utility function for SERF 
is the negative exponential.  In the SERF 
output worksheet an option is provided for 
changing the utility function in cell D4.  
The alternative utility functions available 
and their code number(s) are: 
 

- negative exponential, 1, 
- power, 2, 
- expo-power, 3, 
- quadratic, 4, 
- log, 5, 
- exponent, 6, 
- HARA, 7. 

 
The functional forms for these seven 
utility functions are summarized in Table 
10.11.  Also in Table 10.11 is a list of the  
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Figure 10.15.  Example of a Risk Premium Chart. 

parameters required for each utility function.  The negative exponential requires the user provide 
a lower and upper RAC, and they can be either an absolute or relative RACs.  The remaining 
utility functions require additional parameters.  For example, the power function requires a “w” 
parameter which reflects wealth; but w minus any stochastic income value, xi, has to be positive. 
 Constraints for specifying the parameters on the remaining utility functions are indicated in 
Table 10.11. 
 
 
Table 10.11.  Utility Functions Available for SERF and Their Parameters. 
 Neg. Exponential 

Ө-exp(-ARAC*x) 
Power 

(1/(1-RRAC))*x^(1-RRAC) 
Expo-Power 
Ө-exp(-b*x^a) 

Quadratic 
a*x-b/2*x^2 

 
ARAC1 

 
(-∞,∞) 

 
(-∞,∞) 

 
(-∞,∞) 

 
(-∞,∞) 

RRAC2 (-∞,∞) (-∞,∞) (-∞,∞) (-∞,∞) 
W3 - w + x > 0 w + x > 0 w + x > 0 
a4 - - ab>0 a>0 
B - - ab>0 b>0 
C - - - - 
Ө - - - - 
     

 Log 
In(x+a) 

Exponent 
(x+a)^b 

HARA 
c/(1-c)*(a+b/c*x)^(1-c) 

 

 
ARAC1 

 
(-∞,∞) 

 
(0,∞) 

 
(-∞,∞) 

 

RRAC2 (-∞,∞) (0,∞) (-∞,∞)  
W3 w + x > 0 w + x > 0 w + x > 0  
a4 x + a > 0 0<a<1 (-∞,∞)  
B - b≥0 b>0  
c - - (-∞,∞)  
Ө - - a+b/c>0  
1ARAC is the absolute risk aversion coefficient. 
2RRAC is the relative risk aversion coefficient. 
3w reflects wealth and w plus xi must be positive for all random values. 
4a, b, c, Ө are parameters required for the particular utility functions. 
 
- Risk Premiums (RP) 
 
 The SERF option in Simetar also 
produces a risk premium table and chart.  For 
this table, one of the scenarios is selected as 
the base by the user and a table of RPs is 
calculated as well as an RP chart (Figures 
10.14 and 10.15).  The table and chart show 
the perceived premium that each risky 
scenario provides relative to the base scenario 
at 25 alternative RAC levels.  The user can 
experiment with alternative base scenarios to 
calculate the relative risk premiums across 
scenarios.  A drop down menu is provided so 
the user can change base scenarios.   
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 The RP values in Figure 10.14 demonstrate how scenarios B, C, D, and E rank relative to 
the base scenario A at alternative RACs.  The results show that B is preferred over A at all RACs 
because of positive RP’s over this range.  The negative RP values for scenario C indicate that A 
is preferred over the range of RACs evaluated.  In the RP chart (Figure 10.15) the preferred 
scenario is the line on top, i.e., has the highest RP.  The base scenario, in this case A, is always 
the zero axis because of the RP formula:   
 
 i Scenario i Base iRP  = CE  - CE  ifor RAC .   
 
Thus, if an RP line is positive it shows the value an alternative scenario has over the base.  If the 
RP line is negative it shows the value of the base scenario over another scenario. 
 
Summary of Risk Ranking Procedures 
 
 Once you have completed the scenario rankings using the 11 procedures described in this 
section prepare a summary of the rankings (Table 10.12).  A sample summary rankings table 
below indicates that scenario E is ranked first or second by 9 procedures, all except the standard 
deviation ( )σ  and the Mini-Max procedures.  Scenario D is ranked first or second 3 times.  On 
the other hand scenario D is ranked fourth or fifth by 7 procedures and scenario C is ranked 
fourth or fifth by 7 of the 11 procedures. 
 
 
Table 10.12.  Summary of Scenario Rankings Across Alternative Procedures. 
 
Scenario  Mean    σ    MV   Min   Max   Mini-Max   CV   P(X > 20%)   CDF    SDRF*   SERF ARAC > 
0 
 A 3 2 2 3 3 2 3 3 3 3   3 
 B 2 5 5 2 1 5 4 2 2 1   2 
 C 4 3 3 5 4 3 5 4 4 4   4 
 D 5 1 4 4 5 1 1 5 5 4   5 
 E  1 4 1 1 2 4 2 1 1 1    1 
*SDRF results in a tie between B and E in the most efficient set given ARAC’s of –1 and +1. Alternatives C and D are ranked last in 
the least efficient set. 
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Chapter 11 
Bootstrap Simulation 

 
 In forecasting it is useful to indicate how much confidence you have in the forecast.  One 
means of doing so is to report confidence intervals for each forecast.  Thus giving the user an 
impression that you did not generate the perfect forecast and there is some “risk” about the 
forecast.  Confidence intervals about the forecast itself are pretty standard, but confidence 
intervals for the parameters in a sample or in a model are more difficult to develop.  For 
example, the confidence interval about the standard deviation in a sample or for an elasticity 
maybe hard to estimate due to small sample size.  Bootstrap simulation offers an economical 
way to estimate confidence intervals for parameters in a sample or a model.  
 
Bootstrap Simulation 
 
 A standard deviation is required to develop confidence intervals about parameter estimates 
such as the mean, standard deviation or elasticity.  For example, the confidence interval about 
the mean is defined as: 
 

 X  Z s
N1- /2± F
HG
I
KJσ  

 
At the α  = 5% level this formula becomes: 
 

 X  1.96  *   s
N

± F
HG
I
KJ  

 
 The estimate of X  is simple and given an adequate size sample, N, the s can be calculated. 
The problem usually occurs in calculating the variance (or S2 ) for the sample.  Variances for other 
parameters that describe distributions similarly can be difficult to impossible to develop in a 
theoretical manner.  The simulation technique, bootstrap, reported in 1979 by Elfon and thoroughly 
described by Vose offers a procedure for estimating variances for distribution parameters. 
 
 The need for bootstrap simulation comes from small samples and extremely high costs of 
increasing sample size.  Small sample size leads to large variances on population parameters.  
When sample size is small the bootstrap method provides a means of increasing the sample size 
by re-sampling the original sample with replacement, many times.  Simulation thus offers an 
inexpensive way to expand sample size and reduce the variance on the population parameters. 
 
 Conover provides a simple description of bootstrap simulation that is summarized as 
follows.  The bootstrap simulation procedure draws M samples of N random values with 
replacement from an actual random sample of size N.  The parameters of interest for the 
distribution (say, X, S2 , skewness, kurtosis, elasticity, etc.) are calculated and recorded for each 
of M samples.  The resulting empirical distribution of M observations for each parameter of 
interest constitutes a “distribution of the population.”  In other words, the bootstrap sample of M 
means is the empirical distribution of the true mean and can be used to estimate the X and S2  for 
the true mean.   
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 The confidence intervals for the empirical distribution of M means can be observed directly 
from the simulated distribution population.  From the sorted empirical distribution the 
α α/ 2 and 1- / 2 sample quantiles define the confidence interval about the mean of the true 
population.  For an α =0.05 level and M = 1000 the confidence intervals are at the 25th and 975th 
sorted sample values.   
 
 The problem with the bootstrap technique then rests on the validity and randomness of the 
original sample and the size of M.  Elfon and Tibshirane recommend a minimum of 250 
iterations or M of 250 and more if necessary.  The bootstrap is such a simple simulation problem 
that 10,000 or more iterations can be run without much effort so M can be quite large.   
 
 To demonstrate the bootstrap simulation procedure, an original sample of size 20 random 
values is used.  The number of iterations, M, is set at 10,000 and the KOVs for the simulation 
experiment are the mean and standard deviation of the sample.  In the original sample the mean 
is 10.5 and the standard deviation is 5.916 (see Bootstrap Demo.XLS).  The 
=BOOTSTRAPPER() function in Simetar is programmed 20 times (E8:E27 in Figure 11.1) and 
the mean of this 20 observation sample (cell E29) is specified as the Output Variable for Simetar. 
 The results of the bootstrap simulation are summarized in Figure 11.2:  the sample mean is 10.5 
and its standard deviation is 1.289.  The minimum simulated mean is 6.85 and the maximum 
mean is 14.7.  A pdf graph of the empirical distribution simulated for the mean is provided in 
Figure 11.2.  The mean, and α  = 5% upper and lower confidence intervals for the mean 
distribution are indicated in the pdf graph (Figure 11.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.1.  Example of a Bootstrap Simulation Model. 
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Figure 11.2.  Results of a Bootstrap Simulation for the Distribution Parameters of a Population. 
 
 
 The demo bootstrap simulation also generate the empirical distributions for the standard 
deviation, coefficient of variation, minimum, and maximum.  It is interesting to note that the 
average standard deviation, 5.741, has a simulated standard deviation of 0.5808 and the α  = 5% 
confidence intervals are 4.571 and 6.878 (Figure 11.2).  The lower and upper confidence 
intervals at the α  = 5% level were calculated using the Simetar function =QUANTILE( ) as 
follows: 
 
 =QUANTILE (range of M simulated values, 0.025) 
 and  
 =QUANTILE (range of M simulated values, 0.975) 
 
 The bootstrap simulation procedure demonstrated here is nonparametric.  It is possible to 
assume/enforce your own assumed distribution on the bootstrap sample, thus creating a 
parametric bootstrap.  This is done by estimating the best distributional shape for the observed 
random sample of N values and then sampling from that distribution.  See Vose for further 
discussion of this topic.   
 
Bootstrap Simulation of Multivariate Distributions 
 
 Bootstrap simulation can be applied to simulating large multivariate empirical distributions. 
 For a complete description of this application see Chapter 7. 
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Bootstrap Simulation and Regression Analysis 
 
 When a regression model of X on Y is calculated we use paired observations x  and yi i .  The 
parameters for the OLS model are a and b or:   
 
 Y  =   a  +   bX  
 
Bootstrap simulation can be used to estimate the uncertainty about the regression coefficients, 
the b̂'s .  Vose simply frames the regression bootstrap simulation problem as falling in two types: 
 A and B, based on the type of data in the problem. 
 

• Type A is the case where the x  and yi i  are paired observations and come from a 
bivariate normal distribution (cross sectional data).   

 
• Type B is the case where xi  is determined and the resulting paired value for yi  is a 

random variable from a normal distribution or Y ~  N  a +  bX ,  i σe j  or time dependent 

economic data.   
 

Vose argues that the experimental design is Type A if x  and yi i  are generated randomly 
together such as measuring people’s height and weight or input and output response.  Type B is 
where alternative xi  values are fixed and their associated yi  values are observed.  The problem 
of estimating a demand function falls in Type B because quantity supplied is determined and one 
random price is observed each year (Figure 11.3). In a sector model the quantity supplied is fixed 
once harvest is completed (Figure 11.3).  During the marketing year price is determined as a 
stochastic variable given the quantity supplied and the factors of demand.  On average the forces 
of demand result in an average demand function D in Figure 11.3 which is the center of the price 
pdf.  In any one year price is a stochastic value as depicted by a pdf of prices for the given 
quantity supplied. 
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− Type A Bootstrap 
 
 The bootstrap simulation for a Type A data set is demonstrated in Figure 11.4 for a multiple 
regression problem.  The bootstrap calls for resampling the original sample of Ys N times with 
replacement to get a new sample called Y″.  Next the Y"i  values are used in a table lookup 
function to find their paired xi  values to fill the X″ matrix.  The complete sample of N X″s and 
Y″s is used in a regression to estimate a and bs.  The a and bs are the KOVs for the system and 
after M iterations the uncertainty and confidence intervals for the parameters are calculated. 
 

 
 
 An example of a Type A bootstrap simulation for regression is demonstrated in the first part 
of Bootstrap Regression Demo.XLS.  The Y, X  and X1 2  data were pairwise sorted on the Y 
values in ascending order in rows 6-22.  The =BOOTSTRAPPER( ) function was used to 
generate random Ys in rows 26-41 by sampling with replacement (Figure 11.4).  The 
X "  and X "1 2  values in rows 25-42 are generated using Excel’s VLOOKUP so the observed 
pairwise relationships are maintained (Figure11.4).  The Multiple Regression option in Simetar 
was used to estimate the betas (a and bs)  in row 51 for the OLS regression using the Y″ and X″s 
in rows 26-41.  The betas are specified as the KOV values in the Simetar Simulation Engine 
which was run for M = 1000 iterations.  Results from the simulation are summarized to the right 
of the regression output (Figure 11.4).  The uncertainty for the betas is displayed in terms of their 
standard deviations and confidence intervals (rows 52 and 53) in Figure 11.4 and as pdf graphs 
with the means drawn in as vertical lines in the demo (not shown in Figure 11.4).  The lower and  
 

Figure 11.4.   Example of Bootstrap Simulation for Regression Analysis – Type A Data.  
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upper confidence intervals for the betas are calculated using the =PTARGET( ) function at the α  
= 5% level.   
 
− Type B Bootstrap 
 
 For temporally dependent data, the Type B bootstrap simulation procedure must be used.  In 
this case, assume that the known X’s predict the unknown Ys and the error lies about the 
regression line.  In other words, the uncertainty is the variation about the line which is measured 
by the residuals. Generally it is assumed the residuals are normally distributed so this becomes a 
parametric bootstrap simulation problem.   
 
 An example of a Type B bootstrap simulation is provided in the second half of Bootstrap 
Regression Demo.XLS.  The problem is a demand function (Y) with four explanatory variables 
(X  -  X )1 4 .  An initial regression is fit to the data (rows 89-106) to estimate the standard 
deviation of the residuals about the regression line.  In the example, the S.E. Residuals is 
0.009457.  The S.E. Residuals is used to simulate random deviations from the regression line for 
the 16 observed Ys in rows 111-126.  The procedure assumes constant Xs and a fixed set of 
betas for the original or average regression model, so use the predicted (Y-hat) from the first 
regression.  Assuming normality for the residuals the bootstrap simulation equation for the Y″s 
becomes: 
 
 ~Y"   =   Y  +   S.E.  Residual for Base Regression *   SND 
 
A multiple regression is then estimated using the bootstrap ~Y ″s or: 
 
 ~Y"   =   a  +   b Xi i  
 
in rows 129-143 of the demo (Figure 11.5).  The KOVs for the M = 1000 iteration simulation are 
the betas, the standard deviation of the residuals (S.E. Residuals is row 145), and the elasticities. 
 Results of the simulation are presented to the right of the bootstrap regression.  In addition to the 
estimated standard deviation for the betas this procedure estimated the standard deviation for the 
S.E. of Residuals and the elasticities.  The α  = 5% confidence intervals are developed for all of 
these parameters using the empirical distributions generated by the regression.  Graphs of the 
pdfs for the elasticities are developed using Simetar to demonstrate the risk associated with their 
estimates.   
 
 The results of the bootstrap simulation are summarized in Figure 11.5.  The standard errors 
for the elasticities are summarized in line 131 and their confidence intervals at the α  = 5% level 
are in lines 137 and 138.  Charts of the pdfs for the elasticities are calculated from their empirical 
distributions.  The pdf charts are presented in the demo program and the first two are included in 
Figure 11.5. 
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Figure 11.5.  Example of Bootstrap Simulation for Regression Analysis to Estimate Confidence 
Intervals for Elasticities.    
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Chapter 12 
Optimization of a Simulation Model 

 
 Generally simulation models are not optimized.  However, special techniques are available 
to optimize deterministic simulation models.  Optimal control theory techniques can be used to 
calculate “approximate” optimal solutions for simulation models.  The following discussion 
draws directly from a bulletin based in part on my dissertation on optimal control theory. 
 
 Optimal control theory is a mathematical technique for analyzing systems under alternative 
sets of controls.  Specifically optimal control theory is a technique to determine the optimal 
values for particular control variables in a model.  The technique has been used primarily by 
engineers and mathematicians in dealing with control problems in physical systems. 
 
 Optimal control theory can be readily applied to many agricultural economics problems.  
Agricultural economists, like engineers, are dealing with complex systems that emit reactions 
and signals which require management responses.  Optimal control analysis can assist in 
designing information systems and managerial decision procedures that will create desired 
economic results. 
 
 For discrete time models, or continuous models for which discrete numerical 
approximations can be found, the optimal control problem can be viewed as the problem of 
choosing variables to maximize an objective function.  From this perspective, optimal control 
becomes the process of maximizing (or minimizing) an objective function.  The maximization 
process may be either static or dynamic, depending on the nature of the model, but is generally 
thought of in control theory as being dynamic. 
 
Principles of Control Theory 
 
 The objective of optimal control theory is to determine the values of control variables that 
cause a particular system to maximize (or minimize) a given performance measure subject to a 
set of constraints.  Formulation of a control problem involves three steps; development of:  (1) a 
simulation model of the system to be controlled, (2) constraints on the controls, and on input and 
output variables, and, (3) a performance measure for the system. 
 
 In control theory literature, the endogenous variables in the model are referred to as the state 
variables and are denoted as:  x1(t), x2(t), …, xn(t) for time period t (e.g., production, profits, net 
worth).  The subset of state variables used in the performance measure are referred to as the 
output variables, and are designated as:  y1(t), y2(t), … yk(t) (e.g., IROR, NPV, profit, ending net 
worth).  Uncontrollable exogenous variables, (e.g., weather, prices, interest rates) are denoted as 
z1(t), z2(t), …, zq(t).  The exogenous variables that can be controlled by the decision maker, such 
as fertilizer use or the crop mix are referred to as control inputs (controls).  Controls for period t 
are represented by:  u1(t), u2(t), …, um(t).   
 
 The model equations that describe the endogenous variables can be a function of the 
controls, other state variables, time and the noncontrollable exogenous variables.  For the system 
to be controlled, one or more of the equations describing the state variables must contain a 
control variable.  In turn, controls are normally a function of one or more of the state variables 
and/or time and other variables.  When controls are a function of state variables, dynamic feed 
back from the system can be used to throttle successive control values.  This circular causal flow 
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which relates control values to state values and then back to the controls is called a closed loop 
control problem.  When controls are not a function of the state variables the system is an open-
loop control problem. 
 
 Constraints are usually imposed on the control variables, and can be imposed on the state 
variables.  The constraints limit the controls within boundaries (minimum and maximum) 
established by the user in light of physical, economic, and political limits of the system.  The 
constraints reduce the number of alternative control paths that must be investigated.  Realistic 
constraints on the controls allows more accurate modeling of the system while reducing the 
number of feasible trajectories. 
 
 A single valued performance measure, the criterion for evaluating the alternative control 
paths, must be developed for the particular problem being investigated.  The performance 
measure (F) is defined by a mathematical equation that sums weighted values of the output 
variables or consists of the single output variable of interest.  In application, values for the 
controls are selected by a control procedure in an iterative process that ultimately leads to the set 
of controls (or control path) that cause the performance measure to be optimized.   
 
 An illustration of a dynamic control system is presented in Figure 12.1.  The model is 
simulated to obtain values of the state variables, using as input the following variables:  the 
controls (uj), initial or lagged values of the states (xj), and values for any uncontrollable 
exogenous variables (zj).  The results from the model are used to estimate the values for the state 
variables (xi).  The estimated values for a subset of the state variables, which have been referred 
to as output variables (yj), are used in conjunction with user provided weights (rj) to compute the 
value of the performance measure (F).  If the stopping criterion for reaching a maximum (or 
minimum) is not reached the control process continues.  The control mechanism (or numerical 
optimization routine) computes new values for the control variables (uj) for each iteration, based 
upon previous values of the performance measure and controls until the objective function value 
is optimized. 
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Control Mechanism

Performance Measure

F  =  f (yj, rj)

F max?

Output Variables

Simulation Model

xi =  f (xj, zj, uj)
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xi

yj

F
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Figure 12.1.  Flowchart for an Optimal Control Problem.
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 In general, the functional form of the performance measure should formalize assumptions 
regarding the rate of substitution among the output variables.  In application, the functional form 
needs to be as simple as possible in its assignment of a unique real number to each set of output 
variables.  The nature of the functional form for the performance measure depends upon the type 
of problem being analyzed. 
 
− Terminal Control Problems 
 

 A terminal control problem attempts to minimize the system’s deviations from some 
desired level for the output variables in the final year (tf) or: 
 

Minimize:   F  =   
n

i = 1
  r [y (t )  -   s (t )]i i f i f

2Σ  

 
where tf is the final year or stage of the system, si is the target value for output variable yi, 

and ri is the parameter weight assigned to the ith output variable measure. 
 
− Tracking Control Problem 
 
  Tracking problems where the objective is to keep the output variable, yi(t), as close as 

possible to a series of target value, si(t), over the interval to to tf:  
 

 Minimize:   F  =  
t

j = t
 r [y (t )  -   s (t )]

f

o

ij i j i j
2

i=1

n

Σ ∑
F
HG

I
KJ  

 
where  rij is the weight assigned to the deviation for output variable yi in time period j 

from the target value sij.  (This type of objective function has been used to 
minimize the sum of squared deviates in parameter estimation for non-linear 
regression models, e.g., Outlaw.) 

 
− Max (or Min) Control Problems 
 
  A simple maximization of the key output variables, such as net present value, real net 

worth, or internal rate of return takes on the form of: 
 
 Maximize:  F  =  yi 
 
 A weight (ri) need not be applied to the objective function if there is only one output variable 

in F. 
 
Numerical Solution of Optimal Control Problems 
 
 An alternative to using direct-solution techniques to optimize a set of equations (or a model) 
is to use direct-search or numerical techniques.  Numerical techniques do not require the model 
be in the state form and can obtain the final (optimal) solution without solving derivatives.  In 
general, the direct-search techniques are hill climbing procedures that utilize alternative methods 
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Figure 12.2.  Dialog Box for Excel’s Solver. 

Figure 12.3.  Dialog Box for Entering Constraints in 
Excel’s Solver. 

of searching the surface of the performance measure for its global maximum (or minimum).  In 
application, the control mechanism selects values for the control variables, determines their 
impacts on the system’s output variables and evaluates the performance measure based on the 
values of the relevant output variables.  This process is repeated in an iterative fashion until any 
change in the control variables results in a reduction in the value of the performance measure.  
 
Numerical Optimization in Excel 
 
 Excel provides an 
excellent numerical 
optimization program in its 
Solver option under the 
Tools menu.  (If Solver does 
not appear in the Tools 
dialog box, use Add-Ins 
option to activate the 
option.)  The Solver 
provides a pop up menu 
(Figure 12.2) so the user can 
specify the three types of 
values that activate Solver: 
 
− Target Variable 
 
  The user must specify the cell which contains the objective function to be maximized or 

minimized.  The formula in the cell that is indicated in the  “Set Target Cell” box must be a 
function, either indirectly or directly, of the control variables. 

 
− Controls 
 
  The control variables which Excel can change to optimize the simulation model are 

indicated by entering their cell locations into the “By Changing Cells” box (Figure 12.2). 
 
− Constraints 
 
  All constraints on the 

controls and output variables in 
the model are specified using the 
constraints editor in the “Subject 
to the Constraints” box (Figure 

12.2).  Selecting the “Add” a 
constraint button brings up a 
menu (Figure 12.3) which allows 
the user to specify the cell for the 
variable to constrain (“Cell Reference” in the left hand box), the type of constraint (> =, =, < 
=, Integer), and the constraint value (“Constraint” in the right hand box).  Caution must be 
exercised when creating constraints, in that:  (1) they must be consistent with each other, (2) 
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the initial guesses for the controls must be feasible, and (3) the constraint value must be a 
fixed number.  An example of the constraints set to bound the integer control variable in cell 
C1 between zero and 2000 and is: 

 
 C1 > = 0.0 
 C1 < = 2000.0 
 C1 = integer 
 
− Options 
 
  The user can control the precision of the optimization by selecting the Options button  

(Figure 12.2) and changing the settings in the Options menu. 
 
  Once the values for Solver have been specified, click the Solve button to make Solver 

optimize the simulation model.  Experience suggests that you should first optimize the 
simulation model with no constraints.  After a satisfactory solution is obtained then add the 
constraints, one or two at a time.  In this way you can locate and avoid inconsistent 
constraints and observe the impact of the constraints on the objective function. 

 
  Once you have obtained a final solution from Solver, change the starting guesses for the 

controls and rerun Solver.  This should be done several times to insure that the optimal 
solution is robust, i.e., the answer is about the same regardless of your starting values.  
Numerical optimization is a heuristic search procedure and is thus an approximation of the 
optimal solution.  Thus if the objective function has a single peak you will always get the 
same answer, while if the function has numerous peaks you will get a different answer each 
time.  Adding terms to make the objective function more non-linear can help in the search for 
a global optimum. 

 
   Two Excel spreadsheets are provided to demonstrate Solver.  The first is a simple profit 

maximizer, Optimal Control Demo.XLS, where a firm has three products, using four inputs, 
and faces demand functions for its outputs and supply functions for pricing inputs.  The 
printout shows the initial guesses for the 12 controls and a table on the right side with the 
optimal values.  When optimized the model has a maximum profit of $548,646.33.  Excel 
optimizes the model in a few seconds.  The constraints force all controls to be greater than 
zero, the sum of the controls (x1, x2, x3, and x4) across all products are less than or equal to 
2000, 3000, 2100, and 1200, respectively.  Also the xi values for producing Y3 must be 
integers.  This last constraint adds to the optimization time; try it without this constraint. 

 
   The optimization problem in Optimal Control Demo.XLS is summarized as a firm with 

three outputs (y1, y2, and y3), four inputs (x1, x2, x3, and x4) and constraints on the maximum 
amount of each input that can be used.  The problem can be stated as: 

 
 Maximize:  profits for outputs y1, y2, and y3 
 Subject to:  production functions − 
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y  =  x   x   x   x

y  =  x   x   x   x

y  =  x   x   x   x

1 11
.33

12
.17

13
.20

14
.30

2 21
.10

22
.08

23
.25

24
.40

3 31
.09

32
.19

33
.15

34
.20

 

 Output demand function (prices) − 
  Py1 = 1050.0 − 0.5y1 
  Py2 = 1000.0 − 0.25(y2)2 
  Py3 = 100.0 − 0.15(y3)2 
 Input constraints − 
  2000.0 ≥ x11 + x21 + x31 = sum x1 
  3000.0 ≥ x12 + x22 + x32 = sum x2 
  2100.0 ≥ x13 + x23 + x33 = sum x3 
  1000.0 ≥ x14 + x24 + x34 = sum x4 
 Input marginal costs − 
  Px1 = 3.0 + 0.0009 sum x1 
  Px2 = 6.0 + 0.00011 sum x2 
  Px3 = 9.0 + 0.0003 sum x3 
  Px4 = 7.0 + 0.000199 sum x4 
 
 And: xij > 0.0 for i = 1, 2, 3 and j = 1, 2, 3, 4, 
  x3i’s are integers. 
 
 
   The second spreadsheet, Deterministic Optimal Control Demo.XLS , is a crop mix 

optimizer for a crop farm.  The model is taken from the Deterministic Demo.XLS introduced 
in Chapter 2.  Modification of the model for optimal control required no changes; the net 
present value was set as the target cell and the controls were cotton acres for each of 5 years.  
Sorghum acres equal total acres minus cotton acres.  Constraints that prevent sorghum acres 
from falling below 200 acres were added via the constraint editor and total acres were 
constrained to be less than or equal to 1000. 

 
   If you have problems using Solver consult Excel’s Help Menu, Index, Solver.  There is 

extensive on-line help under the Solver title. 
 
Optimizing a Deterministic Econometric Model 
 
 A deterministic simulation model can be optimized using the Solver in Excel and the 
optimal control techniques presented in this chapter.  To demonstrate, an econometric model of 
the US wheat economy is optimized for two different objective functions in Wheat Model 
Demo.XLS.  The model is a simple recursive model of the farm sector for wheat and can be 
summarized as: 
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t t-1 t

t t-1 t t

t t-1 t t

t t

t t t

t t t

Yield  = f (Price  or Loan )

Acres  = f (Price  or Loan  and CRP )

Supply  = Carry Over  + Yield  * Acres

Price  = f(Supply )

Demand  = f(Price  and Income )

Carry Over  = Supply  - Demand

 

 
Policy variables are loan rates and conservation reserve program acres (CRP).  Deterministically 
the model solves for all of the endogenous variables, given alternative values for loan rates and 
CRP acres.  The model is simulated for 5 years to demonstrate the technique in the demo 
program. 
 
 Optimal control theory can be applied to the model to find the optimal combination and 
levels of loan rates and CRPs for wheat, given any objective function.  More complex models 
can be controlled, as this technique has been used to optimize a multiple crop model by 
Richardson and Ray. 
 
 The first step in applying optimal control to an econometric model is to validate it 
thoroughly.  Signs on all coefficients must conform to theory, otherwise the optimizer will 
wonder off into a black hole of irrelevant answers.  Test the model’s stability under alternative 
values for the exogenous variables to insure stability and reasonableness of the answers. 
 
 The next step for optimizing a simulation model is to specify the objective function to 
optimize.  One possible objective function is to maximize the sum of consumer and producer 
surplus (CS and PS) minus total government payments (GP) over the six year planning horizon.  
Such a function can be written as: 
 

 
6

i i i i i i
i=1

Max J = r  CS  + r  PS  - r  GP∑  

 
 where ir  equals the present value ratio of i

i1/(1 + discount rate )  
 
This particular function is specified in rows 7-12 of the demo wheat model.  An alternative 
objective function could be a trajectory of annual prices that the decision makers want to 
observe.  A price trajectory objective function for a six year planning horizon could be simulated 
as: 
 

 
6

2
i i i

i=1
Min J = r  (P  - PT )∑  

 
 where ir  is the present value ratio or any non-zero weight to be applied to the squared 

difference between price i(P )  and the price trajectory i(PT ).  
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This particular objective function was specified for the wheat demo model, as indicated in the 
Solver insert.  The objective value is calculated in cell C20 and then cell referenced to cell B7 for 
the Solver in the demo program. 
 
 The last step to optimizing a simulation model is to specify the control variables.  The 
control variables, for the model can be any exogenous variable in the system.  In the case of the 
wheat model, annual loan rates and CRP acreage levels for 2002-2006 are the control variables, 
thus creating 10 actual controls.  The control variables are programmed in Solver by specifying 
the controls as the Changing Cells values in the Solver Parameters dialog box. 
 
 Restrictions on the control variables can be implemented through the constraints in the 
Excel Solver.  For example, minimum and maximum ranges can be applied to the annual loan 
rate and CRP levels.  A minimum CRP level could be set equal to the acres that are under 
contract for each year.  The maximum could be set at an upper limit expected to be politically 
acceptable.  For a five year model, the constraints on CRP acres could be: 
 
 Min iU  = [20, 15, 15, 15, 15] 
 Max iU  = [25, 26, 26, 26, 26] 
 
Similar constraints can be applied to each of the control variables. 
 
 The demo wheat model is solved for a five year price trajectory by changing CRP levels and 
loan rate levels.  The trajectory for prices is 2.5, 2.6, 2.7, 2.8, 2.9 for 2002-2006 (row 15) and 
initial loan rates and CRP values are set in rows 23 and 24 at their respective minimums.  The 
Solver optimized the objective function and returns the answer of $2.00/bu loan rate in all years 
and CRP levels equal to 22.8, 17.0, 18.0, 19.2, and 20.5 million acres.  Alternative starting 
values were tried with the same answer on the controls being returned each time. 
 
Optimizing a Stochastic Econometric Model 
 
 A stochastic simulation model can be optimized using Excel’s Solver.  This can best be 
demonstrated using a simultaneous equation model specified as: 
 

 

St t t

Dt t t

St Dt

Q  = a + b P  + cX  + e

Q  = a + b P  + cY  + e

Q  = Q

 

 
Price is solved so that the quantity supplied equals the quantity demanded in each year.  The 
SimSolver option in the Simetar Simulation Engine allows you to solve the model stochastically.  
(The demonstration program Wheat Sim Solve Demo.XLS is provided to show how this works.)   
To use the SimSolve option, first use Tools > Solver and specify the objective value to minimize, 
the prices as the change variables and any constraints desired.  Once the Solver runs, the 
parameters are set and can be used by Simetar.  Next open the Simetar Simulation Engine, select 
the Output Variables (prices and other variables), specify the number of iterations, select the 
Incorporate Solver option, and select SIMULATE.  Excel will take some time to simulate and 
solve the model.  The way that SimSolver works is that for each iteration, the random values are 
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drawn and added to the equations (thus affecting the intercepts), then the Solver takes over and 
optimizes the objective function by solving for the optimal prices, next the results are fed to 
Simetar as output variables and the next iteration begins.   
 
 For a simultaneous equation model annual prices are the change variables or the controls.  
The Solver systematically tries alternative prices until the price that causes quantity supplied to 
equal quantity demanded is discovered.  In Figure 12.4 the initial guess could be 1 1 2P  so q  q−  is 
the excess demand.  The Solver guesses at a second price 2P  so excess demand is 3 4q  q .−   
Based on these control values and objective function values, 1P  is rejected and a new price is 
calculated at 3P .   The process is continued until the equilibrium price is discovered. 
 

 
 
 An example of optimizing a stochastic simultaneous model is provided in Wheat Sim Solve 
Demo.XLS.  The objective function is: 
 

 
10

2
St Dt

t=1

J =  (Q   Q )−∑    

 
Solver is programmed to make the objective value equal zero by changing the annual prices as 
the change variables or cells.  Initial starting values for prices must be provided and alternative 
starting values should be used to insure the solver is finding a global optimum.  In the demo 
program, a table summarizing mean prices based on alternative starting values is provided.  Note 
that mean simulated prices are the same whether the start values were $1, $2, $5, or $4 per bu. 
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Chapter 13 
Special Problems in Modeling Risk 

 
 
 This chapter provides examples of how to handle particular problems in simulation 
models.  Business analysis models must deal with risky cash flows, which present particular 
problems for simulating pro forma financial statements.  The first topic in this chapter deals with 
simulating risky cash flows.  In subsequent sections, solutions are provided for simulating 
income tax, calculations, debt amortization, and calculating net present value (NPV) and internal 
rate of return (IRR).  The problems of calculating a fair insurance premium and replacement of 
machinery are also covered in the chapter.  A comprehensive farm simulation model is presented 
to demonstrate how to apply most of these features into a firm level risk model.  The last section 
of this chapter demonstrates how an econometric model of a commodity can be developed and 
simulated.   
 
Simulating Risky Cash Flows 
 
 Businesses faced with risk can observe negative cash flows, even though they may not 
observed in the deterministic solution of a simulation model.  Failure to incorporate the 
possibility of a negative cash flow into the pro forma financial tables will cause the model to fail 
when used for stochastic simulation.  Additions to the financial statements necessary to handle 
negative cash flows are outlined in this section. 
 
 An abbreviated set of financial statements would look like the example on the next page 
with the assigned row and column values for referencing.  The cells with “-” indicate a non-zero 
value normally appears in the cell.  The formulas in the cells show how to calculate cash flow 
deficits and how to handle deficits in financial statements. 
 
 The first year of simulation has no interest on carryin short-term debt (cell B9), unless the 
business is allowed to have carryin debt.  The cell C9 is for calculating interest on carryover debt 
from the first year.  The formula in cell C9 calculates interest if there is a balance for carryover 
debt for year 1 (cell B33) using the appropriate interest rate.  The formula for calculating interest 
for a carryover loan must consider the length of the loan, usually less than a year, i.e.,  
 

interest due = cash flow deficit for previous year * (annual operating interest rate /  
365 days) * number of days carryover money is borrowed 

 
 The beginning cash each year in the Cash Flow Statement (line 15) is the positive ending 
cash from the year before.  This value is found in the first line of Assets in the Balance Sheet 
(line 27).  Thus the beginning cash reserves in year 2 (C15) equals cash on hand Dec. 31 in cell 
B27 and so on.  The Cash Flow Statement is where the model must show repayment of the short-
term loan to meet cash flow deficits (line 20).  Principal payments and family living withdrawals 
appear in the Cash Flow as outflows; these are not expenses in the Income statement because 
they are not tax deductions.  In cell C20, enter the value of the cash flow deficit, if any existed, 
in the previous year.  The value of the previous year’s cash flow deficit is in row 33. 
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     A         B         C         D     
1 Income Statement 2000 2001 2002 
2 Receipts    
3 Total Receipts = B2 = C2 = D2 
4 Expenses    
5 All Non-Interest Expenses − − − 
6 Interest for Land Loans − − − 
7 Interest for Machinery Loans − − − 
8 Interest for Operating Loans  − − − 
9 Interest for Carry over Loans = 0.0 = B33 * iRate = C33 * iRate 
10 Total Expenses = SUM (B5:B9) = SUM (C5:C9) = SUM (D5:D9) 
11     
12 Net Cash Income = B3 – B10 = C3 – C10 = D3 – D10 
13     
14 Cash Flow Statement    
15 Beginning Cash Jan. 1 = Initial Value = B27 = C27 
16     
17 Net Cash Income = B12 = C12 = D12 
18 Other Inflows − − − 
19 Total Inflows = B17 + B18 + B15 = C17 + C18 + C15 = D15 + D17 + D18 
20 Repay cash flow deficits = 0.0 = B33 = C33 
21 Family Withdrawals − − − 
22 Total Outflows = B20 + B21 = C20 + C21 = D20 + D21 
23 Ending Cash Balance Dec. 31 = B19 – B22 = C19 – C22 = D19 – D22 
24     
25 Balance Sheet    
26 Assets Dec. 31    
27 Cash Reserves = IF (B23 > = 0, B23, 0) = IF (C23 > = 0, C23, 0) = IF (D23 > = 0, D23, 0) 
28 Land Value − − − 
29 Machinery − − − 
30 Other Assets − − − 
31 Total Assets = SUM (B27:B30) = SUM (C27:C30) = SUM (D27:D30) 
32 Liabilities Dec. 31    
33 Cash Flow Deficits = IF (B23 < 0, (-1 * B23), 

0) 
= IF (C23 < 0, (-1 * C23), 
0) 

= IF (D23 < 0, (-1 * D23), 0) 

34 Land − − − 
35 Machinery − − − 
36 Total Debts = SUM (B33:B35) = SUM (C33:C35) = SUM (D33:D35) 
37 Net Worth = B31 – B36 = C31 – C36 = D31 – D36 
 
 
 The Balance Sheet is the next place where the financial statements are augmented to 
simulate negative cash flows.  In the assets side of the Balance Sheet only positive cash reserves 
may appear.  This is done by using an IF( ) statement as indicated in cell B27.  The IF( ) 
statement only allows positive cash balances to be treated as an asset, and zeros appear in row 27 
when there is a negative cash balance.  Negative cash balances enter the Balance Sheet in row 33 
as liabilities.  The IF( ) statements in row 33 insure that the row has either zeros or positive 
liabilities that equal the cash flow deficits for the current year.  The short-term loans to meet cash 
flow deficits in line 33 are the values used in the next year to:  (a) calculate interest due for 
carryover loans in line 9 and (b) calculate the principal to repay cash flow deficits in line 20.   
 
 The pro forma financial statements require only the changes outlined here to insure the 
proper handling of cash flow deficits.  An added feature to using this procedure for handling 
cash flow deficits is that the ending cash balance can be positive or negative.  As a result this 
variable can be used as an output variable for simulation and one can calculate the probability of 
 having negative ending cash reserves in each year. 
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 An example Excel model which uses this procedure for handling negative cash balances is 
the Feedlot Demo.XLS.  The DEMOPROFORMA provides one realization for the feedlot model 
to demonstrate how the feedlot’s financial statements appear when there is a cash flow deficit.  
In the example, a cash flow deficit occurs in 2003 and in 2005.  The deficit in 2003 (line 33) 
appears also in the liabilities (line 40) as a positive value.  In the next year the interest for the 
loan to cover this cash flow deficit appears in the Income Statement (line 20).  The principal 
payment in 2004 to repay this loan appears in the Cash Flow Statement (line 31). 
 
Income Taxes 
 
 Federal income tax schedules for both a corporation and an individual are used in Income 
Tax Demo.XLS to demonstrate how to simulate income taxes.  (Also refer to Business 
Demo.XLS for an example of tax calculation in a business simulation model.)  To simulate the 
annual activities of a business it is generally assumed that the income tax provisions remain 
constant.  Income tax provisions are usually not projected to change over time.  As a result, the 
actual IRS code for the most recent year is what you will have to use for each year of the 
planning horizon even though the tax rates could change in the future.  An actual income tax 
schedule is provided as an example of an IRS tax schedule in Table 2 of Income Tax Demo.XLS. 
 
 Two steps to simulate federal income taxes for a corporation are: 
 

− Calculate taxable income, such as the values in rows 11-14 of Income Tax Demo.XLS. 
This value is net cash income minus deductions (such as depreciation) and standard 
deduction (if sole proprietor). 

− Calculate income tax, such as the values in rows 21-37 of Income Tax Demo.XLS. 
Use the taxable income and the income tax brackets to calculate the federal income tax 
due for each year. 

  
 The formula used to calculate taxes is: 
 

  Taxes Due  =   base tax for
the bracket   +   marginal

tax rate   *   taxable
income     minimum income

for bracket−FH IK  
 
Given the income tax formula and the income tax schedule (Table 2 in Income Tax Demo.XLS) 
the Excel command =VLOOKUP should be used to obtain the three unknowns for the above 
formula.  Assume taxable income is $88,000, then the =VLOOKUP function is used as follows: 
 

− =VLOOKUP ($88,000.0, A24:D31, 3) returns the value in column 3 of $13,750 for 
taxes due on income earned up to $75,000. 

− =VLOOKUP ($88,000.0, A24:D31, 4) gives the marginal tax rate for income earned 
between $75,000 and $88,000 or 0.340. 

− =VLOOKUP ($88,000.0, A24:D31, 1) returns the value in column 1 which matches the 
minimum income for the tax bracket or $75,000. 

− These three values are then used to calculate taxes using the above formula.  See rows 
33-37 of Income Tax Demo.XLS for an example of how this is programmed. 
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 When simulating a sole proprietor business include tables and equations to simulate self- 
employment, medicare, and federal income taxes.  An example of calculating these taxes is 
presented in Income Tax Demo.XLS, with detailed description of the variables used to simulate 
each tax (rows 41-93). 
 
Debt Amortization 
 
 The Excel command PMT is essential in a business analysis simulation model.  An example 
of the Excel PMT function is available in Annual Payment Demo.XLS and Monthly Payment 
Demo.XLS.  The example spreadsheet demonstrates how to use Excel’s PMT function to 
calculate how much interest and principal is paid each year and how to update the remaining 
balance of a loan. 
 
 An easily overlooked feature in simulation models is where to account for principal and 
interest.  Interest payments for all loans appear as a cash expense in the income statement.  
Principal payments are not cash costs but are cash outflows so they must appear in the cash flow 
statement. The remaining debt for each loan appears in the liability side of the balance sheet so it 
is important to calculate the remaining debt on the loan.  The Excel spreadsheet Annual Payment 
Demo.XLS shows how to use the PMT formula to calculate all of these values that are essential 
for a business simulation model. 
 
 Other examples of debt repayment in simulation models included on the CD are:  
Investment Management Demo.XLS, Business Demo.XLS, and Bank Demo.XLS. 
 
Net Present Value (NPV) and Internal Rate of Return (IRR) 
 
 Net Present Value is generally a key output variable which is used to summarize the net 
returns for a multi-year investment into a single variable.  This means that the annual net return 
earned over several years is condensed to one number.  Additionally, the net change in real net 
worth is incorporated into the NPV.  In a stochastic model, the NPV is calculated many times, 
once for each iteration or set of random values.  The final summary of output variables is thus a 
sample of 100 or more NPV’s suitable for a CDF graph and for comparing alternative scenarios. 
 
 There are many formulas for calculating NPV, as demonstrated by Robison and Barry.  
Variations arise from the different purposes NPV is put to and different definitions for the 
components, as well as differences in the discount rates.  Two different NPV formulas are 
presented and demonstrated here.   
 
– NPV for Low Cash Outlay Investments   

 
 Purchases of stocks and bonds fit into this category of investments, as the per share cash 
outlay may be low because the investment is infinitely divisible.  A second component of this 
NPV formula is that it explicitly accounts for when the changes in net worth occur.  The 
NPV formula is: 

 

NPV   =   1
t=1

T NR
i

  +   
CNW
1 +  i)

t t
t

t=1

T

( ) (1+

F
HG

I
KJ ∑∑ t  
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where CNW represents the nominal change in net worth from one period to the next 
(annual), NRt represents the net return extracted from the investment (say, dividends paid) 
each period t, and i is the discount rate for one period (year). 

 
• NRt is subject to risk caused by stochastic variables in the model. 
• CNWt is a function of retained (or reinvested) earnings and changes in market value and 

debt repayment.  Annual changes in market value can be due to stochastic forces.  
 
− NPV for Large Capital Outlay Investments   

 
 Purchases of large businesses, such as farms and ranches, are lumpy with huge capital 
outlays.  Annual changes in net worth for these types of investments come from debt 
repayment (which is on a constant schedule) and fairly constant annual inflation rates for 
land. Annual net returns vary widely from year-to-year due to stochastic forces and thus 
"when" these net returns occur is important to the NPV formula.  The NPV formula in this 
case is: 

NPV   =  -  B  +   2
NR

i
  +   

NW
1 +  i)

t T
T

t=1

T

( ) (1+

F
HG

I
KJ∑ t  

 
where B is the initial cash outlay or net worth after purchasing the business, NRt is the 

annual net return withdrawn from the business, NWT is nominal net worth in the 
last year (T) of the planning horizon, and i is the annual discount rate. 

 
  Both NPV formulas are demonstrated in the Net Present Value Demo.XLS spreadsheet. 

 Simulate the spreadsheet with Simetar specifying the two NPV's as the key output variables 
to see how these formulas work. 

 
– Internal Rate of Return (IRR) 
 
  IRR is the interest rate (i) which causes the net present value of an income stream to 

equal zero.  For each income stream there could be multiple i values thus IRR is not a perfect 
summary statistic.  Multiple i values are certain to occur if the income stream changes signs 
over the planning horizon. 

 
  The income stream used for IRR in a simulation model is the same as the one used for 

NPV2.  We again calculate NPV and IRR at the end of each iteration so we get an “estimate 
of the empirical pdf for IRR.”  That is the purpose of simulation. 

 
 IRR: solve for the value i which causes the following income stream to equal zero: 
 

 0  =  - B   +   
NR

(1 +  i)
  +   

NW
(1 +  i)0

t
t

T
T

T

F
HG

I
KJ=

∑
t 1

 

 
 Excel will not calculate the IRR reliably if the –B0 is ignored or left out of the equation. 
 Excel calculates IRR using =IRR (guess, range of values) and is demonstrated in the Net 
Present Value Demo.XLS spreadsheet.  NPV and IRR calculations are also integral 
calculations in Investment Management Demo.XLS, Bank Demo.XLS, Feedlot Demo.XLS, 
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Business Demo.XLS, and Deterministic Demo.XLS. 
 

– Capital Investment Analyzer 
 

 An after-tax NPV and IRR calculator is provided in Net Present Value Internal Rate of 
Return Demo.XLS.  This Excel spreadsheet was developed to teach business managers how 
to use NPV and IRR for comparing investments.  As a result the program is in finished 
format with colors, protected cells, conditional colors for cells, graphics, and some on-line 
documentation (cells with comments).  The cells for the actual calculation of IRR would be 
hidden from the user in black cells, but for this example they are gray.   
 
 The Net Present Value Internal Rate of Return Demo.XLS spreadsheet is deterministic 
so the user must specify the average cash receipts and cash expenses, for each year (or 
month) of the investment analysis.  These values are entered in a table provided for this 
purpose, but using a general format that allows the user to enter the data in any order.  The 
calculated NPV and IRR values remain in view at all times so the user can see how a change 
in the discount rate, the number of years in the analysis, the tax rate, the depreciation life, the 
sale price, or the financial assumptions affects the output variables. 
 
 Take note of how Excel was programmed to calculate the IRR.  Even with all of the 
precautions in programming the IRR section of the program, the IRR sometimes fails to find 
a unique solution.  This type of result is usually due to an unrealistic investment cost relative 
to the annual inflows and outflows or the user does not enter a down payment for the initial 
cash outlay. 
 

Estimating Insurance Premiums 
 
 Insurance premium rates can be estimated using simulation.  Simulation may be the only 
way to do this when insufficient information is available for direct calculation of loses.  An 
example of how to estimate the insurance premium rates for an average producer is provided in 
Insurance Premium Demo.XLS. 
 
 To estimate insurance premium rates first determine the probable payout (indemnities).  The 
premium is set so that it fully covers all payouts plus the cost of doing business and the profits 
the insurance firm requires.  In the example it is assumed that the historical yields for one 
producer are representative of the population of producers to be insured.   
 
 The stochastic yield in Step 4 is used to calculate the lost yield for seven different insurance 
programs in Step 6.  Lost yield equals the difference between simulated yield and insured yield if 
the stochastic yield is less than the insured yield or in Excel terms it is: 
 

 
simulated insured insured simulated

= IF   <   ,       ,  0
yield yield yield yield

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
Seven different levels of yield loss fractions were analyzed, making up seven different insurance 
programs.  The first insured yield loss fraction equals 50 percent of the historical average yield.  
The last insured yield loss fraction equals 90 percent of the historical average yield. 
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 The indemnity paid out for each insurance program equals the lost yield times a fixed 
indemnity price ($0.60/lb. in this case).  The seven indemnity payments (one for each program) 
are in cells F75-F81 and change as the stochastic yield changes when F9 is pressed.  This 
procedure for simulating alternative insurance options uses the same random yield across all 
seven insurance programs so the results can be directly compared. 
 
 The key output variables (KOV) for the insurance simulation model are the indemnity 
payments (F75-F81).  The statistical summary results of a 500 iteration analysis (lines 98-103) 
show that the average indemnity is $9.91/acre for the 50 percent yield coverage option.  At the 
90 percent yield coverage level, the average indemnity is $25.44/acre.  These average 
indemnities represent a minimum insurance premium rate before adding in the profit and the cost 
of administering the insurance program.  The higher the rate of coverage (greater the percent of 
average yield covered) the higher the premium. 
 
 Additionally, counter variables are used as KOVs to indicate the frequency of insurance 
payments (E75-E81).  A counter is created by using an IF statement to have a 1 if an indemnity 
is paid and a 0 if no payment is made or 
 
 =IF(D75 > 0, 1, 0) 
 
The statistical summary for a counter indicates the probability of indemnities.  For example, the 
results (lines 98-103) indicate there is a 23.8 percent chance of an indemnity at the 50 percent 
coverage level and a 45.4 percent indemnity at the 90 percent yield coverage level. 
 
Machinery Replacement 
 
 One of the more difficult problems in simulating a business is the replacement of 
machinery.  There are several ways not to replace machinery, such as:  assume ten percent of the 
inventory is replaced each year or assume the inventory is all new at the outset of the planning 
horizon and all of it is replaced N years later.  Machinery replacement is a lumpy expense for 
businesses because each machine has a different cost and expected life in the business.  Also, 
businesses generally do not replace everything at once, because the economic life of machinery 
on a farm varies by machine. 
 
 The best solution I have found for simulating machinery replacement is to itemize the 
machinery complement and replace each item at the end of its “economic life in the business.”  
The information required to use this method is listed below.  This information must be obtained 
for each machine at the start of the simulation period (at t=0): 
 

− machine name 
− year placed into use 
− original purchase price (excluding trade-in) 
− current market value of the machine 
− current price of a replacement machine 
− number of years machine will be used on the farm 
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In a simulation model, a machine is replaced only if it has passed its economic life on the farm.  
The value of a machine at the time it is replaced (traded-off) after N years is the current value at 
t=0 discounted to the year the machine is replaced.  The cost of a new machine is the t=0 cost of 
a replacement inflated for N years.  The net cost of the replacement is the updated cost less the 
trade-in value. 
 
 Financing machinery replacements can be handled on a machine-by-machine basis with a 
loan for each purchase.  Alternatively the model can sum the new loan requirements and finance 
one new machinery loan for each year machinery is replaced.  I prefer the later myself to reduce 
the number of loans to simulate.  Additionally, with one loan per year your model can easily 
repay the principal early if surplus cash is generated. 
 
 To finance machinery replacements the model must have a value for the minimum down 
payment on machinery loans.  First compare the trade-in value to the down payment 
requirement; if the trade-in is less than the minimum down payment, the deficit must come from 
cash reserves.  Finance the remainder (cost less minimum down payment) at the prevailing terms 
for machinery loans (number of years and interest rate).  If the trade-in value exceeds the 
minimum down payment, then finance the difference and do not pay a cash difference.  Annual 
interest payments appear in the Income Statement and principal payments appear in the Cash 
Flow.  The remaining debt and updated value of machinery appear in the Balance Sheet. 
 
 Refer to Machinery Demo.XLS for an example of how to simulate machinery replacement 
for a business.  This demo program is set to finance the purchase of replacement machinery for 5 
years using fixed interest rate mortgages.  Ten different machinery items are included in the 
demo. Change the information for any or all of the machines to observe the impacts on cash 
outflow requirements, interest costs and the firm's balance sheet.  Adding more machines to the 
spreadsheet can be done by inserting columns before column M, entering the new machines and 
copying the equations for the new machines.  All of the equations should work, but it is your 
responsibility to check them. 
 
 Using this method for replacing machinery will produce an uneven cash flow requirement 
for machinery replacement.  The uneven cash flow requirements need to be evaluated after 
solving for the replacement of each machine to see if “too much” machinery is to be replaced in 
any given year.  Spread out these cash flow requirements by changing the economic life of 
individual machines until the cash flow requirements are reasonable for the business being 
analyzed. 
 
Farm Level Simulation Model 
 
 A 10 year, whole farm simulation model is demonstrated in Farm Simulator Demo.XLS.  
The model is developed using the type of calculations in FLIPSIM (Richardson and Nixon).  The 
model is capable of simulating one, two, or three crops.  Input data required of the user are in 
bold in the Model and the Stochastic worksheets.  Historical prices and yields for the three crops 
on the farm are entered in the Stochastic worksheet.  The historical prices and yields are used to 
develop and simulate a MVE distribution for prices and yields.  Charts showing the historical 
and stochastic prices and yields are provided at the bottom of the Stochastic worksheet. 
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 Projected inflation rates for variable inputs are also entered in the Stochastic worksheet. 
Separate inflation rates for fuel, labor, and other inputs are entered so the model can simulate the 
effects of alternative inflation rates.  Annual interest rates for financing operating costs are also 
included as input for the whole farm simulation model. 
 
 All other inputs necessary to simulate a crop farm are entered at the top (rows 8-71) of the 
Model worksheet.  Assets and liabilities, family living, fixed costs, and other income are 
required for a farm risk analysis.  Budgets for each crop are included along with base acres, 
payment yields, and price wedges.  The price wedges are used to localize stochastic national 
prices for each crop.  Annual values must be provided by crop for:  planted acres, mean crop 
yields, mean crop prices, loan rates, direct payment rates, and target prices.  Planted acres and 
mean yields can come from the producer or the farm plan being analyzed.  Average annual crop 
prices can be obtained from FAPRI or developed from other sources.  Policy values for 2002-
2007 are specified in the 2002 farm bill.  Policy values for 2008-2011 are assumed to remain at 
their 2007 levels. 
 
 The whole farm simulation model is made up of several sections where the calculations are 
done.  A detailed income statement is provided in rows 75-104.  The values reported in the 
statement are calculated in specific sections for each crop.  A cash flow statement is provided in 
rows 106-123 for the express purpose of tracking ending cash reserves.  The farm’s balance 
sheet is in rows 125-136 to calculate net worth. 
 
 Values found in the cash flow and balance sheet are used to calculate net present value, one 
of the KOVs for the farm (rows 140-147).  Three more KOVs useful for evaluating a farm with 
risky cash flows are:  probability of a cash flow deficit, probability of negative cash flows, and 
probability of losing real net worth.  Definitions for these variables are: 
 

- Cash flow deficits occur when cash outlays exceed net cash farm income. 
- Negative cash flows occur when beginning cash plus net cash income and other cash 

earnings are less than total cash outflows.  This is the amount of the operating loan, 
which must be refinanced or carried over. 

- Firms lose real net worth when the present value of ending net worth is less than 
beginning net worth. 

 
 All three of the probability KOVs are simulated using counter variables in rows 149-151.  
When the condition is true the counter is 1, else it is zero.  The probability of a cash flow deficit 
can be simulated for each year using 10 counter variables.  This type of KOV facilitates pin 
pointing years that the firm will likely need to refinance its operating loan. 
 
 The section of the model where crop receipts, expenses, and government payments to crop 1 
are calculated, is in rows 154-189.  Stochastic production equals planted acres times stochastic 
yields.  National prices are adjusted by the local wedge (or basis) to derive stochastic local 
prices. Market receipts equals the product of production and local prices.  LDP, direct and CCP 
government payments are calculated using annual loan rates, target prices and direct payment 
rates.  Base acres and DP and CCP payment yields are used for these calculations.  An AWP 
fraction is used to convert the stochastic national price to a stochastic adjusted world price used 
to calculate the LDP rate. 
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 Costs of production for each crop are calculated using annual inflation rates and the crop 
budgets.  For crop 1 the costs of production are calculated in rows 272-285.  The same steps are 
repeated for crops 2 and 3.  Results from this section are used in the Income Statement.  Other 
costs for the farm are calculated next.  Of particular note are interest costs for the operating loan 
and the operating loan carryover, i.e., for financing cash flow deficits. 
 
 Interest on cash reserves are calculated so they can enter the cash flow statement as earned 
interest.  Family living costs or withdrawals are calculated so these cash outflows can appear in 
the cash flow statement.  Land value is calculated using the user’s assumed annual inflation rates 
for land.  Land value shows up in the asset side of the Balance Sheet. 
 
 The calculations necessary to amortize the original land loan and a beginning farmer loan 
are included in the model in rows 369-442.  Annual interest costs in these schedules are used in 
the Income Statement to calculate total costs.  Annual principal payments for the two loans 
appear in the Cash Flow statement as these are not production expenses.   
 
 The final section of the model includes the calculations to compute annual federal income 
taxes for the farm.  A corporate income tax schedule is used to compute federal income taxes. 
 
 At the top of the model worksheet is a KOV table, rows 10-31.  The table is cell referenced 
to each of the KOVs found in the model.  When the farm model is simulated, the user can 
highlight the same KOVs every time and they are always in the same order.  Given that the 
KOVs are always in the same order, you can develop summary tables for the outputs and 
permanent charts to interpret the results.  An example of such a table is provided in columns AB 
– AK in SimData1. 
 
Simulating an Econometric Model 
 
 Recursive supply demand models for crops and livestock can be estimated and simulated 
using tools provided in Simetar.  A recursive supply demand model for the US soybean sector is 
estimated and simulated in this section.  The Excel demo program is named Soybean Model 
Demo.XLS. 
 
 The objective of the model is to simulate annual prices, ending stocks, and the present value 
of total government payments, 2002-2004, for the 1996 and the 2002 farm programs.  The 
objective requires that the model incorporate different types of farm programs and endogenously 
solve for price. 
 
 The hypothesized equations for the model are: 
 
 Planted Acrest = f (E Pricet, Planted Acrest-1) 
 Harvested Acrest = f (E Pricet, Planted Acrest) 
 Yieldt = f(E Pricet, Yieldt-1, Trendt) 
 Domestic Uset = f (Pricet, Domestic Uset-1, Income/Popt) 
 Exportst = f (Pricet, Exportst-1, GDP EUt) 
 Ending Stockst = f (Pricet, Stockst-1) 
 Define Epricet = Max [Pricet-1 or Loan Ratet] 
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Based on these equations historical data for the endogenous and exogenous variables, 1980-
2001, were obtained and added to the Data worksheet in the demo program. 
 
 A significant time saving step is to create a worksheet for each equation to be estimated.  
The variables hypothesized for each equation are cell referenced from the Data worksheet to be 
equation’s worksheet.  For example the PltAcres worksheet has the values for Planted Acrest, 
Epricet, and Planted Acrest-1.  The multiple regression for each equation is estimated in the 
equation’s own worksheet so it is easy to locate. 
 
 The residuals and the standard deviation of residuals from each of the regression models are 
cell referenced to the Stoch worksheet.  The residuals are used to define and simulate a MVN 
distribution of shocks to the econometric equations.  The stochastic shocks for each year in the 
planning horizon are tested to insure they are appropriately correlated as part of the validation. 
 
 The intercept and slope parameters for the six econometric equations are cell referenced 
from their worksheets to the Model worksheet where the completed model is simulated.  The 
coefficients for each of the equations are assembled in rows 24-40 of the Model worksheet.  
Solving for price in a recursive model is accomplished by first estimating the total demand 
equation, re-writing the equation so that price is a function of quantity, and then solving for price 
using quantity supplied. 
 
 Total demand is the sum of domestic use, exports and ending stocks.  A separate total 
demand equation must be estimated for each year 2002-2004 as the exogenous variables in these 
equations change each year.  The total demand is estimated as: 
 

t t t-1 t 1

t t t-1 t 2

t t 3

t t t-1 t t-1 t 1 2 3

DD  = a + bP  + c DP  + d I  + e
ED  = k + fP  + g ED  + h G  + e
ES  = i + jP  + e
TD  = a + k + i + (b+f+j) P  + cDP  + d I  + gED  + h G  + (e  + e  + e )

 

 

 
t-1 t t-1 t

1 2 3

let A = a + k + i                               
B = b + f + j                                
C = cDP  + d I  + g ED  + h G
e = e e e                               + +

 

 
Then total demand can be written as: 
 

t

t

TD = A + C + B P  + e
or

A C 1 eP  =  +  +  TD + 
B B B B
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which simplifies to  
 

 

tP  =  +  Q +  e
A Clet       =  + 
B B
1           = 
B

α β β

α

β

 

 
The total demand is thus specified as price is a function of quantity and an error term which 
makes the intercept stochastic (Figure 13.1). 
 
 

 
 
 
Given a quantity supplied (Q) in the equation, equilibrium price is found directly by solving the 
demand function.  This is permitted because of the assumption that supply equals total demand 
(Figure 13.1). 
 
 In Soybean Model Demo.XLS the process of deriving total demand for each year is 
summarized in rows 42-52.  The intercepts and slopes on price are summed in rows 44-47.  The 
shift effects for domestic demand t t-1(d I  + c DP )  are calculated in row 44 and added to the 
domestic demand intercept in row 50.  Similar steps are done for exports.  The total demand 
intercept changes each year (cells E54:H54) because the exogenous variables 

t-1 t-1(I, G, DP  and ED )  and the stochastic shocks change annually. 
 
 Because quantity supplied is a function of expected price it is determined in row 73 and then 
used in the price equation (row 56) to display price in the current year.  This specification is 
consistent with the fact that the season average price is largely determined after harvest and 
supply is known with certainty (Figure 13.1).  Supply is calculated as a sum of fixed imports (3.0 
each year) and production.  Stochastic shocks on yields, planted acres and harvested acre 
equations cause supply to be a stochastic variable in addition to responding to lagged prices and 

Figure 13.1.  Price Dependent Demand Function 
and Supply Determine Price.
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current policy variables.  It is assumed that for the simulation period the expected price is 
defined as: 
 

- 1996 farm bill 
E Pricet = Max [Pricet-1, Loan Ratet) 

 
- 2002 farm bill 

E Pricet = Max (Pricet-1, Target Pricet) 
 
 Once price is calculated the value is used to simulate domestic demand and exports.  
Domestic use and exports (rows 76 and 77) are calculated using the stochastic price and the 
appropriate exogenous variables and stochastic shocks used in rows 44 and 45 to estimate total 
demand.  Ending stocks are solved as an identity: 
 
 Ending Stockst = Supplyt – Domestic Uset – Exportst 
 

One of the KOVs is the present value of total receipts plus government payments.  Direct and 
counter cyclical payments are calculated under the 2002 farm bill using base acres, direct 

payment yields and counter cyclical payment yields.  A CDF chart of the PV of total revenue 
under each policy is provided in the SimData worksheet.  The simulated annual soybean prices 

are summarized using a fan graph in the SimData worksheet.
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Chapter 13 
Special Problems in Modeling Risk 

 
 
 This chapter provides examples of how to handle particular problems in simulation 
models.  Business analysis models must deal with risky cash flows, which present particular 
problems for simulating pro forma financial statements.  The first topic in this chapter deals with 
simulating risky cash flows.  In subsequent sections, solutions are provided for simulating 
income tax, calculations, debt amortization, and calculating net present value (NPV) and internal 
rate of return (IRR).  The problems of calculating a fair insurance premium and replacement of 
machinery are also covered in the chapter.  A comprehensive farm simulation model is presented 
to demonstrate how to apply most of these features into a firm level risk model.  The last section 
of this chapter demonstrates how an econometric model of a commodity can be developed and 
simulated.   
 
Simulating Risky Cash Flows 
 
 Businesses faced with risk can observe negative cash flows, even though they may not 
observed in the deterministic solution of a simulation model.  Failure to incorporate the 
possibility of a negative cash flow into the pro forma financial tables will cause the model to fail 
when used for stochastic simulation.  Additions to the financial statements necessary to handle 
negative cash flows are outlined in this section. 
 
 An abbreviated set of financial statements would look like the example on the next page 
with the assigned row and column values for referencing.  The cells with “-” indicate a non-zero 
value normally appears in the cell.  The formulas in the cells show how to calculate cash flow 
deficits and how to handle deficits in financial statements. 
 
 The first year of simulation has no interest on carryin short-term debt (cell B9), unless the 
business is allowed to have carryin debt.  The cell C9 is for calculating interest on carryover debt 
from the first year.  The formula in cell C9 calculates interest if there is a balance for carryover 
debt for year 1 (cell B33) using the appropriate interest rate.  The formula for calculating interest 
for a carryover loan must consider the length of the loan, usually less than a year, i.e.,  
 

interest due = cash flow deficit for previous year * (annual operating interest rate /  
365 days) * number of days carryover money is borrowed 

 
 The beginning cash each year in the Cash Flow Statement (line 15) is the positive ending 
cash from the year before.  This value is found in the first line of Assets in the Balance Sheet 
(line 27).  Thus the beginning cash reserves in year 2 (C15) equals cash on hand Dec. 31 in cell 
B27 and so on.  The Cash Flow Statement is where the model must show repayment of the short-
term loan to meet cash flow deficits (line 20).  Principal payments and family living withdrawals 
appear in the Cash Flow as outflows; these are not expenses in the Income statement because 
they are not tax deductions.  In cell C20, enter the value of the cash flow deficit, if any existed, 
in the previous year.  The value of the previous year’s cash flow deficit is in row 33. 
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     A         B         C         D     
1 Income Statement 2000 2001 2002 
2 Receipts    
3 Total Receipts = B2 = C2 = D2 
4 Expenses    
5 All Non-Interest Expenses − − − 
6 Interest for Land Loans − − − 
7 Interest for Machinery Loans − − − 
8 Interest for Operating Loans  − − − 
9 Interest for Carry over Loans = 0.0 = B33 * iRate = C33 * iRate 
10 Total Expenses = SUM (B5:B9) = SUM (C5:C9) = SUM (D5:D9) 
11     
12 Net Cash Income = B3 – B10 = C3 – C10 = D3 – D10 
13     
14 Cash Flow Statement    
15 Beginning Cash Jan. 1 = Initial Value = B27 = C27 
16     
17 Net Cash Income = B12 = C12 = D12 
18 Other Inflows − − − 
19 Total Inflows = B17 + B18 + B15 = C17 + C18 + C15 = D15 + D17 + D18 
20 Repay cash flow deficits = 0.0 = B33 = C33 
21 Family Withdrawals − − − 
22 Total Outflows = B20 + B21 = C20 + C21 = D20 + D21 
23 Ending Cash Balance Dec. 31 = B19 – B22 = C19 – C22 = D19 – D22 
24     
25 Balance Sheet    
26 Assets Dec. 31    
27 Cash Reserves = IF (B23 > = 0, B23, 0) = IF (C23 > = 0, C23, 0) = IF (D23 > = 0, D23, 0) 
28 Land Value − − − 
29 Machinery − − − 
30 Other Assets − − − 
31 Total Assets = SUM (B27:B30) = SUM (C27:C30) = SUM (D27:D30) 
32 Liabilities Dec. 31    
33 Cash Flow Deficits = IF (B23 < 0, (-1 * B23), 

0) 
= IF (C23 < 0, (-1 * C23), 
0) 

= IF (D23 < 0, (-1 * D23), 0) 

34 Land − − − 
35 Machinery − − − 
36 Total Debts = SUM (B33:B35) = SUM (C33:C35) = SUM (D33:D35) 
37 Net Worth = B31 – B36 = C31 – C36 = D31 – D36 
 
 
 The Balance Sheet is the next place where the financial statements are augmented to 
simulate negative cash flows.  In the assets side of the Balance Sheet only positive cash reserves 
may appear.  This is done by using an IF( ) statement as indicated in cell B27.  The IF( ) 
statement only allows positive cash balances to be treated as an asset, and zeros appear in row 27 
when there is a negative cash balance.  Negative cash balances enter the Balance Sheet in row 33 
as liabilities.  The IF( ) statements in row 33 insure that the row has either zeros or positive 
liabilities that equal the cash flow deficits for the current year.  The short-term loans to meet cash 
flow deficits in line 33 are the values used in the next year to:  (a) calculate interest due for 
carryover loans in line 9 and (b) calculate the principal to repay cash flow deficits in line 20.   
 
 The pro forma financial statements require only the changes outlined here to insure the 
proper handling of cash flow deficits.  An added feature to using this procedure for handling 
cash flow deficits is that the ending cash balance can be positive or negative.  As a result this 
variable can be used as an output variable for simulation and one can calculate the probability of 
 having negative ending cash reserves in each year. 
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 An example Excel model which uses this procedure for handling negative cash balances is 
the Feedlot Demo.XLS.  The DEMOPROFORMA provides one realization for the feedlot model 
to demonstrate how the feedlot’s financial statements appear when there is a cash flow deficit.  
In the example, a cash flow deficit occurs in 2003 and in 2005.  The deficit in 2003 (line 33) 
appears also in the liabilities (line 40) as a positive value.  In the next year the interest for the 
loan to cover this cash flow deficit appears in the Income Statement (line 20).  The principal 
payment in 2004 to repay this loan appears in the Cash Flow Statement (line 31). 
 
Income Taxes 
 
 Federal income tax schedules for both a corporation and an individual are used in Income 
Tax Demo.XLS to demonstrate how to simulate income taxes.  (Also refer to Business 
Demo.XLS for an example of tax calculation in a business simulation model.)  To simulate the 
annual activities of a business it is generally assumed that the income tax provisions remain 
constant.  Income tax provisions are usually not projected to change over time.  As a result, the 
actual IRS code for the most recent year is what you will have to use for each year of the 
planning horizon even though the tax rates could change in the future.  An actual income tax 
schedule is provided as an example of an IRS tax schedule in Table 2 of Income Tax Demo.XLS. 
 
 Two steps to simulate federal income taxes for a corporation are: 
 

− Calculate taxable income, such as the values in rows 11-14 of Income Tax Demo.XLS. 
This value is net cash income minus deductions (such as depreciation) and standard 
deduction (if sole proprietor). 

− Calculate income tax, such as the values in rows 21-37 of Income Tax Demo.XLS. 
Use the taxable income and the income tax brackets to calculate the federal income tax 
due for each year. 

  
 The formula used to calculate taxes is: 
 

  Taxes Due  =   base tax for
the bracket   +   marginal

tax rate   *   taxable
income     minimum income

for bracket−FH IK  
 
Given the income tax formula and the income tax schedule (Table 2 in Income Tax Demo.XLS) 
the Excel command =VLOOKUP should be used to obtain the three unknowns for the above 
formula.  Assume taxable income is $88,000, then the =VLOOKUP function is used as follows: 
 

− =VLOOKUP ($88,000.0, A24:D31, 3) returns the value in column 3 of $13,750 for 
taxes due on income earned up to $75,000. 

− =VLOOKUP ($88,000.0, A24:D31, 4) gives the marginal tax rate for income earned 
between $75,000 and $88,000 or 0.340. 

− =VLOOKUP ($88,000.0, A24:D31, 1) returns the value in column 1 which matches the 
minimum income for the tax bracket or $75,000. 

− These three values are then used to calculate taxes using the above formula.  See rows 
33-37 of Income Tax Demo.XLS for an example of how this is programmed. 
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 When simulating a sole proprietor business include tables and equations to simulate self- 
employment, medicare, and federal income taxes.  An example of calculating these taxes is 
presented in Income Tax Demo.XLS, with detailed description of the variables used to simulate 
each tax (rows 41-93). 
 
Debt Amortization 
 
 The Excel command PMT is essential in a business analysis simulation model.  An example 
of the Excel PMT function is available in Annual Payment Demo.XLS and Monthly Payment 
Demo.XLS.  The example spreadsheet demonstrates how to use Excel’s PMT function to 
calculate how much interest and principal is paid each year and how to update the remaining 
balance of a loan. 
 
 An easily overlooked feature in simulation models is where to account for principal and 
interest.  Interest payments for all loans appear as a cash expense in the income statement.  
Principal payments are not cash costs but are cash outflows so they must appear in the cash flow 
statement. The remaining debt for each loan appears in the liability side of the balance sheet so it 
is important to calculate the remaining debt on the loan.  The Excel spreadsheet Annual Payment 
Demo.XLS shows how to use the PMT formula to calculate all of these values that are essential 
for a business simulation model. 
 
 Other examples of debt repayment in simulation models included on the CD are:  
Investment Management Demo.XLS, Business Demo.XLS, and Bank Demo.XLS. 
 
Net Present Value (NPV) and Internal Rate of Return (IRR) 
 
 Net Present Value is generally a key output variable which is used to summarize the net 
returns for a multi-year investment into a single variable.  This means that the annual net return 
earned over several years is condensed to one number.  Additionally, the net change in real net 
worth is incorporated into the NPV.  In a stochastic model, the NPV is calculated many times, 
once for each iteration or set of random values.  The final summary of output variables is thus a 
sample of 100 or more NPV’s suitable for a CDF graph and for comparing alternative scenarios. 
 
 There are many formulas for calculating NPV, as demonstrated by Robison and Barry.  
Variations arise from the different purposes NPV is put to and different definitions for the 
components, as well as differences in the discount rates.  Two different NPV formulas are 
presented and demonstrated here.   
 
– NPV for Low Cash Outlay Investments   

 
 Purchases of stocks and bonds fit into this category of investments, as the per share cash 
outlay may be low because the investment is infinitely divisible.  A second component of this 
NPV formula is that it explicitly accounts for when the changes in net worth occur.  The 
NPV formula is: 

 

NPV   =   1
t=1

T NR
i

  +   
CNW
1 +  i)

t t
t

t=1

T

( ) (1+

F
HG

I
KJ ∑∑ t  
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where CNW represents the nominal change in net worth from one period to the next 
(annual), NRt represents the net return extracted from the investment (say, dividends paid) 
each period t, and i is the discount rate for one period (year). 

 
• NRt is subject to risk caused by stochastic variables in the model. 
• CNWt is a function of retained (or reinvested) earnings and changes in market value and 

debt repayment.  Annual changes in market value can be due to stochastic forces.  
 
− NPV for Large Capital Outlay Investments   

 
 Purchases of large businesses, such as farms and ranches, are lumpy with huge capital 
outlays.  Annual changes in net worth for these types of investments come from debt 
repayment (which is on a constant schedule) and fairly constant annual inflation rates for 
land. Annual net returns vary widely from year-to-year due to stochastic forces and thus 
"when" these net returns occur is important to the NPV formula.  The NPV formula in this 
case is: 

NPV   =  -  B  +   2
NR

i
  +   

NW
1 +  i)

t T
T

t=1

T

( ) (1+

F
HG

I
KJ∑ t  

 
where B is the initial cash outlay or net worth after purchasing the business, NRt is the 

annual net return withdrawn from the business, NWT is nominal net worth in the 
last year (T) of the planning horizon, and i is the annual discount rate. 

 
  Both NPV formulas are demonstrated in the Net Present Value Demo.XLS spreadsheet. 

 Simulate the spreadsheet with Simetar specifying the two NPV's as the key output variables 
to see how these formulas work. 

 
– Internal Rate of Return (IRR) 
 
  IRR is the interest rate (i) which causes the net present value of an income stream to 

equal zero.  For each income stream there could be multiple i values thus IRR is not a perfect 
summary statistic.  Multiple i values are certain to occur if the income stream changes signs 
over the planning horizon. 

 
  The income stream used for IRR in a simulation model is the same as the one used for 

NPV2.  We again calculate NPV and IRR at the end of each iteration so we get an “estimate 
of the empirical pdf for IRR.”  That is the purpose of simulation. 

 
 IRR: solve for the value i which causes the following income stream to equal zero: 
 

 0  =  - B   +   
NR

(1 +  i)
  +   

NW
(1 +  i)0

t
t

T
T

T

F
HG

I
KJ=

∑
t 1

 

 
 Excel will not calculate the IRR reliably if the –B0 is ignored or left out of the equation. 
 Excel calculates IRR using =IRR (guess, range of values) and is demonstrated in the Net 
Present Value Demo.XLS spreadsheet.  NPV and IRR calculations are also integral 
calculations in Investment Management Demo.XLS, Bank Demo.XLS, Feedlot Demo.XLS, 



--- Chapter 13 --- 

 

6 

Business Demo.XLS, and Deterministic Demo.XLS. 
 

– Capital Investment Analyzer 
 

 An after-tax NPV and IRR calculator is provided in Net Present Value Internal Rate of 
Return Demo.XLS.  This Excel spreadsheet was developed to teach business managers how 
to use NPV and IRR for comparing investments.  As a result the program is in finished 
format with colors, protected cells, conditional colors for cells, graphics, and some on-line 
documentation (cells with comments).  The cells for the actual calculation of IRR would be 
hidden from the user in black cells, but for this example they are gray.   
 
 The Net Present Value Internal Rate of Return Demo.XLS spreadsheet is deterministic 
so the user must specify the average cash receipts and cash expenses, for each year (or 
month) of the investment analysis.  These values are entered in a table provided for this 
purpose, but using a general format that allows the user to enter the data in any order.  The 
calculated NPV and IRR values remain in view at all times so the user can see how a change 
in the discount rate, the number of years in the analysis, the tax rate, the depreciation life, the 
sale price, or the financial assumptions affects the output variables. 
 
 Take note of how Excel was programmed to calculate the IRR.  Even with all of the 
precautions in programming the IRR section of the program, the IRR sometimes fails to find 
a unique solution.  This type of result is usually due to an unrealistic investment cost relative 
to the annual inflows and outflows or the user does not enter a down payment for the initial 
cash outlay. 
 

Estimating Insurance Premiums 
 
 Insurance premium rates can be estimated using simulation.  Simulation may be the only 
way to do this when insufficient information is available for direct calculation of loses.  An 
example of how to estimate the insurance premium rates for an average producer is provided in 
Insurance Premium Demo.XLS. 
 
 To estimate insurance premium rates first determine the probable payout (indemnities).  The 
premium is set so that it fully covers all payouts plus the cost of doing business and the profits 
the insurance firm requires.  In the example it is assumed that the historical yields for one 
producer are representative of the population of producers to be insured.   
 
 The stochastic yield in Step 4 is used to calculate the lost yield for seven different insurance 
programs in Step 6.  Lost yield equals the difference between simulated yield and insured yield if 
the stochastic yield is less than the insured yield or in Excel terms it is: 
 

 
simulated insured insured simulated

= IF   <   ,       ,  0
yield yield yield yield

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
Seven different levels of yield loss fractions were analyzed, making up seven different insurance 
programs.  The first insured yield loss fraction equals 50 percent of the historical average yield.  
The last insured yield loss fraction equals 90 percent of the historical average yield. 
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 The indemnity paid out for each insurance program equals the lost yield times a fixed 
indemnity price ($0.60/lb. in this case).  The seven indemnity payments (one for each program) 
are in cells F75-F81 and change as the stochastic yield changes when F9 is pressed.  This 
procedure for simulating alternative insurance options uses the same random yield across all 
seven insurance programs so the results can be directly compared. 
 
 The key output variables (KOV) for the insurance simulation model are the indemnity 
payments (F75-F81).  The statistical summary results of a 500 iteration analysis (lines 98-103) 
show that the average indemnity is $9.91/acre for the 50 percent yield coverage option.  At the 
90 percent yield coverage level, the average indemnity is $25.44/acre.  These average 
indemnities represent a minimum insurance premium rate before adding in the profit and the cost 
of administering the insurance program.  The higher the rate of coverage (greater the percent of 
average yield covered) the higher the premium. 
 
 Additionally, counter variables are used as KOVs to indicate the frequency of insurance 
payments (E75-E81).  A counter is created by using an IF statement to have a 1 if an indemnity 
is paid and a 0 if no payment is made or 
 
 =IF(D75 > 0, 1, 0) 
 
The statistical summary for a counter indicates the probability of indemnities.  For example, the 
results (lines 98-103) indicate there is a 23.8 percent chance of an indemnity at the 50 percent 
coverage level and a 45.4 percent indemnity at the 90 percent yield coverage level. 
 
Machinery Replacement 
 
 One of the more difficult problems in simulating a business is the replacement of 
machinery.  There are several ways not to replace machinery, such as:  assume ten percent of the 
inventory is replaced each year or assume the inventory is all new at the outset of the planning 
horizon and all of it is replaced N years later.  Machinery replacement is a lumpy expense for 
businesses because each machine has a different cost and expected life in the business.  Also, 
businesses generally do not replace everything at once, because the economic life of machinery 
on a farm varies by machine. 
 
 The best solution I have found for simulating machinery replacement is to itemize the 
machinery complement and replace each item at the end of its “economic life in the business.”  
The information required to use this method is listed below.  This information must be obtained 
for each machine at the start of the simulation period (at t=0): 
 

− machine name 
− year placed into use 
− original purchase price (excluding trade-in) 
− current market value of the machine 
− current price of a replacement machine 
− number of years machine will be used on the farm 
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In a simulation model, a machine is replaced only if it has passed its economic life on the farm.  
The value of a machine at the time it is replaced (traded-off) after N years is the current value at 
t=0 discounted to the year the machine is replaced.  The cost of a new machine is the t=0 cost of 
a replacement inflated for N years.  The net cost of the replacement is the updated cost less the 
trade-in value. 
 
 Financing machinery replacements can be handled on a machine-by-machine basis with a 
loan for each purchase.  Alternatively the model can sum the new loan requirements and finance 
one new machinery loan for each year machinery is replaced.  I prefer the later myself to reduce 
the number of loans to simulate.  Additionally, with one loan per year your model can easily 
repay the principal early if surplus cash is generated. 
 
 To finance machinery replacements the model must have a value for the minimum down 
payment on machinery loans.  First compare the trade-in value to the down payment 
requirement; if the trade-in is less than the minimum down payment, the deficit must come from 
cash reserves.  Finance the remainder (cost less minimum down payment) at the prevailing terms 
for machinery loans (number of years and interest rate).  If the trade-in value exceeds the 
minimum down payment, then finance the difference and do not pay a cash difference.  Annual 
interest payments appear in the Income Statement and principal payments appear in the Cash 
Flow.  The remaining debt and updated value of machinery appear in the Balance Sheet. 
 
 Refer to Machinery Demo.XLS for an example of how to simulate machinery replacement 
for a business.  This demo program is set to finance the purchase of replacement machinery for 5 
years using fixed interest rate mortgages.  Ten different machinery items are included in the 
demo. Change the information for any or all of the machines to observe the impacts on cash 
outflow requirements, interest costs and the firm's balance sheet.  Adding more machines to the 
spreadsheet can be done by inserting columns before column M, entering the new machines and 
copying the equations for the new machines.  All of the equations should work, but it is your 
responsibility to check them. 
 
 Using this method for replacing machinery will produce an uneven cash flow requirement 
for machinery replacement.  The uneven cash flow requirements need to be evaluated after 
solving for the replacement of each machine to see if “too much” machinery is to be replaced in 
any given year.  Spread out these cash flow requirements by changing the economic life of 
individual machines until the cash flow requirements are reasonable for the business being 
analyzed. 
 
Farm Level Simulation Model 
 
 A 10 year, whole farm simulation model is demonstrated in Farm Simulator Demo.XLS.  
The model is developed using the type of calculations in FLIPSIM (Richardson and Nixon).  The 
model is capable of simulating one, two, or three crops.  Input data required of the user are in 
bold in the Model and the Stochastic worksheets.  Historical prices and yields for the three crops 
on the farm are entered in the Stochastic worksheet.  The historical prices and yields are used to 
develop and simulate a MVE distribution for prices and yields.  Charts showing the historical 
and stochastic prices and yields are provided at the bottom of the Stochastic worksheet. 
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 Projected inflation rates for variable inputs are also entered in the Stochastic worksheet. 
Separate inflation rates for fuel, labor, and other inputs are entered so the model can simulate the 
effects of alternative inflation rates.  Annual interest rates for financing operating costs are also 
included as input for the whole farm simulation model. 
 
 All other inputs necessary to simulate a crop farm are entered at the top (rows 8-71) of the 
Model worksheet.  Assets and liabilities, family living, fixed costs, and other income are 
required for a farm risk analysis.  Budgets for each crop are included along with base acres, 
payment yields, and price wedges.  The price wedges are used to localize stochastic national 
prices for each crop.  Annual values must be provided by crop for:  planted acres, mean crop 
yields, mean crop prices, loan rates, direct payment rates, and target prices.  Planted acres and 
mean yields can come from the producer or the farm plan being analyzed.  Average annual crop 
prices can be obtained from FAPRI or developed from other sources.  Policy values for 2002-
2007 are specified in the 2002 farm bill.  Policy values for 2008-2011 are assumed to remain at 
their 2007 levels. 
 
 The whole farm simulation model is made up of several sections where the calculations are 
done.  A detailed income statement is provided in rows 75-104.  The values reported in the 
statement are calculated in specific sections for each crop.  A cash flow statement is provided in 
rows 106-123 for the express purpose of tracking ending cash reserves.  The farm’s balance 
sheet is in rows 125-136 to calculate net worth. 
 
 Values found in the cash flow and balance sheet are used to calculate net present value, one 
of the KOVs for the farm (rows 140-147).  Three more KOVs useful for evaluating a farm with 
risky cash flows are:  probability of a cash flow deficit, probability of negative cash flows, and 
probability of losing real net worth.  Definitions for these variables are: 
 

- Cash flow deficits occur when cash outlays exceed net cash farm income. 
- Negative cash flows occur when beginning cash plus net cash income and other cash 

earnings are less than total cash outflows.  This is the amount of the operating loan, 
which must be refinanced or carried over. 

- Firms lose real net worth when the present value of ending net worth is less than 
beginning net worth. 

 
 All three of the probability KOVs are simulated using counter variables in rows 149-151.  
When the condition is true the counter is 1, else it is zero.  The probability of a cash flow deficit 
can be simulated for each year using 10 counter variables.  This type of KOV facilitates pin 
pointing years that the firm will likely need to refinance its operating loan. 
 
 The section of the model where crop receipts, expenses, and government payments to crop 1 
are calculated, is in rows 154-189.  Stochastic production equals planted acres times stochastic 
yields.  National prices are adjusted by the local wedge (or basis) to derive stochastic local 
prices. Market receipts equals the product of production and local prices.  LDP, direct and CCP 
government payments are calculated using annual loan rates, target prices and direct payment 
rates.  Base acres and DP and CCP payment yields are used for these calculations.  An AWP 
fraction is used to convert the stochastic national price to a stochastic adjusted world price used 
to calculate the LDP rate. 
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 Costs of production for each crop are calculated using annual inflation rates and the crop 
budgets.  For crop 1 the costs of production are calculated in rows 272-285.  The same steps are 
repeated for crops 2 and 3.  Results from this section are used in the Income Statement.  Other 
costs for the farm are calculated next.  Of particular note are interest costs for the operating loan 
and the operating loan carryover, i.e., for financing cash flow deficits. 
 
 Interest on cash reserves are calculated so they can enter the cash flow statement as earned 
interest.  Family living costs or withdrawals are calculated so these cash outflows can appear in 
the cash flow statement.  Land value is calculated using the user’s assumed annual inflation rates 
for land.  Land value shows up in the asset side of the Balance Sheet. 
 
 The calculations necessary to amortize the original land loan and a beginning farmer loan 
are included in the model in rows 369-442.  Annual interest costs in these schedules are used in 
the Income Statement to calculate total costs.  Annual principal payments for the two loans 
appear in the Cash Flow statement as these are not production expenses.   
 
 The final section of the model includes the calculations to compute annual federal income 
taxes for the farm.  A corporate income tax schedule is used to compute federal income taxes. 
 
 At the top of the model worksheet is a KOV table, rows 10-31.  The table is cell referenced 
to each of the KOVs found in the model.  When the farm model is simulated, the user can 
highlight the same KOVs every time and they are always in the same order.  Given that the 
KOVs are always in the same order, you can develop summary tables for the outputs and 
permanent charts to interpret the results.  An example of such a table is provided in columns AB 
– AK in SimData1. 
 
Simulating an Econometric Model 
 
 Recursive supply demand models for crops and livestock can be estimated and simulated 
using tools provided in Simetar.  A recursive supply demand model for the US soybean sector is 
estimated and simulated in this section.  The Excel demo program is named Soybean Model 
Demo.XLS. 
 
 The objective of the model is to simulate annual prices, ending stocks, and the present value 
of total government payments, 2002-2004, for the 1996 and the 2002 farm programs.  The 
objective requires that the model incorporate different types of farm programs and endogenously 
solve for price. 
 
 The hypothesized equations for the model are: 
 
 Planted Acrest = f (E Pricet, Planted Acrest-1) 
 Harvested Acrest = f (E Pricet, Planted Acrest) 
 Yieldt = f(E Pricet, Yieldt-1, Trendt) 
 Domestic Uset = f (Pricet, Domestic Uset-1, Income/Popt) 
 Exportst = f (Pricet, Exportst-1, GDP EUt) 
 Ending Stockst = f (Pricet, Stockst-1) 
 Define Epricet = Max [Pricet-1 or Loan Ratet] 
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Based on these equations historical data for the endogenous and exogenous variables, 1980-
2001, were obtained and added to the Data worksheet in the demo program. 
 
 A significant time saving step is to create a worksheet for each equation to be estimated.  
The variables hypothesized for each equation are cell referenced from the Data worksheet to be 
equation’s worksheet.  For example the PltAcres worksheet has the values for Planted Acrest, 
Epricet, and Planted Acrest-1.  The multiple regression for each equation is estimated in the 
equation’s own worksheet so it is easy to locate. 
 
 The residuals and the standard deviation of residuals from each of the regression models are 
cell referenced to the Stoch worksheet.  The residuals are used to define and simulate a MVN 
distribution of shocks to the econometric equations.  The stochastic shocks for each year in the 
planning horizon are tested to insure they are appropriately correlated as part of the validation. 
 
 The intercept and slope parameters for the six econometric equations are cell referenced 
from their worksheets to the Model worksheet where the completed model is simulated.  The 
coefficients for each of the equations are assembled in rows 24-40 of the Model worksheet.  
Solving for price in a recursive model is accomplished by first estimating the total demand 
equation, re-writing the equation so that price is a function of quantity, and then solving for price 
using quantity supplied. 
 
 Total demand is the sum of domestic use, exports and ending stocks.  A separate total 
demand equation must be estimated for each year 2002-2004 as the exogenous variables in these 
equations change each year.  The total demand is estimated as: 
 

t t t-1 t 1

t t t-1 t 2

t t 3

t t t-1 t t-1 t 1 2 3

DD  = a + bP  + c DP  + d I  + e
ED  = k + fP  + g ED  + h G  + e
ES  = i + jP  + e
TD  = a + k + i + (b+f+j) P  + cDP  + d I  + gED  + h G  + (e  + e  + e )

 

 

 
t-1 t t-1 t

1 2 3

let A = a + k + i                               
B = b + f + j                                
C = cDP  + d I  + g ED  + h G
e = e e e                               + +

 

 
Then total demand can be written as: 
 

t

t

TD = A + C + B P  + e
or

A C 1 eP  =  +  +  TD + 
B B B B
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which simplifies to  
 

 

tP  =  +  Q +  e
A Clet       =  + 
B B
1           = 
B

α β β

α

β

 

 
The total demand is thus specified as price is a function of quantity and an error term which 
makes the intercept stochastic (Figure 13.1). 
 
 

 
 
 
Given a quantity supplied (Q) in the equation, equilibrium price is found directly by solving the 
demand function.  This is permitted because of the assumption that supply equals total demand 
(Figure 13.1). 
 
 In Soybean Model Demo.XLS the process of deriving total demand for each year is 
summarized in rows 42-52.  The intercepts and slopes on price are summed in rows 44-47.  The 
shift effects for domestic demand t t-1(d I  + c DP )  are calculated in row 44 and added to the 
domestic demand intercept in row 50.  Similar steps are done for exports.  The total demand 
intercept changes each year (cells E54:H54) because the exogenous variables 

t-1 t-1(I, G, DP  and ED )  and the stochastic shocks change annually. 
 
 Because quantity supplied is a function of expected price it is determined in row 73 and then 
used in the price equation (row 56) to display price in the current year.  This specification is 
consistent with the fact that the season average price is largely determined after harvest and 
supply is known with certainty (Figure 13.1).  Supply is calculated as a sum of fixed imports (3.0 
each year) and production.  Stochastic shocks on yields, planted acres and harvested acre 
equations cause supply to be a stochastic variable in addition to responding to lagged prices and 

Figure 13.1.  Price Dependent Demand Function 
and Supply Determine Price.
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current policy variables.  It is assumed that for the simulation period the expected price is 
defined as: 
 

- 1996 farm bill 
E Pricet = Max [Pricet-1, Loan Ratet) 

 
- 2002 farm bill 

E Pricet = Max (Pricet-1, Target Pricet) 
 
 Once price is calculated the value is used to simulate domestic demand and exports.  
Domestic use and exports (rows 76 and 77) are calculated using the stochastic price and the 
appropriate exogenous variables and stochastic shocks used in rows 44 and 45 to estimate total 
demand.  Ending stocks are solved as an identity: 
 
 Ending Stockst = Supplyt – Domestic Uset – Exportst 
 

One of the KOVs is the present value of total receipts plus government payments.  Direct and 
counter cyclical payments are calculated under the 2002 farm bill using base acres, direct 

payment yields and counter cyclical payment yields.  A CDF chart of the PV of total revenue 
under each policy is provided in the SimData worksheet.  The simulated annual soybean prices 

are summarized using a fan graph in the SimData worksheet.
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Chapter 14 
Simulation Applications for Business Management 

 
 

 Simulation is a useful tool for risk management in business.  Several different examples of 
using simulation for business risk management are presented in this chapter.  The first section 
describes how to develop a financial risk management model.  The second section demonstrates 
how simulation can be used to conduct portfolio analyses.  The third section deals with project 
management under risk while the fourth section demonstrates how to use simulation for 
developing a bid for a risky project.  Simulation can be used to conduct feasibility studies for 
risky investments or projects as demonstrated in the fifth section.  The last section of the chapter 
presents an example of using simulation for inventory management. 
 
Financial Risk Management 
 
 Financial risk management can take on different meanings, depending on whether you are 
the borrower or the lender.  Borrowers need to manage risk to insure their ability to repay loans, 
remain solvent and ultimately increase real net worth.  Lenders are interested in making loans to 
borrowers who have high probabilities of repaying their loans on time.  A financial risk 
management model for the borrower will generally work for the lender, at least to determine 
whether the borrower is a good risk for a particular loan. 
 
 The length of loan under consideration will dictate the type of financial risk management 
model developed.  A one-year operating loan requires a much simpler model than a 5 to 10 year 
loan for machinery or buildings.  To demonstrate a financial risk management model a one year 
operating loan is analyzed.  Risks affecting the repayment capacity of the borrower are:  
production, production costs, and price of the output.  Risk management tools the borrower could 
make use of are production insurance, options or futures markets, and government payments.   
 
 The financial risk management demo program, Financial Risk Management Demo.XLS, is 
for a one year analysis of a corn farm.  The variables the user may change are bolded and 
confined to rows 7-63.  The user can change crops by inserting the relevant values for risk, costs, 
loans, crop insurance, and hedging strategies.  The demo program is capable of simulating and 
comparing 9 alternative risk management strategies at once (see row 69 for the nine scenario 
names).  The risk management strategies are combinations of hedging and crop insurance that a 
producer could consider and a lender may require.  The base scenario is a no insurance, no hedge 
strategy. 
 
 The information for 3 levels of MPCI and 3 levels of CRC insurance is provided as input in 
rows 41-44.  The user specifies which level of MPCI coverage to simulate using a 1, 2, 3, switch 
in row 20.  A similar switch for CRC insurance is provided on row 21.  Table lookup functions 
in the model use the switches to get the appropriate insurance values for the simulation. 
 
 The marketing risk management strategies involve hedging a fraction of the crop using the 
futures market or buying put options.  Information to specify the marketing strategies is provided 
on rows 25-29.  Both hedging and options are included because lenders and borrowers should 
consider the certain costs of the option premium versus the uncertain risk of hedging losses in 
the futures market. 
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 Provisions in the 2002 farm bill contain safety net payments.  The farm’s parameters for the 
farm program (base acres and payment yields) are entered on rows 32-37.  National farm 
program provisions must be entered as well so government payment rates for CCP and LDP 
programs can be simulated (rows 32-35). 
 
 The loans to be evaluated are specified in rows 10-22.  Information for the farm’s operating 
(self-liquidating) loan is provided first, followed by the parameters for a proposed loan and then 
parameters for three existing loans.  The information for an operating loan consists of the interest 
rate and a value for the fraction of the year that the loan is outstanding.  Operating loans are one 
year loans that are repaid after the crops are sold.  Note that the repayment of the principal is not 
shown in the financial tables, because the loan is to purchase inputs for production.  Including 
the costs of inputs in the income statement automatically accounts for the “repayment” of the 
operating loan to purchase the inputs.  As a result an operating loan can be simulated by:  (1) 
assuming the operating loan is for the total amount of fixed costs, variable production costs, 
harvesting costs, and costs for options; and (2) assuming the full amount of the loan is paid 
interest for only a fraction of the year.  For example a $100,000 operating loan, issued as a line 
of credit, is not fully borrowed until the end of the season; therefore interest may only be paid on 
66 percent of the total loan amount.  Interest on operating loans is calculated in rows 140-150 for 
the 9 risk management strategies. 
 
 Calculations for MPCI production insurance and cash receipts insurance (CRC) are in rows 
111-137.  The premium costs are calculated at the first of the year.  Indemnities paid are 
calculated using stochastic yield and prices assuming the crop is harvested and year end prices 
are known.  Market receipts and government payments are calculated assuming all payments are 
received once the crop is sold (rows 153-175).  Government payments are actually paid at 
different times during the year.  This simplifying assumption is not significant because the bank 
holds a lien on the payments no matter when they are paid. 
 
 The gains and losses from hedging are calculated in rows 178-193.  If the high price for the 
futures contract exceeded the hedge price objective, a hedge is placed.  To simulate whether a 
hedge is placed or not a random variable for the December corn futures high prices is used (rows 
47-61).  When the simulated high price exceeds the hedge objective then a hedge is placed and 
gains or losses are calculated.  A gain is observed if the stochastic October futures price is less 
than the hedge price objective.  A loss occurs if the October futures price exceeds the hedge 
price objective.  More complicated hedging strategies could be programmed to test different risk 
management schemes that utilize the futures market. 
 
 The gains from buying puts at a specified strike price are calculated given the stochastic 
futures price at harvest (rows 182-192).  The premium is paid at the start of the year based on the 
option premium specified in the input. 
 
 Each loan is amortized separately and the principal and interest costs are reported for the 
year being simulated.  Federal income taxes for the farm are calculated assuming that the farm is 
taxed as a corporation.  This assumption avoids calculating self-employment taxes and medicare 
taxes. 
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 The results of the costs, receipts, and tax calculations are summarized in pro forma financial 
statements in rows 67-103.  The key output variables for the business are:  net cash income, 
ending cash balance, annual probability of cash flow deficits, and annual probability of negative 
ending cash reserves (refinancing).  The results for the two types of probability KOVs can be 
summarized in a bar chart to show the risk exposure under alternative risk management 
strategies (Figure 14.1). 
 
 Financial risk management analyses for a business are easily programmed as a simulation 
model.  All businesses face stochastic production and output prices.  If input costs are stochastic 
they can be included in the model.  The range of risk management options will differ by business 
but the examples provided in this section should suggest a variety of strategies which could be 
analyzed.  A range of risk management strategies should be analyzed as the financial risk of a 
borrower will differ significantly under alternative strategies. 
 

 
 
Portfolio Analysis 
 
 A portfolio is a combination of different investment options that are combined based on 
fractions of separate investment instruments.  Given two risky investment instruments, X and Y, 
one can define an infinite number of portfolios by selecting, α , the fraction of X in the portfolio 
or: 
 
 i i iP  = X + (1 - ) Yα α  
 
at the extremes, α  equals zero or one and the portfolio has all X or all Y, respectively.  Any 
value of α  between zero and one defines a possible portfolio of X and Y. 
 

Figure 14.1.  Example of Using a Bar Chart to Present Probabilities of Deficits and 
Refinancing for Alternative Risk Management Strategies. 
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 Given two risky investment instruments the mean return equals 
 
 x yMean =  r  + (1 - ) rα α  
 
where x yr  and r  are the average returns to X and Y.  The variance on returns for a portfolio 
equals 
 
 2 2 2 2

x y x yVar =  S   + (1 - )  S  + 2 (1 - ) S  Sα α α α ρ  
 

2 2
x ywhere S  and S  are the variances of returns for X and Y, respectively, and ρ  is the correlation 

between returns on X and Y. 
 
 The portfolio that minimizes the variance on returns is defined by Bell and Schleifer as 
 

 y y x
2 2
x y x y

S  (S  - S )
 = 

S  + S  - 2 S  S
ρ

α
ρ

 

 
Diversification of an existing portfolio will reduce risk if and only if  
 

xy xy,z xy,z

xy
xy,z
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 >  * 
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 < 

σ σ ρ

σ
ρ

σ

 

 
where xyσ  is the standard deviation of returns for the existing portfolio between X and Y, 
defined by ,α  xy,zσ  is the standard deviation of returns for the proposed portfolio that includes 
Z, and xy,zρ  is the correlation of returns between the existing XY portfolio and the proposed X, 
Y, Z portfolio.  A new investment, Z, is always of value for diversification if the returns to Z are 
independent or negatively correlated to returns for the existing portfolio (Bell and Schleifer). 
 
 The process of calculating pair wise standard deviations and correlations for alternative 
portfolios is time consuming and can be confusing.  Simulation and risk analysis offers a direct 
approach for evaluating alternative portfolios with many different investment instruments.  In a 
simulation context, portfolio analysis is simply the evaluation of alternative investments that 
could have occurred.   
 
 To simulate how the different possible investments might have performed we simulate the 
returns for proposed portfolios as stochastic variables.  Assume there are 10 separate investment 
instruments available with adequate history of returns, ir ,  to define a MVE distribution.  (If the 
investment is long term use annual rates of return and if the investment period is short term use 
monthly returns to define the MVE distribution.)  Simulate stochastic rates of return for each 
investment i(r )  using the MVE and evaluate the performance of possible portfolios as: 
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The values for the iα  weights change from one portfolio to another.  For all portfolios the 
following restriction must hold: 
 

 
10

i
i=1

1.0 =  α∑  

 
The KOVs for the simulation model are the iP  returns for the N alternative portfolios being 
evaluated.  Stochastic dominance and dynamic certainty equivalents can be used to rank the 
alternative portfolios. 
 
 To demonstrate how simulation can be used for portfolio analysis the historical returns for 
ten mutual funds are analyzed in Portfolio Analysis Demo.XLS.  The steps followed in the 
analysis are: 
 

– Check the data for a trend in the annual rate of return. 
– Calculate the parameters to simulate the individual mutual funds as a multivariate 

empirical distribution. 
– Simulate each mutual fund as a random variable (lines 30-37). 
– Identify alternative portfolios that are made up of different portions (fractions) of each 

fund (lines 119-130). 
– Simulate each of the nine mutual funds as if they are mutually exclusive investments 

(lines 101-110). 
– Multiply the simulated rates of return by alternative portfolio proportions and sum across 

the mutual funds to determine the annual rates of return for each portfolio (lines 133-
144).  These six annual rate of return variables are the key output variables (KOVs) for 
the simulation analysis. 

– The final step is to analyze the simulated outcomes for the six portfolios using StopLight, 
Stochastic Dominance, Certainty Equivalents, and CDF graphs. 

 
 The results of the portfolio analysis are presented in the different worksheets in Portfolio 
Analysis Demo.XLS.  The simulation results are in SimData.  The StopLight and CDF results 
are in their own worksheets.  The summary statistics for two separate simulations of the 
workbook are summarized in lines 148-163 to demonstrate that all of the portfolios are 
associated with lower relative risk than any of the individual mutual funds.  Portfolio 10 had the 
lowest CV (63.97 percent) while the CVs of the individual funds ranged from 90 to 215 percent. 
 The Certainty Equivalent analysis indicates that decision makers who are risk neutral to 
moderately risk averse prefer portfolio 11, but those who are more risk averse prefer portfolio 
10. 
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Project Management 
 
Project management refers to the development and analysis of a plan for completing a 

project which has multiple parts or activities.  For example, a manager may be asked to develop 
a detailed plan for expanding the business by adding a new division or analyzing the 
development of a new product.  The detailed plan would list all of the activities to be done, an 
estimate of the time to complete the project, and a cost estimate.  The project management plan 
may or may not include risk variables. 
 
 Project management is a natural application for stochastic simulation because any plan or 
feasibility analysis should account for the affects of risk on its success.  Imagine how much more 
complete a report for a proposed business expansion would be, if it included probability 
distributions for days to completion and costs, as well as probabilities for achieving the decision 
makers key output values.   
 
 The fundamentals for developing a project management plan under uncertainty are 
presented in this section.  The example project selected to demonstrate the techniques is the 
development of a large scale economic simulation model.  The steps involved in carrying out a 
project management analysis are: 
 

• Identify the activities and their order, 
• Develop a network diagram of the project,  
• Determine the time step (days, weeks, or months) for each activity, 
• Calculate the start and end times for each activity, 
• Determine costs for each activity on a dollar per day, week, or month basis,  
• Assign risk to the length of time for each activity, and 
• Simulate and validate model before writing the report. 

 
− Identify Activities and Their Order 
 

List all of the activities necessary to successfully complete the project.  Start at the 
beginning and keep them in the order they will be started.  An example of a list of project 
activities is provided in Column B of the Project Management Demo.XLS workbook (Figure 
14.2).  In the demo program you will find all of the steps necessary to develop an economic 
simulation model.  Each activity is assigned a number in Column A for reference (Figure 14.2). 
 

The order that the activities must be started is indicated by specifying the immediate 
predecessor activity in Column C of Figure 14.2.  Activity 1 precedes activities 2 and 3 and 
activity 4 cannot start until both activities 2 and 3 are completed.  Following down Column C in 
the demo program we find bottlenecks will likely occur at activities 4, 14, and 19.  Bottlenecks 
occur when an activity cannot proceed until all of its predecessors are completed. 
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Figure 14.2.  Project Management with Simulation. 

 
 

 
 

 
 

 
− Network Diagram 
 
 A simple network diagram of the activities can be developed using the Drawing toolbar in 
Excel.  (The network diagram in the demo program was drawn using the Auto Shapes > Basic 
Shapes and Auto Shapes > Connectors on the Drawing toolbar.  For a tutorial on developing 
network diagrams with Excel refer to Appendix A.)  Simple abbreviations to describe the 
activities can be typed into the flow chart boxes.  Arrows from the Connectors menu simply 
attach the boxes in the order specified in Column C.  Double clicking on a drawn object allows 
one to move it any place on the worksheet, so the relational order of activities can be easily 
changed.  The network diagram should visually show how the activities are related, the 
predecessors and the bottlenecks. 
 
− Time for Each Activity 
 
 The unit of time (days, weeks, or months) will depend on the project.  The demo project is 
specified in days.  In the initial phase, the project management table should be developed 
ignoring risk on time required to complete each project, as shown in Column D of Figure 14.2.  
After the equations for the next step (Columns E and F) are developed and validated, the time to 
complete each project will be made stochastic.  (Set the Simetar Simulation Engine option to 
Expected Value and then click the Save button to see the demo program as it looked in the initial 
phase with deterministic days to completion.) 
 
− Calculate Start and End Times 
 
 The formulas used to calculate the start and end times for each activity are provided in 
Columns L and M of Figure 14.2.  The end time for activity 1 is the number of days to complete 
the activity (or D1).  The start time for activities 2 and 3 is the end time for activity 1 because 
activity 1 is the immediate predecessor activity for 2 and 3.  End time for activity 2 is its start  
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time plus the time required to complete activity 2.  Repeat these formulas for calculating the start 
and end times until you get to a bottleneck activity.  The basic formulas are: 
 
 Start time activity i = End time for predecessor to i 
 End time activity i = Start time i + Time to Complete i 
 
 The start time for a bottleneck activity that is dependent on two or more predecessors is 
calculated using the Excel maximum command.  For example, the start time for activity 14 is 
dependent on completing activities 7, 9, and 13 so the equation is written as the maximum of 
(End time 7, End time 9, or End time 13) or in Excel this is: 
 
 =MAX (F17, F19, F24) 
 
in cell E26 (Figure 14.2).  The end time for the last activity is the key output variable (KOV) for 
the length of the project. 
 
− Determine Costs 
 
 The cost per unit of time should be specified separately for each activity.  This allows 
experimentation with alternative cost scenarios.  For example, you may want to contract out 
certain activities to free up internal people so the project can be done faster.   
 
 The per day costs in the demo program for each activity are in Column G (Figure 14.2).  
Total cost of each activity is the product of time to complete in Column D and cost per time unit 
in Column G.  The sum of total costs over all activities is the second key output variable (cell 
H34 in the demo program). 
 
− Assign Risk 
 
 Simple GRK probability distributions are used for the demo program to make the time to 
complete each activity stochastic.  The time to complete cells in Column D are stochastic and 
use the minimum, expected, and maximum days to complete in Columns I, J, and K, 
respectively.  Project management literature refers to these GRK parameters as pessimistic, 
expected, and optimistic time to completion. 
 
 The GRK distribution is used in the demo because it readily conforms to the optimistic-
pessimistic paradigm.  The GRK distribution could be replaced with any distribution you believe 
best fits the times to complete variables. 
 
− Simulation and Validation 
 
 Verification of the formulas used to calculate the start and end times must be done while 
Simetar is in Expected Value mode.  (See Chapter 16 for using this setting in the Simetar 
Simulation Engine.)  These formulas must be checked carefully because millions of dollars may 
rest on their accuracy.  Once the formulas are verified and found to be correct, it is time to 
simulate the model stochastic. 
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 Validation of the stochastic model should start with checking the simulated time to complete 
variables.  This is necessary to insure that the program is accurately simulating the specified 
distributions.  Check for negative times to complete and values that are un-realistically large.  
Remember if you use the GRK distribution, the simulated minimums and maximums will extend 
beyond the specified minimum and maximum in Columns I and K about 3 percent of the time. 
 
 Once the model is validated, simulate it and collect the statistics for time to complete and 
total cost.  CDFs and StopLight summaries of these key output variables will be useful for 
summarizing the project management analysis.  See the Project Management Demo.XLS 
workbook for an example of the outputs generated with a simulation model for project 
management. 
 
Bid Analysis  
 
 Budgets are a standard tool for decision makers and are usually the foundation for preparing 
bids on proposed projects.  In the area of project analysis, pro forma budgets are prepared for 
evaluating new projects and prior to bidding on contracts.  Generally, such budgets are prepared 
with less than perfect knowledge as to the actual expenses that will be incurred for each cost 
category.  In the best of cases, experts within each area (or activity) of a project are consulted as 
to the expected cost for an activity.  Risks associated with project costs are generally not included 
in the budget, thus contributing to cost over runs and project managers looking for new jobs. 
 
 Successful businesses are not awarded every bid they submit, but they make a profit on 
every award received.  The key then is to submit bids that provide an acceptable probability of 
making a profit, given the risk and hope that it is the bid that is accepted.  Adding risk to a 
project budget analysis and bid development is a simple task that can be done with simulation.  
An example of a project budget analysis for developing a bid under risky conditions is presented 
in this section.  The steps to conducting this type of analysis are: 
 

• Identify the cost categories for the project, 
• Develop probability distributions for the cost categories, and 
• Validate and simulate the model. 

 
− Identify Cost Categories 
 
 Identify all of the cost categories (activities) for the proposed project.  The order of the cost 
categories is not crucial but putting them in chronological order may insure that none of the 
activities are left out.  In the second step, develop probability distributions for each cost category 
so consider this when developing the list of activities. 
 
 The more focused the cost categories list the easier it is to develop the pdfs for cost.  For 
example, there is considerably more uncertainty associated with defining a pdf for the cost of a 
new building than the uncertainty surrounding the pdf for the cost of carpet for the building. 
 
 The Bid Analysis Demo.XLS workbook demonstrates how to construct and use a bid 
analysis simulation model.  The example is based on the cost categories a general contractor 
might go through to develop the bid for a house.  Although a general contractor may have built  
many homes, each bid must be developed based on the specifications for the proposed building 
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and current materials prices.  The list of cost categories in the demo worksheet reflect the 
activities the contractor wants to consider for the bid. 
 
− Develop PDFs for the Cost Categories 
 
 Each of the cost categories can be a random variable.  Initially assume that the random 
variables are independent.  The parameters to define the PDFs can come from several sources, 
such as: 

 
• Historical cost data for similar projects, 
• Experts in the field, and 
• Personal experience of the project manager, i.e., subjective distribution. 

 
 Historical information for similar projects will likely be the source of data for most project 
analysis simulation models.  The project manager may not have supervised exactly the same type 
of project, but he/she could have a history of the costs for particular activities.  For example, site 
preparation may call for leveling the ground, tree removal and soil testing.  Based on past 
building projects in the area, this cost has ranged from, say, $500-$1,000 and appears to be 
uniformly distributed. 
 
 Another example of using historical data would be the cost of permits and fees.  These types 
of costs are published or available from the county courthouse and are deterministic.  The more 
cost categories identified in Step 1 the more PDFs that must be parameterized, but it is easier to 
find historical data for narrowly defined cost categories. 
 
 Experts in the area are an excellent source of information for parameterizing the cost 
category PDFs.  The more narrowly defined the cost categories, the easier it is to find an expert 
and to solicit information from the expert.  For a construction project we would call on a 
excavation company to quote a bid to supply sand and gravel to the site.  Early on in the process 
they may give a range of, say, $3,000 to $5,000 with an average of $4,000.  This information 
fully defines a GRK distribution.  Similar, information can be obtained from other experts or 
subcontractors on the project.  You do not have the contract yet, so you do not have to pin down 
the subcontractors to a single value; just get a range for the cost of each part of the project. 
 
 The final source of information for parameterizing PDFs about cost activities is the project 
manager’s personal experience.  This may largely be based on the manager’s subjective 
expectations for the cost categories, given the specifications for the proposed project.  Some of 
the subjective distributions may have less risk (see framers costs in demo) while others may have 
considerably more risk (see trim carpenters costs in demo).  Subjective distributions are based on 
past experiences of the project manager and expectations for the particular project under analysis. 
 
− Validate and Simulate the Model 
 
 Once the parameters are developed for each of the cost categories they can be assembled into 
a bid analysis simulation model.  See Bid Analysis Demo.XLS for an example of a simulation 
model for conducting a project analysis.  The cost categories are listed in column A.  Parameters 
for the distributions on the respective cost categories are in columns G-J.  For the demo 
worksheet, the simulated values for each distribution appear in column E under the heading Cost. 
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 Interest costs are a function of all cost categories in rows 11-37, the number of days to 
complete the project, and a stochastic interest rate.  Interest rate is assumed to be normally 
distributed and the number of days to completion are distributed GRK based on the project 
manager’s subjective distribution.  (Days to completion could be generated from a Project 
Management simulation model.) 
  
 The bid analysis should include the contractor’s profit as an explicit cost category to 
calculate total costs.  In an effort to be the low bidder, however, the firm may be willing to 
accept a reduced profit.  This strategy is risky, particularly if unforeseen cost overruns erode the 
contractor’s reserve for profit and risk returns.  To quantify this risk a cost overrun calculation is 
recommended.  Cost overrun is calculated using the formula  

 
= IF (Total Cost >  Bid Price),  (Total Cost -  Bid Price),  0b g  

 
 In the demo program the Simetar Scenario option was used to analyze the probability 
distribution for cost overruns under alternative bid assumptions.  Four bids of $190K, $195K, 
$200K, and $205K are simulated based on expected total cost of $198,525.  The simulation 
results for the four bid scenarios are saved in the Cost Overrun worksheet.  (The cell E47 in 
Sheet 1 is the KOV.)  The results for the four bid scenario simulation quantify the PDF for 
potential cost overruns given the bids.  CDFs and a Target Probability analysis of the Cost 
Overrun PDFs are included in Sheet 1 of Bid Analysis Demo.XLS for ease of reference. 
 
 Results of the four bids are significantly different.  The probability of a cost overrun ranges 
from 21 to 87 percent.  The probability of a cost overrun exceeding $10,000 ranges from 0 to 36 
percent depending on the bid.  If the contractor thinks that the only way to win the contract is 
with a bid of $200,000 and the 6.5 percent chance of a $10,000 or greater cost overrun is 
acceptable then he/she will submit a bid.  A $190,000 bid has a 36 percent chance of a $10,000 
or greater cost overrun which may discourage the contractor from submitting a low-ball bid. 

 
Project Feasibility 
 
 Economists are frequently called on to develop project feasibility studies.  Requests for 
feasibility studies of new value added ventures such as gasohol plants, livestock processing 
plants (e.g., cattle, goats, sheep, poultry), cotton gins, grain elevators, flour mills, etc. appear to 
be growing at an ever increasing rate.  As farmers and agribusiness try to gain a larger part of the 
consumer’s dollar, their interest in value added ventures will expand.  The purpose of this 
section is to develop and demonstrate a comprehensive project feasibility simulation model.  A 
secondary purpose is to suggest ways in which project feasibility models can be used to manage 
the project if it is undertaken. 
 
 Feasibility studies have historically ignored the presence of risk, which is interesting in that, 
many proposed projects seek to reduce producer’s income risk.  Although Richardson and 
Mapp’s feasibility study for a business demonstrated the usefulness of stochastic simulation for 
project feasibility more than 20 years ago, the methodology is not widely used.  Gray developed 
a comprehensive stochastic simulation model of an agribusiness to test management strategies 
but not as a feasibility analysis.  Outlaw, et. al. and Gill have recently (2002) used stochastic 
simulation to analyze the feasibility of gasohol plants in Texas.  In the process of doing these 
two studies more than 50 feasibility studies from across the country were reviewed and none 
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used a stochastic simulation model.  Most all feasibility studies use deterministic simulation 
models that simulate the annual income, expenses and cash flows of a business. 
 
 Using a stochastic simulation model for a project feasibility study offers many advantages 
over simple deterministic simulation models.  The deterministic modeling approach ignores risk 
so to compensate most economists use sensitivity analyses on critical values or resort to Best 
Case-Worst Case scenarios.  Another drawback to deterministic modeling is that the studies 
result in a single answer for the project’s feasibility and one has no idea if the answer is the mean 
of the distribution or not. 
 
 The advantage to using a stochastic simulation approach is that the feasibility of a project is 
reported as a distribution of possible outcomes, not one value.  Therefore whether the project 
fails or succeeds, the analyst can say, “I was right, I told you there was an X% chance of  failure 
or there was a Y% chance of success.”  The additional cost of doing a stochastic feasibility study 
over a deterministic study is small give the availability of computers, the wide spread use of 
Excel for calculating (simulating) income/expenses and cash flows for new projects, on the ease 
of using simulation Add-Ins for Excel.  Besides most deterministic models for feasibility studies 
use a spreadsheet approach to calculate the pro forma financial statements. 
 
− Project Feasibility Model 
 
 Project feasibility models can range from very simple to very complex simulation models of 
a proposed investment.  The KOV is always, “will it be profitable?”  This leads to defining 
several KOVs in the model such as: 
 

- Probability of solvency, 
- Probability of a positive net present value, or economic success, 
- Probability of increasing real net worth, 
- Probability that the return on equity exceeds x, 
- Probability of annual cash flow deficits or refinancing, 
- Net present value (NPV), 
- Annual net worth, 
- Annual cash reserves, 
- Annual net cash income, 
- Annual expenses (by category and total), and 
- Annual receipts (by category and total). 

 
The list of KOV’s is similar to the pyramid in Chapter 2 that shows the steps to building a 
simulation model, start with the most important KOV and work backwards to define secondary 
KOV’s needed to calculate the preceding KOV. 
 
 The next step in developing a stochastic simulation model for project feasibility is to gather 
data to define the input/output relationships.  The amount of raw input per unit of saleable output 
depends on the proposed plant size.  In some cases, the availability of raw inputs may dictate the 
size of the plant, for example a closed cooperative may limit inputs to the production of raw 
materials from its member/owners.  In any event, the input/output relationship and plant size will 
dictate the amount of raw input required and output to generate.  Next one must determine if the 
input/output relationship is fixed or stochastic and if it is stochastic obtain parameters to simulate 
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the relationship.  Generally there is a fixed input/output relationship due to some biological or 
technology constraints that dictate the value and hold it constant. 
 
 Once plant size and the input/output relationship is determined, the analyst must develop 
costs for the given plant size.  The overall fixed cost of land, buildings, machinery, trucks, etc. 
for the project can be obtained through various sources, including information for similar plants 
in other regions and costs for local sites.  Operating costs will be unique for the plant size and 
input/output relationship so a matrix of costs must be developed if multiple plant sizes are being 
considered.  It is recommended that operating costs be separated into functional categories rather 
than estimated as large aggregates.  For example, an estimate of electricity usage is more reliable 
than an estimate for all energy (electricity, natural gas, diesel, and gasoline) for a facility.  It is 
also recommended that costs be broken down into the quantity purchased and its per unit price. 
This approach facilitates stochastic simulation, i.e.., electricity cost = electrical use kwh * 
stochastic price per kwh. 
 
 Parameters for all stochastic variables can be estimated from historical values or the 
experience base of experts.  Historical prices for inputs such as electricity, labor, fuel, and raw 
input (corn, steers, etc.) and price of the output (ethanol, beef, etc.) can be used to estimate 
parameters for these probability distributions.  Where historical data are not available, such as 
quantities used for various inputs, then use the experts in the field to define GRK distributions.  
The more narrowly the analyst defines the cost categories the easier it is to find an expert to 
specify the distribution in question.  For example, plant managers can more easily define ranges 
on electrical rates than for all fuel costs; or more easily specify wage rates by function area than 
total salary for the plant. 
 
 The cost of the raw input and the price of the output are the two most important stochastic 
variables to include in the model.  Other variables that are subject to change from one period to 
another, and constitute a large portion of costs should be simulated stochastically.  Once the 
parameters for the stochastic variables are determined the analyst can verify and validate the 
model and proceed with the analysis.  A demonstration feasibility study is presented next. 
 
− Preliminary Project Evaluation 
 
 The feasibility study presented in Project Feasibility Demo.XLS is abstracted from a 
feasibility study developed at Texas A&M (Gill).  The original model was used to analyze the 
economic viability of developing a 30 million gallon ethanol plant in Texas (Gill).  The model 
has all of the components outlined above as well as several components unique to the area.  For 
example, Texas is a corn deficit region so the stochastic corn price is simulated using risk about 
a national average FAPRI forecast plus a local wedge (a) or 
 
 TX Nat.PCorn  = a + PCorn   
 
 Another aspect of the feasibility study is that the stochastic price for DDGS was simulated 
using the relationship between DDGS and soybean meal.  This is done much like the corn price 
because there is no national or state forecasts of annual DDGS prices. 
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 The conversion rate between corn and ethanol is held constant as this is a fermentation 
process not subject to external forces such as weather.  A learning curve is used to reduce output 
less and less, relative to capacity, each of the first three years as the plant comes on line. 
 
 Variable costs are separated into 10 categories that corresponded to ethanol plant costs 
widely available in the literature.  Of the input costs only prices for corn, electricity and natural 
gas are stochastic.  Trend projections for costs of electricity and natural gas are used to develop 
means for these random variables.  Annual average price projections for corn and soybean meal 
came from FAPRI.  Mean ethanol prices are specified as constant values that could be changed 
via a scenario analysis table.  A MVE distribution of the stochastic prices is developed using 
residuals about their respective trend lines (see Stochastic worksheet).   
 
 The proposed firm is assumed to be taxed as a corporation.  The federal income taxes show 
up as a cash outflow and no state income taxes are calculated.  (The federal excess tax exemption 
for ethanol is ignored in the model.)  Dividends are calculated as a fixed fraction of positive net 
cash income.  Ending cash balance is an asset if positive and a liability if negative.  Repayment 
of cash flow deficits appears in the next year’s cash flow and interest to finance a negative cash 
flow is an expense in the next year. 
 
 The balance sheet includes cash reserves and other assets as well as the remaining balance 
of the original loan for the plant.  Net worth is calculated and in turn is used to calculate net 
present value: 
 

 t
t 10

BeginningDividends Ending Net WorthNPV =   -    -  
Net Worth(1 + i) (1 + i)∑  

 
A switch variable is used to count the number of times NPV is positive so the probability of 
economic success can be calculated directly by Simetar.  The probability of negative annual cash 
flows is calculated using a counter for each year that is 1.0 if cash flow is negative and 0.0 
otherwise.  Other KOVs can be added to the model to suit the decision maker’s interests. 
 
− Uses of a Project Feasibility Model 
 
 Once a feasibility model is completed it should be verified and validated thoroughly.  
Remember, lots of money, your reputation, and job are riding on the model so check it closely.  
After the model is verified then proceed with the feasibility study. 
 
 Scenario or sensitivity analyses should be done on variables that are crucial to success, such as: 
 

- Project cost, 
- Loan terms:  years, interest rate and down payment, 
- Dividend fraction, 
- Inflation rate for variable costs, 
- Input/Output relationship, 
- Variable costs, 
- Policy variables as state and federal subsidy rate, and  
- Mean levels of stochastic prices. 

 



--- Chapter 14 --- 15

 
Charts of the NPV, present value of ending net worth, and ending cash reserves can easily be 
developed to communicate the results to potential investors.  Be careful not to overwhelm them 
with numbers.  Hold the scenario analyses to the end. 
 
 After a project is completed the feasibility model can be used to test alternative management 
strategies for the business.  Additionally, as the plant is being built, refinements to the actual 
plant cost estimates can be made and the feasibility analysis updated.  This updating activity is 
highly recommended if early estimates of plant costs are exceeded during plant construction.  
Also, updated information can give investors early warning if the distribution on returns is 
shifting to far to the left, given cost over-runs during construction. 
 
Inventory Management 
 
 All business managers face inventory management decisions.  When to re-order and how 
much to order are the variables of interest for inventory management.  Factors that should be 
considered when formulating a inventory management rule are: 
 

- Cost of storage or the holding cost 
- Cost of placing an order 
- Cost of lost sales due to losing a customer 
- Delivery time from the time the order is placed 
- Can demand be back lagged if inventory runs out? 

 
  An inventory management rule considers the factors listed above to establish the two 
parameters in the rule: 
 

- Amount to order 
- Reorder point 

 
The amount ordered when an order is placed is an obvious part of the rule.  The reorder point is 
the level of inventory when an order is placed.  To develop an inventory management rule when 
demand per period is random a simulation model can be developed. 
 
 An inventory management simulation model is a periodic model (weekly, monthly, etc.) 
based on the frequency of inventory checking.  The problem should be simulated for numerous 
periods, say 50 or more, to test the economic benefits of alternative inventory management rules. 
 Alternative management rules are specified, simulated, and analyzed to determine which one is 
preferred in terms of reducing total costs.  The alternative management rules can be specified as 
if they are alternative management scenarios and simulated by Simetar. 
 
 The example inventory management model in Figure 14.3 assumes a period of one week, 
weekly demand is stochastic and is distributed N(40,6), shortage cost is $10/unit, and holding 
cost is $3/unit/week.  Ordering costs are:  $200 fixed cost to place an order, per unit purchase 
cost is $4, and delivery takes one week.  Beginning inventory for week 1 is 100 units and the 
order up to this amount is 150 units, which defines the largest order permitted.  The five different 
reorder points to test for an inventory management rule are 50, 60, 70, 80, and 90. 
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 The simulation model starts with stochastic weekly quantity demanded values in row 10.  
Beginning inventory in row 13 equals ending inventory for the previous week (row 19).  The 
quantity ordered each week (row 14) is solved using an if statement: 
 
 =IF (Beg. Invent. < Reorder point, (Order up to Amount – Beg. Inventory), 0) 
 
Amount received in each week (row 15) is the amount ordered in the previous week.  Available 
supply equals beginning inventory plus the units received for each week.  Weekly sales equal the 
lesser of stochastic demand or available supply or: 
 
 =IF (Demand < Supply, Demand, Supply) 
 
Inventory at the end of the week equals available supply minus sales.  Lost sales are calculated 
as stochastic demand minus sales. 
 
 

Figure 14.3.  Example of an Inventory Management Simulation Model. 
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 Costs for the business are broken into several categories (Figure 14.3).  Storage cost is the 
per unit weekly holding cost times beginning inventory.  Order cost equals the fixed cost of 
placing an order, if an order is placed that period.  Purchase cost is the per unit cost of the item 
times the number ordered.  If a shortage occurs the penalty cost equals the units of lost sales 
times the shortage cost.  The shortage cost is used to penalize an inventory management scheme 
that tries to maximize profits by holding down storage costs.  (Shortage cost may be zero if lost 
sales can be back lagged).  
 
 Revenue to the business is simply quantity sold times price per unit of good sold (Figure 
14.3).  Profit equals total revenue minus the sum of costs.  Five possible KOVs are suggested for 
evaluating the five inventory management rules specified in the Scenario Table.  The manager 
may want to maximize average weekly profit over the period or minimize average weekly total 
cost.  The model is simulated and results of a dynamic certainty equivalents analysis are 
available in Inventory Management Demo.XLS. 
 
 The inventory simulation model can be modified to a handle more complex inventory 
management scenario.  For example, delivery time could be multiple periods (2 or 3 weeks) and 
delivery time could be made stochastic as well.  Anticipated inflationary costs for the goods 
purchased can be changed each period.  Shortage cost can be a function of lost sales so it is zero 
for small shortfalls but very large if shortfalls exceed a value, say 10 units per week. 
 
 The final point to consider is how many periods should be included in the model.  The 
example in Inventory Management Demo.XLS uses 10 periods.  The correct number of periods 
depends on the lag time from order to delivery and the order up to this amount and maximum 
order amount.  Generally the model should include sufficient periods for inventory to reach 
equilibrium with any management rule being simulated.  This may be 50 or more periods for 
most problems. 
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 Chapter 15 
 Probabilistic Forecasting 
 
 Much of the emphasis in this book is on estimating parameters for the probability 
distribution of a random variable.  Students of simulation are advised to develop the best model 
possible for explaining or predicting the deterministic component of each random variable, so as 
to minimize the stochastic component.  Little has been said thus far about different models for 
forecasting and parameter estimation.  The purpose of this chapter is to present several 
forecasting techniques for estimating the parameters of the deterministic component for random 
variables and using these parameters to develop probabilistic forecasts. 
 
Probabilistic Forecasting 
 
 Probabilistic forecasts are generally inter-temporal forecasts of a random variable with 
stochastic components incorporated into the forecast.  For example, if the deterministic model 
forecasts annual quantities sold, a probabilistic forecast would provide forecasts of the 
probability distributions for future annual sales.  Assume that the annual sales data is explained 
by a linear trend, then the deterministic forecast model is 
 
 t t

ˆˆ ˆY  = a + bT   for t = 1, 2, 3, ..., T  
 
and the probabilistic forecast for year T + i is 
 
 T+i T+i

ˆˆY  = a + bT  +   * SNDσ  
 
where ~σ  represents the stochastic component of Y and SND is a stochastic standard normal 
deviate.  Probabilistic forecasts thus incorporate risk into forecasting. 
 
 Probabilistic forecasting techniques involve several steps after the data are collected and 
checked for errors.   
 

• Select the appropriate forecasting technique (or just try all of them). 
• Estimate parameters for the forecasting technique, ˆâ and b . 
• Estimate the residuals of the observed values minus the forecast values to quantify the 

forecast error.  Residuals are the stochastic part of the forecast, t t t
ˆê  = Y  - Y  for all t.    

• Select the forecasting technique with the smallest forecast error (MAPE) and use it to 
forecast the deterministic component of the random variable, T+iŶ .    

• Simulate the stochastic component of the forecast and add it to the deterministic forecast 
for a probabilistic forecast, or T+i T+i T+i

ˆY  = Y  + e .  
• Present the probabilistic forecast showing the risk in each period. 

 
 The format used throughout this chapter is to describe a forecasting technique, present an 
Excel worksheet example, develop a deterministic forecast, and then develop a stochastic 
forecast using the deterministic forecast as the mean.  The forecast techniques described in this 
chapter are: 
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− Trend regression 
− Multiple regression 
− Seasonal forecasts using dummy variables 
− Seasonal forecasts using harmonic regression 
− Seasonal indices 
− Cycles 
− Moving Average 
− Time series decomposition -- additive and multiplicative 
− Exponential smoothing -- simple, Holt, Holt-Winters, multiplicative and additive, 

dampened 
− Time series analysis -- autoregressive and vector autoregressive 

 
Quantifying Forecast Error 
 
 The forecast error is the stochastic portion of the variable and is calculated as the residuals 

t(e ) for each historical value.  Three measures of forecast error are described in this section.  
Start with the residuals between the observed and historical values over the historical forecast 
period or  
 
 e  =  Y  -  Yt t t  
 
for t = 1, 2, 3, …, T.   
 
 Mean absolute error is the average absolute residual over the historical period, (T). 
 

 
T

t
t=1

MAE = e   / T⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  

 
 Root mean square error is like a standard deviation in that it is the square root of the 
average squared residual over all the historical period. 
 

 
T

2
t

t=1
RMSE =   e   /  T  ⎛ ⎞

⎜ ⎟
⎝ ⎠
∑  

 
 Mean absolute percentage error expresses the forecast error as a percentage of the 
historical observations and is easier to understand.  It is recommended that you not use this test if 
your data have a mean of zero. 
 

 
T

t

t=1 t

eMAPE = 100% *   / T
Y

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑  

 
 These measures of forecast error are available as functions in Simetar.  The format for each 
function is specified as: 
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• Mean absolute error (MAE) 
 
  = MAE (array of residuals) 

 
• Root mean square error (RMSE) 

 
  = RMSE (array of residuals) 
 

• Mean absolute percentage error (MAPE) 
 
  = MAPE (array of residuals, array of observed values) 
 
where array of residuals refers to the 1 to T array of e t  values, and  
  array of observed values refers to the 1 to T observed values used to calculate the 

residuals. 
 
 All three measures of forecast error are tied to the same variable, so a forecasting procedure 
that minimizes one usually minimizes the other two, as well.  Select one measure and use it to 
determine which forecasting procedure is best for a particular variable.  The MAPE procedure 
appears to be preferred by practicing forecasters because it expresses the forecast error as a 
percent of the variable to forecast. 
 
Trend Regression Forecasts 
 
 A simple regression model can be used to project a random variable if a trend exists in the 
series.  The parameters for the trend regression are estimated using Simetar’s multiple regression 
function.  The model estimated for a linear trend projection is  
 
 t t t

ˆˆ ˆY  = a + bT  +e  
 
where Tt  is the trend variable that increments by 1 unit for each period. 
 
The trend variable could be a series of values such as 1, 2, 3, …, T or it could be the years for the 
data such as 1950, 1951, …, 2005.  The use of years for T is useful because you always know the 
value to use to forecast a particular year.  For example, to forecast Y in 2010 the formula is 

2010
ˆˆ ˆY  = a + b(2010).    

 
 When the data have a non-linear trend, add a second or third trend variable to the OLS 
equation to capture the effect.  The model to estimate becomes: 
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Y Y

T T

Y Y

T T

Y

T

− Non-linear increasing trend as:    2
t 1 t 2 t t

ˆ ˆˆ ˆY  = a + b T  + b T  + e  
 
 
 
 
  
 
 
 
 
 
 
 

− Non-linear decreasing trend as:    t t
t

1ˆˆ ˆY  = a + b  + e
T

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
− Two or more changes in trend as:    2 3

t 1 t 2 t t t
ˆ ˆ ˆˆ ˆY  = a + b T  + b T  + bT  + e  

  

 
 
The residuals from a trend regression are: 
 
e  =  Y  -  Yt t t  

Y Y

T T

Y Y

T T
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The tê  values are referred to as “de-trended” data, because the residuals represent the portion of 
the random variable not explained by trend.  If the trend regression has a high R2 and low 
MAPE the residuals can be used with confidence to quantify the stochastic portion of the 
variable. 
 
 An example of using a linear trend regression to develop deterministic and probabilistic 
forecasts is provided in the Trend Forecasts Demo.XLS workbook.  The monthly Amarillo steer 
prices have a statistically significant trend as evidenced by a t statistic of 4.096 on the slope 
coefficient (Figure 15.1).  The cyclical and seasonal variability about the trend is quite large as 
evidenced by a MAPE of 12.84 percent and a standard deviation on the residuals of $11.92/cwt.  
The deterministic projection increases price $0.058/cwt every month regardless of the past 
seasonal and cyclical variability so this is not the best method for projecting this series. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 A non-linear trend projection of the series is also included in Trend Forecasts Demo.XLS.  
The results of a non-linear trend regression (Figure 15.2) show the benefit of adding T and T2 3 
to the regression when the variable has a non-linear trend.  The R2 is 56.8 percent, all of the 
betas have highly significant t statistics and the MAPE is reduced to 8.34 percent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Figure 15.1.  Example of a Linear Trend Regression. 

 
Figure 15.2.  Example of a Non-Linear Trend Regression. 
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Figure 15.3.  The Probabilistic Forecast for ˆ

205Y .  

 The probabilistic forecast from a trend regression is made assuming the residuals are 
normally distributed with mean zero and standard deviation equal to the standard deviation of the 
residuals (or S.D. Residuals) from the regression.  In other words, the deterministic forecasts 
presented in Figures 15.1 and 15.2 are simulated using the following formulas for period 205, as 
there are 204 observations in the data set.  The deterministic forecast formula is: 
 

− Linear Trend 
 
 205

ˆˆ ˆY  = a + b * (205) = 76.888 + 0.058 (205) = 88.854  
 

− Non-linear Trend 
 

 
2 3

205 1 2 3
ˆ ˆ ˆˆ ˆY  = a + b  (205) + b  (205)  + b  (205)  

108.382 = 49.851 + 1.514 (205) + (-0.017) (205) + 0.00005327 (205)
 

 
The stochastic forecast formula for the linear and non-linear regressions are: 
 

− Linear Trend 
 

 
205 205

205

ˆY  = Y  + SEP * SND

Y  = 88.854 + 11.92831 * SND
 

 
− Non-Linear Trend 

 

 
205 205

205

Y  = Y  + SEP * SND

Y  = 108.382 + 8.15683 * SND
 

 
where SEP is the standard error of prediction for the respective regression models.  The multiple 
regression option in Simetar will simulate both the deterministic and stochastic forecasts if the X 
matrix contains more values than the Y vector.  See the regression results in Trend Forecasts 
Demo.XLS in cells A229-B240.  The stochastic or probabilistic forecast uses the SEP rather than 
the standard deviation for the residuals because the forecasts are out of sample forecasts.  If the 
trend regression model provided an acceptable model for forecasting the series, then 
probabilistic forecasts using the above formulas will provide acceptable forecasts.  The PDF in 
Figure 15.3 depicts the probabilistic forecast for 205Y  in the non-linear trend regression. 
 
Multiple Regression 
 
 Multiple regression models are useful for forecasting variables that are part of a system.  In 
these cases, structural models add to the explanatory ability of a simple trend regression by 
including other variables to help explain the variability of the dependent variable.  Econometric 
models of crops and livestock rely on structural regression models to forecast the endogenous 
variables in the system.  For example, in a U.S. wheat model one might forecast planted acres as 
a function of exogenous variables such as:  expected price, idled acres, trend, and a lagged 
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Figure 15.5.  Probabilistic Forecast for Assumed 
Values of Exogenous Variables. 

dependent variable, or: 
 

t 1 t-1 2 t 3 4 t-1 t
ˆˆ ˆY  = a + b P + b I  + b T + b Y  + e  

 
 Forecasting with this type of model presents a problem because one must project values for 
the exogenous variables to forecast the endogenous variable.  This problem is usually overcome 
in a complete econometric model because separate equations for the exogenous variables would 
be included.   
 
 An example of estimating and forecasting with a multiple regression model is provided in 
Multiple Regression Forecasts Demo.XLS.  A summary of the results in Figure 15.4 suggest that 
the lagged price and planted acres are the most explanatory variables.  The idled acres (CRP )t  is 
included for policy analysis and trend (years) was restricted out because lagged acres did a better 
job (had a higher t statistic).  Overall an R2 of 81.5% and an F of 39.55 are reasonable.  The 
3.98% MAPE is encouraging that on average the model has an absolute error of about 4%. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
For the wheat acreage equation a one period ahead deterministic forecast is: 
 

2006 2005 2005 t-1Ŷ  = 22.804 + 4.845 * (P ) - 0.177 (CRP ) + 0.488 (Planted )  
 
The deterministic forecast yields a value of 
65.67 million acres when 2005P  = 2.88, CRP = 
9.6 and Y = 61.0.  A probabilistic forecast for 
one period ahead, using the standard error of 
the prediction (SEP) as a measure of the 
unexplained variability is presented in Figure 
15.5 and is simulated as: 
 

2006 2006

2006

ˆY  = Y  + SEP  * SND

or 

Y  = 65.67 + 3.58 * SND

 

 
 
Figure 15.4.  Using Multiple Regression for Forecasting. 
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Seasonal Forecasts Using Dummy Variables 
 
 Seasonal variability is within year variability that repeats itself each year.  Monthly and 
quarterly data generally exhibit a seasonal pattern.  Seasonal patterns are caused by production 
and demand patterns tied to weather, holidays, or tradition.  Many agricultural price series are 
seasonal in nature due to their production pattern.  For example, wheat prices tend to be low at 
harvest and rise throughout the marketing year until near harvest the next year. 
 
 Business sales also show a seasonal pattern.  Agribusiness firms that sell inputs see larger 
sales pre-planting than post-planting or during harvest.  Their sales may also show an end of year 
jump as farmers pre-pay for inputs to reduce income taxes.  Retail sales firms observe seasonal 
patterns often due to seasonal travel and holiday purchases. 
 
 Two regression based methods for forecasting seasonal patterns are presented here:  dummy 
variables without a trend and dummy variables with a trend.  Dummy variable regression models 
use 0’s and 1’s to identify seasons.  In the case of monthly data, the dummy variable model 
would include 11 dummy variables with the affect of the missing month being captured in the 
intercept.  The dummy variable for January would have a one when the observation is for 
January and zero otherwise.  The same pattern would be used for each of the other 10 months.  
The regression model to be estimated is: 
 

t 1 t 2 t 11 t 12 t t
ˆ ˆˆY  = a + b Jan  + b Feb  + ... + b Nov  + b DVH  + e  

 
where  DVH is a dummy variable for months with holidays, if that is relevant for the data 

series. 
 
 An example of using a seasonal dummy variable regression model without trend to analyze 
monthly Amarillo steer data is provided in Figure 15.6.  (See Regression For Seasonal Forecasts 
Demo.XLS for the complete analysis summarized in Figure 15.6).  Each of the monthly dummy 
variables is statistically significant as evidenced by large t statistics.  The F statistic is quite large 
(735) and the R2 is 97.9.  The Durbin-Watson statistic shows considerable autocorrelation. 
 
 Forecasting with the seasonal model simply calls for substituting in values (0 and 1) for the 
months or: 
 

Jan

June

Dec

Ŷ  = 82.389 * (1.0)

Ŷ  = 83.822 * (1.0)

Ŷ  = 81.414 * (1.0)

 

 
Probabilistic forecasts are accomplished using the standard error of the prediction (SDP) for the 
regression model and the deterministic forecasts. 
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Figure 15.6.  Seasonal Forecast Using Dummy Variables Without Trend. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Jan

June

Ŷ  = 82.389 + 12.971 * SND

Ŷ  = 83.822 + 13.326 * SND
 

 
 The residuals (e )t  from the seasonal dummy variable regression are referred to as de-
seasonalized data.  The deseasonalized data (d )t  could be analyzed further to try to improve the 
MAPE.  The further analysis could be done using a separate model to analyze the data for a trend 
as: 
 
 2 3

t 1 t 2 t 3 t
ˆ ˆ ˆ ˆˆd  = a + b T  + b T  + b T  + e  

 
However, an easier way to do this is to re-run the seasonal dummy variable regression and 
include the trend variables as: 
 
 2 3

t 1 t 2 t 11 12 13 14 t
ˆ ˆ ˆ ˆ ˆ ˆˆY  = a + b Jan  + b Feb  + ... + b Nov + b T + b T  + b T  + e  

 
The results of the seasonal/trend regression with the three trend components is summarized in 
Figure 15.7 and is provided in Regression For Seasonal Forecasts Demo.XLS.  The Durbin-
Watson statistic of 0.068 suggests the residuals are still autocorrelated even though the other 
goodness of fit statistics are quite good. 
 
 The deterministic forecast with the model is now a wavy trend line, as indicated in Figure 
15.7, and is developed using the following formulas for periods 205 and 206: 
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Figure 15.7.  Seasonal Forecast Using Dummy Variables With a Trend. 

 

2 3
Jan, 205

2 3
Feb, 206

Y  = 50.077 + 1.553 (205) - 0.017 (205)  + 0.000055 (205)

Y  = 52.264 + 1.553 (206) - 0.017 (206)  + 0.000055 (206)

ˆ

ˆ
.
.
.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that for the forecast, the slope coefficient for the month being forecast is the only seasonal 
beta that is relevant because the other slope parameters would be multiplied by zero.  (To see this 
examine the X matrix beyond the historical data for the regression in Regression For Seasonal 
Forecasts Demo.XLS).  The probabilistic forecast for the seasonal/cyclical model uses the 
standard error of the predictions from the regression model in lines 229-255 of the Dummy 
Variables Worksheet. 
 

Jan, 205

July, 211

Y  = 110.392 + 8.447 * SND

Y  = 118.521 + 8.819 * SND

ˆ

ˆ
 

 
Seasonal Forecasts Using Harmonic Regression 
 
 For data series that display a stable seasonal pattern with a linear trend, a regression that 
uses Sin and Cos functions of time can be used to develop a forecast model.  This is referred to 
as a harmonic regression model.  The seasonal length, SL, is set equal to 12 for monthly data and 
4 for quarterly data.  The harmonic regression model that is estimated is: 
 

( ) ( ) ( )t 1 t 2 t 3 t t
ˆ ˆ ˆˆY  = a + b  2  T  + b  Sin 2  T /SL  + b  Cos 2  T /SL  + eπ π π  

 
The t2  T  π term captures the linear trend in the data and the Sin and Cos terms capture the 
seasonal pattern in the data. 
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Figure 15.8.  Harmonic Regression to Forecast Seasonal Patterns. 

 The X matrix for a seasonal harmonic regression with SL equal to 12 is presented in Table 
15.1.  Note that the Sin and Cos X’s repeat themselves in a regular pattern, thus mimicking a 
seasonal pattern.  The tT values used to calculate the values in Table 15.1 are 1, 2, 3, …, 12. 
 
 Table 15.1.  Seasonal Harmonics for the First 12 Months in the X  
 Matrix. 

Month     T 2PiT Sin (2PiT/SL) Cos (2PiT/SL) 
Jan    1 0.523599 0.50 0.87
Feb       2 1.047198 0.87 0.50
Mar       3 1.570796 1.00 0.00
Apr       4 2.094395 0.87 -0.50
May       5 2.617994 0.50 -0.87
Jun       6 3.141593 0.00 -1.00
Jul       7 3.665191 -0.50 -0.87
Aug       8 4.188790 -0.87 -0.50
Sep       9 4.712389 -1.00 0.00
Oct     10 5.235988 -0.87 0.50
Nov     11 5.759587 -0.50 0.87
Dec     12 6.283185 0.00 1.00

 
 
 The results of a harmonic regression assuming a seasonal length of 12 months for the 
Amarillo steer prices is presented in Figure 15.8.  The model has a MAPE of 12.80 and the error 
terms are autocorrelated because the trend in the data is not linear and this model does not 
capture the cycle in the data. 
 

 
Deterministic forecast values from the harmonic regression are easy to generate because the X 
values are simply functions of time.  For example, the Amarillo steer data has 204 observations 
so to forecast the next observation, 205, the equation is: 
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Figure 15.9.  Probabilistic Forecast of Period 205 
Using Harmonic Regression Model. 

( ) ( )( ) ( )( )205Ŷ  = 76.714 + 0.115 * 2 (205)  + 2.735 * Sin 2 (205)/12  - 1.572 * Cos 2 (205)/12π π π
 
Note that this seasonal forecast procedure does not depend on matching each period (month) to 
its particular dummy value.  In other words, the harmonic model does not care if the 205th 
observation is January or March.  To this extent the procedure is easier to use than the dummy 
variable approach, particularly if the data have a linear trend.  The example summarized in 
Figure 15.8 is in the Harmonic Regression worksheet of the Regression For Seasonal Forecasts 
Demo.XLS workbook. 
 
 The probabilistic forecast of the series for month 205 is: 
 

 
205 205

205

ˆY  = Y  + SDP * SND

Ŷ  = 89.034 + 12.010 * SND
 

 
where SDP is the standard error of the 
prediction.  The PDF for forecasting period 
205 using the harmonic regression model 
is presented in Figure 15.9. 
 
Seasonal Indices  
 
 Seasonal variability is within year variability that repeats itself each year and is observed for 
monthly, weekly or quarterly data.  Indices that quantify this variability are called seasonal 
indices.  A seasonal index can be used in conjunction with trend or multiple regression models to 
forecast a data series that exhibits a seasonal pattern.  A seasonal index is calculated two ways: 
 

− Simple Average Seasonal Index 
 
  -- Calculate the average value for each month (or period such as quarter) 

 

   X  =  (X ) /  TJan iJan
i=1

T

∑  

 
   where  XiJan  is the observed value for each January in the population for years 1 

through T. 
 

-- Calculate the overall average for all N observations or 
 

     X =  (X ) /  Ni
i=1

N

∑  

 
   where N = 12 * T years 
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Figure 15.10.  Example of a Simple Average Seasonal Index. 

-- Calculate the index for each month or period as 
 

   

I  =  X  /  X

I  =  X  /  X
.
.
.

Jan Jan

Feb Feb  

 
The resulting seasonal index has a mean of 1.00.  The seasonal index is useful for converting an 
annual average to a monthly value.  Dividing each period’s index value by the number of 
periods, say, 12 yields the Fractional Contribution Index which is useful for forecasting the 
monthly totals for annual sums (such as total sales).  The seasonal index in Figure 15.10 
demonstrates how  
Simetar calculates a Simple Average Seasonal Index (see Seasonal Index Forecast Demo.XLS). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
− Centered Moving Average Seasonal Index 

 
-- Calculate a moving average centered on the expected seasonal period, i.e., 12 period 

moving average for monthly data starts in period 6. 
 

  

M  =  (Y +  Y  +  ...  + Y ) / 12
M  =  (Y  +  Y  +  ...  +  Y ) /  12
.
.
.

6 1 2 12

7 2 3 13
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-- Divide the original observed data by the moving average for the same period. 
 

  

F  =  M  /  Y
F  =  M  /  Y

6 6 6

7 7 7

.

.

.

 

 
--  Calculate the average fraction for each period across all N years. 
 
  I  =  F  +  F  +  ...  +  F  NJan Jan, 1 Jan, 2 Jan, Nc h /  
 

 where IJan  is the index for the first period, or January for a monthly data series, and  
    FJan, i  is the fraction for January in year i. 
 
 An example of calculating seasonal indices is provided in the Moving Average Index 
worksheet in the Seasonal Index Forecasts Demo.XLS workbook and is summarized in Figure 
15.11.  The seasonal index indicates that the February price is 97.2% of the average annual price 
and October prices are 104.7% of the annual average price. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 A seasonal index can be used for forecasting when combined with a forecast of the annual 
value.  The formula for forecasting monthly values with a seasonal index is demonstrated as 
follows for year i: 
 

 Y  =  Y  *  I
Y  =  Y  *  I

Jan, i i Jan

Feb, i i Feb
 

 

 
 
Figure 15.11.  Moving Average Seasonal Index. 
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 The Centered Moving Average Index has a smaller standard deviation than the simple 
average index.  The reason is that the centered moving average removes some of the variability 
in the process.  The Moving Average Index is the preferred index if the data are sufficiently long 
to afford the loss of observations at the beginning and end of the series. 
 
Cycles 
 
 Cycles are year-to-year variability that exhibit a pattern which repeats itself with some 
regularity.  With real data the cycle will not be the same length each time but may vary by a year 
or two each time.  Variability about the cycle is caused by stochastic forces in the economy.  For 
example, the cattle cycle is never the same length because forces such as droughts, trade policies, 
farm programs, imports, feed prices, domestic demand and general business cycles affect the 
sell-off of cattle and thus cattle prices. 
 
 Cycles can be analyzed several ways, such as using moving averages or using harmonic 
regression equations.  In the case of forecasting cycles a harmonic regression seems to work the 
easiest.  The harmonic regression for a cycle of length CL years is: 
 

( ) ( )t 1 t 2 t 3 t t
ˆ ˆ ˆˆ ˆY  = a + b  (2 T ) + b Sin (2 T ) / CL  + b Cos (2 T ) / CL  + eπ π π  

 
If this model is used the analyst must guess at the cycle length and estimate different regressions 
for each possible CL.  The regression model associated with the best goodness of fit statistics is 
the best estimate of the cycle length.  The second term in the regression is a trend variable 

t(2 T )π  so this model analyzes the data for a cycle after implicitly de-trending the data. 
 
 By taking advantage of Excel’s calculation abilities and the interactive/dynamic features of 
Simetar, the process of testing a data series for different cycle lengths is very simple.  A cell can 
be used to hold the CL value.  Next make the harmonic variables for the regression 
Sin (2  T /  CL) and Cos(2  T /  CL)π πa f a function of the cell containing the CL value.  

Manually changing the CL value (say, from 7, 8, 9, 10, 11, etc.) will update the X matrix used 
for the regression and thus the Simetar regression results.  An example of this type of estimation 
framework is provided in Figure 15.12 and Probabilistic Cycle Forecasts Demo.XLS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15.12  Harmonic Regression Equation to Analyze and Forecast Cycles. 
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The procedure described above was used to estimate the length of the cycle for the Amarillo 
steer prices.  Cycle length, CL, values of 3 to 12 were tested.  The results of testing the annual 
Amarillo steer price over the 1965-2001 period for a cycle are provided below: 
  

Table 15.2  MAPE’s for Testing Alternative Cycle 
Lengths 
CL MAPE 2R  F-test 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

16.00 
16.04 
15.38 
15.76 
15.59 
15.37 
14.26 
14.12 
14.55 
15.99 

0.770 
0.759 
0.772 
0.768 
0.780 
0.767 
0.800 
0.832 
0.834 
0.819 

36.83 
34.69 
37.15 
36.32 
38.90 
36.21 
44.09 
54.42 
55.32 
49.82 

 
 
The MAPE is minimized for a 10 year cycle and the R2 is maximized at an 11 year cycle, as is 
the F-test statistic.  These results would support the hypothesis of a 10 to 11 year cycle for 
Amarillo 500-600 lb. steer prices over the 37-year study period. 
 
 Forecasting the cycle is easy using a harmonic regression.  The annual average price for the 
38th year in the series, assuming a 10-year cycle and a trend, is forecast as: 
 

( ) ( ) ( )38Ŷ  = 105.512 = 28.151 + 0.297 2  (38)  -8.030 Sin 2  (38/10)  - 4.124 Cos 2  (38/10)π π π  
The probabilistic forecast with this model is 
 

38 38

38

ˆY  = Y  + SDP * SND

Y  = 105.512 + 11.210 * SND
 

 
The 38Y  is the stochastic forecast of the average annual price for Amarillo 500-600 lb. steers, 
based on cyclical and trend information in the data.  The 38Y  value can be used with the seasonal 
index for the same series to develop a probabilistic forecast of prices in December of year 38 as: 
 

38Dec 38Y  = Y  * (1.03176 + SNP * 0.039335)  
 
where 1.03176 is the seasonal index for December and 0.039335 is the standard deviation for the 
seasonal index (Figure 15.11). 
 
Moving Average Forecasts 
 
 A moving average can be used to develop a forecast of a time series.  Business forecasters 
often use a moving average forecast as a naive forecast from which they can measure the 
performance of alternative forecasting methods.  Moving average forecasts are based on the 
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simple idea, that the average of past values is an unbiased forecast of future values.  A moving 
average systematically estimates and re-estimates the average over time by dropping the oldest 
value and adding the most recent value.  This formula puts equal weight on each historical value 
and systematically adjusts for trend, cycles and seasonal variability. 
 
 For a 3-year simple moving average the forecast equations would be: 
 
  Historical      Forecast 

  

4 4 1 2 3

5 5 2 3 4

6 6 3 4 5

Y                      Y  = (Y  + Y  + Y ) / 3
Y                      Y  = (Y  + Y  + Y ) / 3
Y                      Y  = (Y  + Y  + Y ) / 3
                         .
                         .
    

ˆ
ˆ
ˆ

.

.

.                      .

 

 
 
The resulting Y  series can be compared to observed Yt  values to determine the moving averages 
predictive ability.  A MAPE statistic should be calculated based on the residuals from the 
moving average or 
 
e  =  Y  -  Yt t t  
 
A question remains, how long should the moving average be?  Should the moving average be 3, 
4, 6, 10, or 12 periods?  The simple answer is best moving average length is the one with the 
lowest MAPE. 
 
 As the length of the moving average grows, the forecast depends less and less on the more 
recent values.  More specifically the weight of last period’s observation is 33% if the moving 
average is 3 periods and 20% if it is a 5 period moving average.  Data series that have long 
memories can be forecast with longer period moving averages.  The MAPE values in Table 15.3 
summarize the MAPE’s across alternative moving average lengths for the Amarillo monthly 
500-600 lb. steer prices for 1965-2001. 
 

Table 15.3.  Comparison of Moving Average 
Lengths to Explain a Time Series. 

MA Length MAPE 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

3.11 
3.81 
4.45 
4.98 
5.46 
5.83 
6.18 
6.48 
6.69 
6.91 
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Figure 15.13.  Example of a Moving Average Forecast. 

A trade off occurs, however, as the length of the moving average decreases the future forecast 
values approach a constant value, namely, the most recent value.  An example of a moving 
average forecast for the Amarillo steer price series is provided in Figure 15.13.  (See Moving 
Average Forecasts Demo.XLS for the workbook behind this example.)  The Moving Average 
Forecast function in Simetar allows one to change the number of periods and dynamically 
observe the effect on the MAPE and the forecast values.  Note that with a period length of 5 the 
forecast values all look very stable at approximately 94.  A period length of 12 results in forecast 
values that range from 99.3 to 97.0 seven periods out.   
 
 The residuals from the moving average calculation can be thought of as de-trended data.  
The moving average is a flexible trend line.  It is also a function that looks like a way of 
measuring cycles.  Overall, the moving average provides a very quick forecast a few periods out. 
  
 A probabilistic forecast of the moving average procedure is made assuming the residuals 
about the deterministic forecast are distributed normal with mean zero and standard deviation 
equal to the standard deviation of the residuals (SDR).  For period 205 the stochastic forecast of 
the Amarillo steer prices is: 
 
 205 205

ˆY  = Y  + SDR * SND  
 
assuming a 5-month moving average as indicated in Figure 15.13. 
 

 
Decomposition Forecasting 
 
 Decomposition forecasting is a more complex form of forecasting as it incorporates, trend 
seasonal, cyclical and irregular (error) into forecasting all at once.  The procedure is an intuitive 
method for forecasting variables that show trend, seasonal, and cyclical effects.  Bowerman, 
O’Connell, and Koehler indicate the procedure has been useful for forecasting variables that 
have constant, increasing or decreasing seasonal variation.  The parameter estimation steps for 
this procedure are described completely by Bowerman, O’Connell and Koehler.  The 
presentation of decomposition forecasting in this chapter will focus on model selection and 
application for this procedure. 
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 Decomposition forecasting offers considerable flexibility as the model can be specified 
several different ways.  The model can incorporate a multiplicative seasonal effect  
 

t t t t tŶ  = TR  * CL  * SN  * IR  
 
where tTR  is the trend effect,  
  tCL  is the cyclical effect,  
  tSN  is the seasonal effect, and 
  tIR  is the irregular error effect; 
 
or incorporate an additive seasonal effect 
 

t t t t tŶ  = TR  + CL  + SN  + IR  
 
The multiplicative form of the procedure is used when the data display increasing or decreasing 
seasonal patterns with respect to trend or cycle.  The additive form of the model is used when the 
data display a constant seasonal variation with respect to trend or cycle.  The cyclical component 
can be included or excluded in the two forms of the decomposition forecasting procedure.  The 
cyclical term should be included if sufficient data are available to observe two or more complete 
cycles. 
 
 The four forms of the decomposition forecasting procedure are summarized in Table 15.4.  
The Simetar options for forecasting with this procedure are provided in the right most column of 
the table.  A multiplicative decomposition model that has insufficient data (many years of 
monthly values) to observe several complete cycles is estimated by setting the ADDITIVE 
option to False and the CYCLE option to False.  This model is used if the seasonal variation 
changes in proportion to the trend or cycle.  In contrast, if the seasonal variation is constant with 
respect to trend/cycle and sufficient data is available to express the cycle, the Simetar options are 
set ADDITIVE to True and CYCLE to True.   
 
 
Table 15.4.  Alternative Multiplicative Decomposition Model Specifications. 
Model Type of Data Trend Cycle Seasonal Simetar Setting 
Multiplicative 
w/o Cycle 
 

Size of seasonal swing related to trend 
t tTR  *       1.0        * SN  ADDITIVE = False 

CYCLE = False 

Multiplicative 
w/ Cycle 
 

Size of seasonal swing related to trend 
t t tTR  *       CL       * SN  ADDITIVE = False 

CYCLE = True 

Additive w/o 
Cycle 
 

Size of seasonal swing not related to 
trend 

t t tTR  *       1.0       + SN  ADDITIVE = True 
CYCLE = False 

Additive w/ 
Cycle 

Size of seasonal swing related to trend 
t t tTR  *       CL       + SN  ADDITIVE = True 

CYCLE = True 
TR, CL, and SN refer to the presence of the trend, cyclical, and seasonal, respectively, components in the model. 
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 Examples for all four of these models are presented in the four worksheets of Seasonal 
Decomposition Forecasts Demo.XLS.  The results of the four model specifications are 
summarized in terms of this MAPE in Table 15.5.  For the data set tested in the example, the best 
specification appears to be a multiplicative decomposition model with a cycle, given its MAPE 
of 1.204. 
 
Table 15.5 Comparison of Four Decomposition Forecasting Models for Amarillo Price 
Series. 
 Simetar Settings    
Model Additive Cycle MAPE 
 
Additive Decomp w/ Cycle 

 
True 

 
True 

 
2.784 

 
Additive Decomp w/o Cycle 

 
True 

 
False 

 
2.898 

 
Multiplicative Decomp w/ Cycle 

 
False 

 
True 

 
1.204 

 
Multiplicative Decomp w/o Cycle 

 
False 

 
False 

 
1.222 

See Seasonal Decomposition Forecasts Demo.XLS for the models used to estimate these results. 
 
 
− Multiplicative Decomposition 
 
 The multiplicative decomposition model specification is written as: 
 
 t t t tŶ  = TR  * CL  * SN  
 
If the model assumes no cycle the model becomes: 
 
 t t tŶ  = TR  * 1 * SN  
 
Assuming a quarterly model the deterministic forecast is  
 

 

1 1 1

2 2 2

3 3 3

4 4 4

5 5 1

Ŷ  = TR  * SN

Ŷ  = TR  * SN

Ŷ  = TR  * SN

Ŷ  = TR  * SN

Ŷ  = TR  * SN
.
.
.

 

 
The jSN  (where j = 1, 2, 3, 4) terms are the seasonal (quarterly) adjustment factors for the data 
series and they are used over and over with successively newer iTR  values.  When working with 
monthly data there are 12 jSN  values.  The iTR  values are generally assumed to be a linear trend 
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forecast or: 
 
 t t

ˆˆTR  = a + b T  
 
To make the multiplicative decomposition a probabilistic forecast assume a normal distribution 
for the residuals from the t t tŶ  = TR  * SN  model and simulate it as: 
 
 t t tY  = TR  * SN  * NORM (R, SDR)  
 
where SDR is the standard deviation of the residuals and R  is the mean of the residuals t(IR ) . 
 
 Adding the cycle to this multiplicative decomposition model yields the following model: 
 
 t t t tŶ  = TR  * CL  * SN  
 
with a probabilistic forecast of: 
 
 t t t jY  = TR  * CL  * SN  * NORM (R, SDR)  
 
 In both of these multiplicative specifications it is noted that the tIR  term is ignored for 
forecasting.  The reason being is that tIR  is assumed to be one unless it exhibits a regular pattern 
which can be forecasted.  The tIR  should be a random error term that is simulated by the normal 
distribution for IR. 
 
− Additive Decomposition 
 
 The additive decomposition model specification is written as: 
 
 t t t tŶ  = TR  + CL  + SN  
 
If the model assumes no cycle the model becomes: 
 
 t t tŶ  = TR  + 0 + SN  
 
For a quarterly model the deterministic forecast is:  
 

 

1 1 1

2 2 2

3 3 3

4 4 4

5 5 1

Ŷ  = TR  + SN
Ŷ  = TR  + SN
Ŷ  = TR  + SN
Ŷ  = TR  + SN
Ŷ  = TR  + SN
.
.
.
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Figure 15.14.  Example of an Additive Seasonal Decomposition Model With a Cycle. 

The jSN  (where j = 1, 2, 3, 4) terms are the seasonal (quarterly) adjustments to Ŷ  for the series. 
 The jSN  values remain constant for all future periods.  The tTR  values are forecasted by a 
linear trend regression model of: 
 
 t t

ˆˆTR  = a + b T  
 
If the data exhibits a cycle the additive decomposition model becomes: 
 
 t t t tŶ  = TR  + CL  + SN  
 
 To make a probabilistic forecast with the additive decomposition model the tIR  term for 
irregular residuals (errors) are assumed to be distributed normal.  With this assumption the 
probabilistic forecast for the additive decomposition model is:  
 
 t t t tY  = TR  + CL  + SN  + NORM (R, SDR)  
 
where R  is the mean of the residuals and SDR is the standard deviation of the residuals. 
 
− Examples of Decomposition Models 
 
 An example of an additive seasonal decomposition model with a cycle is demonstrated in 
Figure 15.14.  The two Simetar parameters are Additive = True and CYCLE = True produce a 
forecast with a MAPE of 2.784.  The Data and Trend chart shows the raw data and the 
underlying linear trend.  The Cycle and Seasonal chart shows the cycle and seasonal components 
of the decomposed data series.  The forecasts for the t t t t

ˆTR , CL , SN  and Y  are the dotted points at 
the end of each respective line in the charts. 
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Figure 15.15.  Example of an Additive Seasonal Decomposition Model Without a Cycle. 

 
 
Figure 15.16.  Example of a Multiplicative Seasonal Decomposition Model With a Cycle. 

 The results for estimating an Additive Seasonal Decomposition model without a cycle are 
summarized in Figure 15.15.  The Simetar parameters are ADDITIVE = True and CYCLE = 
False.  The Cycle and Season chart shows a straight line at 1.0 for the cycle which indicates the 
model was estimated without the cycle t(CL )  component.  The MAPE for the model is 2.898.  
The standard deviation of residuals (irregular component) is 2.957 and the mean of the residuals 
is -0.011773.  This model is simulated as: 
 

t tY  = Y  + NORM (R, SDR)ˆ  
 

 
 The results of a multiplicative seasonal decomposition with a cycle are summarized in 
Figure 15.16.  The MAPE for this model is 1.204.  The cycle and seasonal components are 
summarized in the Cycle and Season chart with their forecasted values as dots.  The underlying 
trend and the complete forecast, tŶ , are presented in the Data and Trend chart.  The standard 
deviation for the residuals is 0.0367 and the mean of the residuals is 0.9988.  To simulate the 
probabilistic forecast using this model see the example in line 241 and beyond.  Because the 
model is multiplicative, the probabilistic forecast is simulated as: 
 
 t t

ˆY  = Y  * NORM (0.9988, 0.0367)  
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Figure 15.17.  Example of a Multiplicative Seasonal Decomposition Model Without a Cycle. 

 The fourth example model is for a multiplicative seasonal decomposition model without a 
cycle (Figure 15.17).  The Simetar parameters are ADDITIVE = False and CYCLE = False.  The 
MAPE is 1.222 and the standard deviation for the residuals is 0.0367 and the mean is 0.9988.  
The charts demonstrate that there is no cycle in the estimated model because the cycle in the 
Cycle and Season chart is 1.0 for all periods.  The forecasted tŶ  values in the Data and Trend 
chart are the dotted lines for the original data series.  Interestingly the trend line in the Data and 
Trend chart is a non-linear trend because the trend component t(TR )  is multiplied by the 
seasonal component t(SN ).   To simulate this model for a probabilistic forecast use the formula: 
 

t tY  = Y  * NORM (R, SDR)ˆ  

 
Exponential Smoothing 
 
 Exponential smoothing is a very popular forecasting method with business forecasters.  It 
provides a quick and accurate method for forecasting time series that may have trend and 
seasonal parameters changing over time.  Several different methods of exponential smoothing 
are presented in this chapter.  Exponential smoothing derives its name from forecasting a time 
series using weighted averages of past observations.  The more recent observations receive 
higher weights.  The different exponential smoothing models are:   
 

- Simple exponential smoothing (no trend), 
- Holt’s exponential smoothing (for series with a changing trend present) 
- Holt-Winter’s additive exponential smoothing for data with constant seasonal 

variability, and  
- Holt-Winter’s multiplicative exponential smoothing for series with increasing seasonal 

variability. 
- Dampened trend exponential smoothing alone and combined with additive or 

multiplicative seasonal variability. 
 
For a very detailed description of these exponential smoothing procedures see Bowerman, 
O’Connell and Koehler. 
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− Simple Exponential Smoothing 
 
 Data series that have no trend are best forecasted with their mean as the series is by 
definition varying about its mean.  In this case we could forecast: 
 
 t 0 tŶ  = b  + e  
 
which is equivalent to: 
 
 t tŶ  = Y + e  
 
If the mean changes over time then we can forecast it with a simple exponential smoothing 
model that picks up the gradual change in the mean (or level) by weighting the most recent 
observations most.  Bower, O’Connell and Koehler suggest using a moving average of the first N 
observations as the starting level or 0l . 
 

 
N

0 t
t=1

l  =  Y  / N∑  

 
where N is 4 for quarterly data and 12 for monthly data.  Assume in period T a new observation 

tY  is observed and we have the previous periods estimate of the level, T-1l .   Using t T-1Y  and l  we 
want to estimate the level for period T or Tl .  This is done using the smoothing equation:  
 
 T T T-1l  =  Y  + (1- ) lα α  
 
The α  term is the level smoothing constant and must lie between 0 and 1.  Thus the forecast for 
the next level, Tl ,  is a fraction of TY  and the previous level.  If α  equals 0.25 then 25% of the 
effect of TY  is used while 75% of the effect of T-1l  is used to forecast the next level.  If the series 
is slow to change α  will be small. 
 
 For applied forecasting with exponential smoothing it is assumed the best forecast of the 
next period, T+1, is the level forecast for T.  The deterministic simple exponential smoothing 
forecast is:  
 
 T+1 T t T-1Ŷ  = l  = Y  + (1- ) lα α  
 
The probabilistic forecast for this methodology is simulated using the standard deviation of the 
residuals (SDR) for the forecast and treating the forecasted level as the mean of a normal 
distribution.  The SDR is calculated using the residuals, which in Excel is done using the 
=STDEVP( ) function on the residuals of: 
 
 t t T

ˆê  = Y  - Y  
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Figure 15.18.  Example of Simple Exponential Smoothing. 

The probabilistic forecast is simulated as: 
 
 T+1 T+1

ˆY  = Y  + SDR * SND  
 
where SDR is the standard deviation of the residuals, and SND is a random standard normal 
deviate. 
 
 An example of simple exponential smoothing is provided in the Simple ES worksheet for 
the Exponential Smoothing Forecasts Demo.XLS.  Simetar optimizes the α  smoothing constant 
using Solver to minimize the MAPE.  Simetar then forecasts the Ŷ's  for M periods, 
deterministically and probabilistically.  Simetar’s probabilistic forecast can be activated by 
changing the “Stochastic Forecast” option from the word False to True.  See Figure 15.18 for an 
example. 
 

 
− Holt’s Exponential Smoothing 
 
 Time series with a linear trend that is increasing or decreasing at a constant rate are usually 
forecasted using a trend regression.  This method is covered earlier in the chapter and was 
expressed as: 
 
 T t tŶ  = a + b T  + e  
 
In the trend model b is the growth rate for a one period change in T.  The problem is that in the 
trend model, b does not change.  So if a data series has a trend which changes we cannot forecast 
it with a constant trend. 
 
 Holt’s exponential smoothing procedure is designed to forecast time series with a changing 
level and a changing trend or growth rate.  The level at time T is estimated using the smoothing 
constant as: 
 
 T T T-1 T-1l  = Y  + (1- ) (l  + b )α α  
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where T-1b  is the estimated growth rate for the series in T-1.  The growth rate in period T is 
estimated as: 
 
 T T T-1 T-1b  =  (l  - l ) + (1- ) bϒ ϒ  
 
where ϒ  is the trend smoothing constant.  The and ,α ϒ  seasonal and trend, respectively, 
smoothing constants are estimated using Solver to minimize MAPE when Simetar estimates the 
Holt exponential smoothing function. 
 
 When using Simetar to estimate and forecast using Holt’s method, the user provides initial 
guesses for the seasonal and trend smoothing factors.  Simetar forecasts, both deterministically 
and stochastically, for M periods if the user requests a forecast.  See the example of Holt’s 
exponential smoothing forecast in Figure 15.19. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
− Holt-Winter’s Exponential Smoothing 
 
 Holt-Winter’s method forecasts time series that exhibit both trend and seasonal effects.  The 
seasonal effect can be multiplicative or additive.  (See Decomposition Forecasting section of this 
chapter for other examples of multiplicative and additive seasonal effects.)  The additive Holt-
Winter’s procedure is used when the seasonal effect is constant from year to year.  The 
multiplicative Holt-Winter’s procedure is used when the seasonal effect is increasing from year 
to year. 
 

-- Additive Seasonal Holt-Winter’s Exponential Smoothing 
 
 The presence of a linear trend and a changing level, growth rate and seasonal pattern 
describes a time series forecasted best by the additive Holt-Winter’s method.  Three equations 
come into play for this method: 
 

• Level is forecasted as: 
 
  T T T-L T-1 T-1l  =  (Y  - SN ) + (1- ) (l  + b )α α  
 

 
Figure 15.19.  Example of Holt’s Exponential Smoothing Procedure. 
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• Growth rate is forecasted as: 
 
  T T T T-Lb  =  (Y  - l ) + (1- ) SNδ δ  
 

• Seasonal change is forecasted as: 
 
  T T T T-LSN  =  (Y  - l ) + (1 - ) SNδ δ  
 
where T-LSN  is the seasonal factor or effect for the same season (month or quarter) the year 
before, and δ  is the season smoothing constant.  The three parameters, , , and α δϒ  are estimated 
in Simetar by minimizing the MAPE for the additive Holt-Winter’s procedure. 
 

-- Multiplicative Seasonal Holt-Winter’s Exponential Smoothing 
 
 This procedure is used to forecast time series that have a linear trend and a multiplicative 
seasonal pattern and the level, growth rate, and seasonal pattern can be changing.  In this case 
the model is forecasted using three equations for level, growth rate, and seasonal effects. 
 

 
T T T-L T-1 T-1

T T T-1 T-1

T T T T-L

l  =  (Y /SN ) + (1- ) (l  + b )

b  =  (l  - l ) + (1- ) b

SN  =  (Y /l ) + (1- ) SN

α α

δ δ

ϒ ϒ  

 
Simetar estimates the level, trend and season smoothing constants for the multiplicative Holt-
Winter’s exponential smoothing procedure.  Simetar also provides a deterministic and a 
probabilistic forecast of the time series.  An example of Holt-Winter’s model is presented in 
Figure 15.20.  Note the option to specify the “Season Method” with an indication of possible 
settings: 
 

- 0 is a model with no seasonal effects, 
- 1 is a model with an additive seasonal effect, and 
- 2 is a model with a multiplicative seasonal effect. 

 
Changing the values for the Season Method automatically changes the nature of the model and 
the forecast.  If you change the Season Method setting you must re-run Solver to optimize the 

, , and α δϒ  parameters referred to, respectively, as level, trend, and season smoothing constants 
in Simetar. 
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Figure 15.20.  Example of Holt-Winter’s Exponential Smoothing Procedure with 
Multiplicative Seasonality. 

 
 
− Trend Dampened Exponential Smoothing 
 
 Gardner and McKenzie proposed a trend dampening method to forecast time series where 
the growth rate will not be sustained over a long period in the future.  As the word “dampen” 
implies their procedure reduces the effect of the trend growth rate so the rate of decrease or 
increase is reduced.  Both the Holt (trend) and the Holt-Winter’s (trend and season) exponential 
smoothing procedures can be dampened using a dampening factor between 0 and 1.  In the case 
of the dampened trend model we get: 
 

 
T T T-1 T-1

T T T-1 T-1

l  =  Y  + (1- ) L  + 0b )

b  = (L  - L ) + (1- ) 0b )

α α

αϒ
 

 
where 0 is the dampening parameter. 
 
 Simetar automatically calculates the dampening parameter when estimating the parameters 
for an exponential smoothing model.  The user can change the form that the dampening 
parameter enters the forecast, to experiment with alternative model specifications.  The Holt-
Winter’s model example in Figure 15.20 has a dampening parameter of 0.677.  The effect of the 
dampening parameter on the model is determined by the setting for the “Trend Method” option.  
The Trend method option can take on three values: 
 

- 0 for no trend dampening, 
- 1 for dampened additive trend, and 
- 2 for dampened multiplicative trend. 

 
The dampening parameter is calculated by Solver so as to minimize the MAPE for the forecast 
model.  Therefore when you change the Trend method option you must re-run Solver to update 
the parameters for the model.  The model in Figure 15.21 was estimated by setting the Trend 
Method to 0 running Solver, observing MAPE and repeating the process for Trend Method equal 
to 1 and 2.  The Trend Method was set at 2 because this option resulted in the smallest MAPE. 
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Figure 15.21.  Example of Holt-Winter’s Exponential Smoothing with Multiplicative 
Seasonality and Multiplicative Trend. 

 
− Exponential Smoothing Summary 
 
 Exponential smoothing is a very flexible forecasting method as it can accommodate time 
series with trend, seasonal and level changes.  With the added flexibility of multiplicative and 
additive trend dampening and seasonal corrections, exponential smoothing is a very powerful 
forecasting tool.  Caution should be used in forecasting to many periods with this procedure.  
Exponential smoothing is best used for forecasting one period ahead.  Some well behaved series 
can be safely forecasted for more periods ahead but be cautious in its application.   
 
 Simetar is designed to estimate and forecast all of the combinations of the exponential 
smoothing models.  Caution should be used in estimating these models.  Choose the model with 
the lowest MAPE, but be sure to re-estimate or update the parameters after each change of the 
“Trend Method” or “Season Method” options.  Otherwise the parameters and the goodness of fit 
statistics (MAPE, etc.) will not reflect the assumptions indicated by these options. 
 
Time Series Analysis 
 
  The most comprehensive forecasting technique is time series analysis.  It has the advantage 
of not requiring separate forecasts for cycles, seasons or trends and it does not require forecasts 
for exogenous variables.  Time series is based on the premise that future values are a function of 
past observations for the same series.   
 
 The steps for estimating a time series model are: 
 

− Test for stationarity using the Dickie-Fuller test.  If the series is not stationary then make 
it stationary by differencing the data. 

− Once the series is stationary determine the number of lags to include in the time series 
model.  The number of lags to include in the model can be based on the Schwarz 
Criterion and the autocorrelation lag function. 

− Estimate the time series model based on the number of lags indicated by the tests. 
 
These tests depend on the analysts understanding what is meant by differences and lags so an 
example of differences is provided in Table 15.6.  For a time series, Y, of any length we can 
have k differences: 
 



 31

Table 15.6.  Equations for Calculating K First Differences. 
 

1,i 2,i 

Actual Data                                                           Differences                                                    

 Y                   D                          D             k,i

1

2 1,2 2 1

3 1,3 3 2 2

    . . .                D  

Y                    --            --                --
Y                    D  = Y  - Y           --                --
Y                    D  = Y  - Y                 D ,2 1,2 1,1          

4 1,4 4 3 2,4 1,3 1,2

 = D  - D                 -- 
Y                    D  = Y  - Y           D  = D  - D                --
.                     .                 .                .
.                    

t 1,t-1 t t-1 2,t-2 1,t-2 1,t-3 k,

 .                 .                .
.                     .                 .                .

Y                     D  = Y  - Y                     D  = D  - D                        D t-k

 

 
 
If the Dickie-Fuller test shows that the actual data (Y )t  are not stationary, we then test the 
differences D ,  D ,1 2  etc. until we find a stationary transformation of the actual data.  Assume the 
second difference is stationary, then the series which is used for all further analysis is the D2,i  
series defined in Table 15.6. 
 
 The number of lags to use in estimating the time series model is based on the number of lags 
for the “stationary” series.  (Tests are available to indicate the optimal number of lags for the 
stationary series.)  If the raw data are stationary without differencing, then the number of lags in 
the model are lags of the actual data.  In this case a 3 lag model is: 
 
 Y  =  a +  b Y  +  b Y  +  b Yt 1 t-1 2 t-2 3 t-3  
 
If the third difference is stationary, then the number of lags in the model are the number of lags 
for the D3,i  series.  In this case a 3 lag model is: 
 
 D  =  a +  b D  +  b D  + b D3,t 1 3,t-1 2 3,t-2 3 3,t-3  
 
Time series models usually employ several lags of differenced data so it is important to keep 
track of whether the model uses actual data or differenced data and the number of lags of the 
series. 
 
− Test for Stationarity 
 
 Testing for stationarity using the Dickie-Fuller test is done by solving the Dickie-Fuller test 
statistic for alternative numbers of differences, say 0, 1, 2, 3, ….  The importance of a trend in 
the differenced series can also be tested, as well as the need for lags of the differenced series 
using the Augmented Dickie-Fuller test. 
 
 An example of a Dickie-Fuller Test table is provided in Figure 15.22.  The top portion of the 
table assumes no trend (note “FALSE” in the =DF function) and the DF test statistic for the  
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Figure 15.22.  Example of a Dickie-Fuller Table to Test for 
Stationarity. 

 
 
Figure 15.23.  Table for Testing the Number of Lags for a First Difference 
Series. 

actual data (zero lags) is –1.87 indicating the actual data are not stationary.  The first difference 
of the data are stationary with a DF value of -12.95.  (See Time Series Forecasting Demo.XLS 
for the examples presented in this section.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A DF statistic less than -2.9 is considered to be significant evidence of stationarity.  Using 
additional differences would make the DF test statistic more negative, however it further reduces 
the degrees of freedom of the model.  The middle portion of the DF Table in Figure 15.22 repeats 
the DF tests but tests for the need to include a trend (note “TRUE” in the =DF function).  These 
results are similar to the first set, so no trend is needed.  The last section of Figure 15.22 shows the 
effects on the DF Test statistic if higher order lags are imposed on the D1,i  differenced series.  The 
D1,i  series appears to become less stationary as the number of higher order lags increases, as 
indicated by the decreasing DF values. 
 
− Test for Number of Lags 
 
 The number of lags for the univariate time series model can be estimated using the Schwarz 
Criterion.  The =ARLAG( ) function in Simetar runs the Schwarz test on the data and indicates 
the number of lags for a given difference for the series.  The =ARLAG( ) function is 
demonstrated in Figure 15.23.  For the data series used in the example, the best number of lags 
for a first difference series is 1 lag based on the Schwarz test.  Only a first differenced series 
(D )1,i  was considered in this case because the DF test pointed to one difference being stationary. 
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Figure 15.25.  Chart of the Autocorrelation Coefficients for 
Alternative Lags. 

 
 
Figure 15.24.  Test for the Number of Lags Using Autocorrelation and 
Partial Autocorrelation Coefficients. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two other tests can be used to determine the number of lags for a stationary series:  the 
autocorrelation and the partial autocorrelation coefficients for the differenced series.  The results 
of the autocorrelation and partial autocorrelation tests for the data in this example are 
summarized in Figure 15.24. 
 
The results suggest that the autocorrelation coefficients decline rapidly so no more than two or 
three lags should be used for the model.  A bar chart of the autocorrelation coefficients in Figure 
15.24 makes it easier to see that the autocorrelation coefficients drop off rapidly as the number 
of higher order lags increases (Figure 15.25). 
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− Estimated Time Series Model 
 
 Based on the tests a time series model with one difference and 6 lags was estimated for the 
data in this example.  Six lags were included because Simetar allows the user to restrict out any 
lag you want.  Given this option it is easy to fit the model with more lags than needed and then 
restrict out the undesirable lags.  The Restriction Matrix also allows the analyst to experiment 
with alternative numbers of differences, i.e., to re-confirm what the Dickie-Fuller test indicated.  
Experimenting with this restriction value (try 0, 1, 2, 3) causes the model to be re-fit with a 
different number of differences to the original input series and will cause significant changes to 
the impulse response chart and the goodness of fit statistics.  The time series results are 
summarized in Figure 15.26 
 
 The results of the model are quite good with a MAPE of 3.06% and a standard deviation on 
the residuals of 3.246. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The time series function in Simetar provides forecasts of the model if requested.  In Figure 
15.26 the forecast values for 24 periods are provided.  The deterministic forecasts for the model 
could have been calculated by hand. 
 
 Probabilistic forecasts for a time series model can be developed two ways.  First the 
deterministic forecast values can be treated as means for individual probability distributions 
distributed normal (Y ,  )t+i σ  where σ  is the estimated standard deviation for the residuals.  In 
other words a probabilistic forecast for period i  of an auto regressive model (AR(p, q)) is:  
 

 t+i

t+i t+i

Ŷ  = AR(p, q) 
ˆ ˆY  = Y  +  * SNDσ

 

 

 
 
Figure 15.26  Sample Time Series Model Output. 
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 A second method of developing a probabilistic forecast is to use the stochastic values for 
previous periods to update the mean in period i .  Such a dynamic simulation forecast assuming 
the raw data (Y )t  are stationary is: 
 

 
~ ~

~
Y  =  a +  b Y  +  b Y  +  ...
Y  =  Y  +   *  SND

t+i 1 t+i-1 2 t+i-2

t+i t+i σ
 

 
If the raw data were not stationary then the forecast equations are: 
 

 
~

D  =  a +  b D  +  b D  +  ...
Y  =  Y  +  D
Y  =  Y  +   *  SND

t+i 1 t+i-1 2 t+i-2

t+i t+i-1 t+i

t+i t+i σ
 

 
An example of how to simulate an AR model in a dynamic simulation mode is provided in 
Figure 15.27.  Figure 15.27 is from the time series model in the Time Series Forecasting 
Demo.XLS workbook.  The fan graph in the figure demonstrates that price risk increases as time 
progresses. The simulated results are in the Time Series Model worksheet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
− Presenting Probabilistic Forecasts 
 
 Stochastic simulation of a forecast creates more values than most decision makers want to 
see.  The challenge is to present the information so it can be used for decision making. Each 
period’s forecast is a probability distribution that has 100 or more values.  Presenting the average 
value for each period ignores the information created by the stochastic simulation.  Presenting a 
PDF for each period may be appropriate if the forecast is for only a few periods, otherwise the 
number of PDFs becomes confusing. 

 
 
Figure 15.27.  Example of a Dynamic Simulation of an AR Model. 
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 An alternative may be to present the stochastic results is in a fan graph with the lines set to 
conventional confidence intervals (alpha equal 2 or 5 percent).  Displaying the forecast mean and 
the 98 percent confidence interval about the mean indicates the downside risk and the upside risk 
in each year (Figure 15.28). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The confidence intervals in Figure 15.28 are simulated two different ways.  The forecast in 
the left panel are simulated assuming the betas for a regression model are stochastic and there are 
no residuals.  The stochastic betas gives the classical fanning out effect with a narrower 
confidence interval in the center.  The procedure for simulating stochastic betas is presented in 
Probabilistic OLS Forecasts Demo.XLS.  The formula for the simulation is: 
 
 t i itY  = a + b X  
 
 where ia and b  are simulated MVN. 
 
Note:  a large sample size of 1000 or more is needed to develop smooth confidence interval lines 
from period to period. 
 
 The right panel in Figure 15.28 is generated from simulating the multiple regression forecast 
model assuming the betas are stochastic and the residuals are stochastic or  
 
 t i it ˆY  = a + b X  +  * SNDσ  
 
The narrow middle for the confidence interval is largely lost in the right hand panel because the 
stochastic residual is much greater than the effect of the stochastic betas.  The left panel shows 
the conventional confidence interval diagram shown in many statistics books.  However, for 
probabilistic forecasting the confidence intervals in the right panel are more useful as they 
include both sources of risk. 

 
 
Figure 15.28.  Example of a Fan Graph to Present Probabilistic Forecasts with Betas 
and Residuals Stochastic. 



 37

 The confidence intervals most often used in probabilistic forecasting come from simulating 
the model assuming the betas are fixed and the residuals are stochastic or: 
 
 t i it ˆY  = a + b X  +  * SNDσ  
 
The resulting confidence intervals (Figure 15.29) are slightly narrower than for the right panel in 
Figure 15.28.  Also, the confidence intervals will not necessarily display a widening effect over 
time that is presented in many statistics books. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In addition to presenting the forecast as a fan graph with confidence intervals for each 
period, it is recommended that a PDF and a CDF be presented for at least the first period (Figure 
15.30).  The confidence interval in the left panel PDF corresponds to the first year of the fan 
graph in Figure 15.29.   The CDF in the right panel shows the probability (left axis) that the 
forecast will be less than a particular value on the bottom axis. 
 
 
 
 

 
 
Figure 15.29.  Example of a Fan Graph to Present Probabilistic 
Forecasts with Betas Constant and Residuals Stochastic. 

 
 
Figure 15.30.  Example of Using a PDF and a CDF to Present the Probabilistic 
Forecast for the First Period to Demonstrate a Risk. 
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Simetar© 2008  
Simulation & Econometrics To Analyze Risk 

 
1.0 What is Simetar? 
 
Simetar© 2008 is a simulation language written for risk analysts to provide a transparent method 
for analyzing data, simulating the effects of risk, and presenting results in the user friendly 
environment of Microsoft® Excel1. Any Excel spreadsheet model can be made stochastic and 
simulated using Simetar functions. Simetar, an acronym for Simulation for Excel to Analyze 
Risk is an Excel add-in.  Simetar requires little additional memory and operates efficiently on 
most PCs running Excel XP, Excel 2000, Excel 2003, and Excel 2007.  Instructions for installing 
Simetar are provided in Section 1.1. 
 
Simetar consists of Menu Driven and User Defined Functions for Excel.  A common principle in 
Simetar, is that all functions are dynamic; so if changes are made to the original data most all 
parameters, hypothesis tests, regression models, and risk ranking strategies are automatically 
updated.  This feature of having Excel dynamically recalculate parameters offers significant 
efficiencies during the development, validation, verification, and application of stochastic 
simulation models. 
 
The more than 230 functions in Simetar can be categorized into six groups: (a) simulating 
random variables, (b) parameter estimation and statistical analyses, (c) graphical analysis, (d) 
ranking risky alternatives, (e) data manipulation and analysis, (f) multiple regression, and (g) 
probabilistic forecasting.  Simetar can be used to perform all of the steps for developing, 
simulating, and applying a stochastic model in Excel, namely:  estimate parameters for random 
variables, simulate stochastic variables, test the validity of the random variables, present the 
results graphically, and rank risky alternatives. 
  
The next section describes the procedure for installing Simetar.  After installing Simetar open the 
demonstration program to see learn how to apply the major functions in Simetar. More than 100 
demonstration programs will be installed on your computer at Start > Programs > Simetar > 
Demos.  Refer to these demonstration programs as you read the User’s Manual to learn how the 
functions are applied in working simulation and forecasting models.   

 
1.1 Installing Simetar 
 
The first step in installation is to set the macro security level for Excel to low.  (If you currently 
have Simetar installed be sure to uninstall Simetar and delete the C:\Program Files\Simetar 
folder.) After setting macro security to Low, close Excel and insert the Simetar CD in your 
computer’s CD drive. (If you are installing from a file downloaded from the Simetar website, 
copy the file to your computer’s hard drive and proceed with the installation.)  From the 
Windows Explorer, double click on the Simetar.exe file name and the Setup Wizard will open to 

                                                 
1 . Simetar© is copyrighted by the authors.  Microsoft, Excel, and Windows are either registered trademarks or 
trademarks of Microsoft Corporation in the United States and/or other countries. 
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Figure 1. Click the Next box to proceed with the installation.  The License Agreement is 
provided in the second screen of the Wizard (Figure 2).  Read the License Agreement and click 
on the I Agree box to proceed with installation.  

 
Enter the License Code provided on your CD or with the Download Instructions (Figure 3).  If 
you did not uninstall Simetar, a screen will appear that allows you uninstall using our unistaller. 
In the next screen select the “Typical” installation.  Figure 4 is provided so you can change your 
mind as to the type of installation. 

 
Enter your license code in Figure 5, make sure all letters are caps and the dashes are included. 
The installation will take 2-3 minutes as the files are transferred and the appropriate files are 
updated so Simetar can operate in the Microsoft environment.  The program will be stored in 
C:\Program Files\Simetar 2008. The last screen (Figure 6) indicates that Simetar has finished 
installing properly.  Open Excel and you will see the Simetar toolbar in Excel 2003.  For Excel 
2007 you must click Add-Ins and then click on the word Simetar to see the Toolbar presented 
below.  To test Simetar type the following command in cell A1  =NORM()  press Enter and then 
press F9.  You will see random draws of a standard normal random variable. 
 
 
The installation procedure will place the word “Simetar” on the toolbar and add the Simetar icon 

Figure 1.  Install Simetar. Figure 2.  License Agreement. 

Figure 3.  Type of Installation. Figure 4.  Final Chance to Change 
Your Installation Type. 
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toolbar below:    

 
 
 
2.0 Simulating Random Variables 
 
Simulating a stochastic model in Excel is accomplished by generating random values for each of 
the random variables, letting Excel update the model’s equations, and saving the results of key 
output variables (KOVs) for statistical analysis and presentation. Repeating this process a large 
number of times (iterations or trials) causes the model to be simulated for a wide range of 
possible combinations of the random variables. The resulting array of 100 or more simulated 
values for a KOV defines an empirical probability distribution for each of the output variables.  
Probability distributions for the output variables are analyzed to gain a better understanding of 
the risk for the system being modeled. An example of simulation with Simetar is provided in 
example program Simulation Demo.xls. 
 
2.1 Probability Distributions in Simetar 
 
Simetar includes functions for generating pseudo-random numbers from more than 50 
probability distributions plus six distributions included in Excel.  An alphabetical list of 
probability distributions simulated by Simetar is provided in page 4.  A detailed description of 
each Simetar function for simulating random numbers is provided in Section 3.  See the 
Probability Distributions Demo.xls workbook for examples of how the functions are used in 
Excel. Access the Simetar demonstration programs from the Start menu: 
 
Start > Programs > Simetar > Demos 

 

Figure 5.  Enter Your License Code. Figure 6. Final Installation Screen. 
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 Distribution  Function Name and Parameters for each Probability Distribution in Simetar   
Bernoulli =BERNOULLIDIST(ProbabilityofTrueOutcome) 
Binomial =BINOMINV(n,Prob,[USD]) 
Bootstrap =BOOTSTRAPPER(ListofPossibleOutcomes,RecalculationOff) 
Cauchy  =CAUCHY(Median,Sigma,[USD]) 
Cosine   =COSINV(Center,Radius,[USD],MaxIterations,Precision) 
Correlated SND =CSND(RangeCorrelationMatrix, [ISNDs]) 
Correlated USD =CUSD(RangeCorrelationMatrix,[ISNDs],[MatrixRow],[RankCorr]) 
Discrete Empirical =DEMPIRICAL(Values,[USD],[Probabilities of Values]) 
Double Exponential =DEXPONINV(Mu,Sigma,[USD]) 
Dirichlet  =DIRICHINV(Alphas,[USD],[MatrixRow]) 
Empirical =EMP(Values,Probabilities,[USD],[NormTails]) 
Empirical =EMPIRICAL(Values,Probabilities,[USD],[NormTails]) 
Exponential =EXPONINV(Beta,[USD]) 
Extreme value =EXTVALINV(Mu,Sigma,[USD]) 
Geometric =GEOMINV(Prob,[USD]) 
GRK  =GRK(MinValue,MidPoint,MaxValue,[USD]) 
GRKS  =GRKS(MinValue,MidPoint,MaxValue,[USD],[LowerSD],[UpperSD]) 
Hotelling T Sq =HOTELLTINV(P,Degrees_Freedom,[UniformRandonNumber]) 
Hypergeometric =HYPERGEOMINV(n,N1,S1,[USD]) 
Inverse Gaussian =INVGAUS(Mu,Sigma,[USD],[MaxIterations],[Precision]) 
Kernal Density  =KDEINV(DataRange,BandWidth,KernelEstimator,[USD],[MaxIter],[Prec]) 
Logistic  =LOGISTICINV(Mu,Sigma,[USD]) 
Log-Log  =LOGLOGINV(Mu,Sigma,[USD]) 
Log-Logistic =LOGLOGISTICINV(Alpha,Beta,[UUSD]) 
Modified 2 Piece Normal=MTPNORM(MinValue,MidPoint,MaxValue,[USD],[LowSD],[UpSD]) 
Multinomial =MULTINOMINV(NumTrials,Probs,[USDs]) 
Multivariate Empirical =MVEMPIRICAL(RandomValuesDataMatrix,[SND],[MatrixRow]) 
Multivariate Log Normal =MVLOGNORM(MeanVector,CovMatrix,[SNDs],[MatrixRow],[Moments]) 
Multivariate Normal =MVNORM(MeansVector,CovarianceMatrix,[SNDs],[MatrixRow]) 
Multivariate Students t =MVTINV(Student t,CovarianceMatrix,[DegreesFreefom],[SNDs],[MatrixRow]) 
Negative Binomial=NEGBINOMINV(k,Prob,[USD]) 
Normal  =NORM(Mean,StandardDeviation,[USD]) 
Pareto  =PARETO(Alpha,Beta,[UniformRandonNumber]) 
PERT  =PERTINV(A,B,C,[USD]) 
Power Normal =PNORM(Mean,StandardDeviation,P,[USD]) 
Poisson  =POISSONINV(Lambda,[USD]) 
Random Sorting =RANDSORT(InputRangeLocation,[RecalculationOff],[DataHorizontal]) 
RandomWalk =RANDWALK(Mean,StandDev,USD,Distribution,InitialVal,Coefficient) 
Semicircle =SEMICIRCDIST(X,Center,Radius,[Cumulative or Density]) 
Truncated Empirical =TEMPIRICAL(RandomValues,Probabilities,MinVal,MaxVal,[USD]) 
Truncated Gamma =TGAMMAINV(Alpha,Beta,AbsoluteMin,AbsoluteMax,[USD]) 
Truncated Normal =TNORM(Mean,StanDev,[Min],[Max],[USD],[StackTails]) 
Truncated Wiebull =TWEIBINV(Alpha,Beta,[Min],[Max],[USD]) 
2 Piece Normal =TPNORM(Mean,StandardDeviation1,StandardDevviation2,[USD]) 
Triangle  =TRIANGLE(A,B,C,[USD]) 
Uniform  =UNIFORM(LowerValue,UpperValue,[USD]) 
Uncorrelated SNDs =USND(CorrelationMatrixRange,CorrelatedNormalDeviatesRange) 
Uncorrelated USDs =UUSD(CorrelationMatrixRange,CorrelatedUniformDeviatesRange) 
Weibull  =WEIBINV(Alpha,Beta,[USD]) 
Wilk's Lambda =WILKSLINV(P,FirstDegrees of Freedom,SecondDegrees of Freedom) 
Wishart  =WISHINV(CovarianceMatrix,Degrees of Freedom) 

 Native Excel probability distributions can be simulated in Simetar  

Beta   =BETAINV(Uniform(),Alpha,Beta,Minimum,Maximum) 
Chi-Squared  =CHIINV(Uniform(),Degrees of Freedom) 
Gamma   =GAMMAINV(Uniform(),Alpha,Beta) 
Log Normal  =LOGINV(Uniform(),Mean,StandardDeviation) 
Students t  =TINV(Uniform(),Degrres of Freedom) 
F   =FINV(Uniform(),Degrees of Freedom1, Degrees of Freedom2)
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Simetar allows the user to specify the type of sampling procedure 
and the random number generator to use in generating random 
values. Three different random number generators are available: 
Mercene Twister, the Multiplicative Random Number Generator, or 
Excel’s native generator. Two different random number sampling 
procedures are available : Latin hypercube and Monte Carlo. These 
random number generators are pseudo random and thus are suitable 
for conducting scenario and sensitivity analyses. The user can select 
the random number generator and the sampling method by selecting 
the General Settings Options   icon and choosing the desired 
options in the Default User Settings menu (Figure 7).  
 
2.2 Simulation Engine in Simetar 

 
The dialog box in Figure 8 for simulating a 
stochastic Excel simulation model is accessed by the 
       icon on the Simetar toolbar.  Options specified 
in the dialog box are saved by selecting the Save or 
SIMULATE buttons. 
 
The user must specify one or more Output Variables 
(KOVs) for the statistical analysis of simulated 
results. The summary statistics and each simulated 
value (in iteration order) for each KOV are saved in 
the SimData worksheet. An output KOV can be any 
cell in the spreadsheet.  KOVs can be cells that 
contain random variables, intermediate calculations, 
and final answers.  
 
Add variables to the List of Output Variables box by clicking in the Select Output Variables for 
Analysis window, highlighting the spreadsheet cell or cells to include, and clicking the Add 
Output box.  Indicate where the variable’s label is located, as in the cell To The Left, in the cell 
Above, or None. Several hundred output variables can be handled by Simetar.  The sample menu 
in Figure 8 shows that the variables in B5, B6, and B7 are the output variables and their labels 
are To The Left.  To delete an output variable or several variables, highlight the variables in the 
dialog box and click the Delete Selected button.  Clicking on the Clear All Output Variables 
button will delete all of the output variables listed in the dialog box.  Clicking on an output 
variable in the List of Output Variables box causes Excel to highlight the particular variable in 
the workbook. Simetar updates the location of KOVs in the Output Variable table if the 
spreadsheet is modified by adding rows or columns.  Information in the Simulation Engine must 
be re-entered each time the workbook is opened. 
  
After specifying the output variable(s) click the SIMULATE button and Simetar will simulate the 
workbook and save the simulated values for the output variables in the SimData worksheet or in 
the worksheet specified by the user.  The statistics for each output variable are provided in rows 
3-7 of SimData and the simulated values for each variable, by iteration, start in row 9 (Figure 9).  
After the 100 or more simulated values there are 10 rows of pre-programmed equations to 
calculate the probability of the output variable being less than a specified target.  Type in a target 

Figure 7.  Setup Menu 
for User’s Settings.

Figure 8.  Simulation Dialog Box for Simetar. 
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value in a row labeled “xi - value” and the probability of the 
KOV being less than or equal to the value will appear in the next 
row labeled “Prob (X<=xi).”  For example, there is a 38.0 
percent chance that receipts will be less than $1,300 (see column 
D of Figure 9).   
 
The simulated variables in the SimData worksheet always 
appear in the order they were added to the List of Output 
Variables (Figures 8 and 9).  The rows of simulated values for 
the output variables correspond to the actual iterations as they 
were simulated, i.e., the iteration order is maintained across 
output variables in SimData.  The simulated values of each iteration for all output variables are 
provided so the user can analyze the results using Simetar functions, (for  hypothesis tests, charts 
for presenting simulation results, and ranking risky alternatives. 
 
2.3 Specifying Options in the Simulation Engine   
  
2.3.1 Variable Names.  The user must specify the 
name for a KOV before it is added to the List of 
Output Variables box (Figure 8).  The variable name 
will appear with the stochastic results in the SimData 
worksheet (Figure 9).  There are three options for 
specifying the variable names.  The first option is to 
use the text in the cell to the left of the KOV.  The 
second option is to use the text in the cell above the KOV and the third option is to not specify a 
name for the KOV.  The variable name can be a concatenation of the text in the cells to the left 
and above the KOV cell (Figure 10).  The user must specify the location of the label before 
adding the variable to the List of Output Variables table. 
 
2.3.2 Random Number Seed.  The user may specify the Random Number Seed, in place of the 
default seed, 31517, to insure the same starting point for the pseudo random number generator 
from one run to the next (Figure 8).  The default seed can be changed permanently in the Default 
User Settings menu (Figure 7). 
 
2.3.3 Number of Iterations.  The Number of Iterations to simulate the spreadsheet model can be 
set by the user (Figure 8).  The default number of iterations can be changed in the Default Users 
Settings menu (Figure 7).   
 
2.3.4 Output Worksheet.  Output results for a simulation are stored in the SimData worksheet 
of the current (or a new) workbook using the specified Output Location (Figure 8).   
 
2.3.5 Scenarios.  The Number of Scenarios defaults to 1 in the menu box (Figure 8).  If your 
model uses the =SCENARIO( ) function to simulate multiple scenarios, enter the number of 
scenarios.  See Section 7.0 to learn more about the Scenario feature. 
 
 
2.3.6 Conduct Sensitivity Elasticities Analysis.  This option causes Simetar to simulate the 
spreadsheet model once for the base situation and once for each variable listed in the Sensitivity 

Figure 9.  Example of Stochastic 
Results in the SimData 

Figure 10. Labels for Key Output Variables 
in Cells to the Left. 
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Variable Input window (Figure 11).  The elasticity is defined as the percentage change of the 
KOV to a one percent change in an exogenous variable.  The larger the elasticity, the greater the 
sensitivity of the KOV to the exogenous variable. See Section 9.0 to learn more about this 
option. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3.7  Conduct Sensitivity Analysis.  Any Excel spreadsheet model can be simulated using the 
sensitivity analysis option.  Numerous KOVs can be tested for percentage changes in one 
exogenous variable.  Three percentage change levels, say, ±5%, ±10%, and ±20%, can be 
specified by the user.  See Section 5.0 to learn more about this option.  Simetar also performs 
sensitivities by selecting the Conduct Sensitivity Analysis option.  (See Section 8.0 for details on 
simulating sensitivity analyses.)   
 
2.3.8 Incorporate Solver.  Simetar can stochastically simulate a simultaneous equation or linear 
programming model by selecting Incorporate Solver.  (See Section 10.0 for details on simulating 
with an optimizer.)   
 
2.3.9 Expected Value. Once stochastic variables have been incorporated into an Excel 
simulation model, all of the values (cells) update every time the sheet calculates or F9 is pressed. 
This feature in Excel is very useful for testing if stochastic variables are working correctly and if 
they have been linked to the proper equations in the model.  However, it is also very useful to 
have the stochastic values fixed at their means for equation verification. Clicking the Expected 
Value  icon sets all random variables to their means and un-clicking the icon causes Excel to 
calculate values for the stochastic variables.  During simulation Simetar overrides the Expected 
Value button’s setting and simulates stochastic values for all of the random variables. 
 
2.4 User Defined Settings 
 
The user may specify his/her preferred settings for the type of random number generator, 
sampling method, number of iterations, number of scenarios, random number seed, precision for 
MLE parameter estimation, and the maximum number of iterations for MLE and other iterative 
solution functions.  The user defined settings are specified in the dialog box associated with the 

 icon (Figure 7). 
3.0 Probability Distributions Simulated in Simetar  
 

Figure 11.  Simulation Menu Expanded to Estimate Sensitivity 
Elasticities for Variables in B6 – B8. 
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Simetar is capable of simulating univariate and multivariate random numbers from more than 50 
probability distributions.  Each probability distribution is described in detail in this section. 
Univariate probability distributions are treated first followed by multivariate probability 
distributions.  Examples of how to simulate univariate the probability distributions are provided 
in Probability Distributions Demo.xls.  Section numbers in the text are used to organize and 
identify the distributions in the demonstration workbook. 
 
3.1. Uniform Probability Distribution   
 
Uniformly distributed random numbers are the basis for all random numbers and are simulated 
by Simetar using the =UNIFORM() function.  The function can be programmed three different 
ways: 
 
 = UNIFORM (Min, Max, [CUSD or USD]) 
 = UNIFORM (B8, B9) 
 = UNIFORM ( ) 
 
where: Min is the minimum value for the distribution or a cell reference,  
 Max is the maximum value for the distribution or a cell reference, and 
 CUSD is an optional input value reserved for a correlated USD (or uniform standard 

deviate) required for correlating non-normal distributions.  See Section 3.9.2 for 
simulating CUSDs. 

 
The =UNIFORM( ) function defaults to a uniform standard deviate (USD) distributed between   
0 and 1 if it is programmed as =UNIFORM( ).  This form of the function is an essential input in 
the other Simetar random number generators, particularly for simulating the native Excel 
probability distribution functions.  Three examples of the UNIFORM function are provided 
below and in 3.1.1 of Probability Distribution Demo.xls. 
 
 
 
 
 
 
 
3.2 Normal Related Probability Distributions 
 
3.2.1 Normal.  A normally distributed random number is simulated using the =NORM( ) 
function.  The =NORM( ) function defaults to a standard normal deviate (SND) generator when 
no parameters are provided, as =NORM( ).  A SND is a normally distributed random variable 
with a mean of zero and standard deviation of one.  The function is programmed using one of the 
following forms of the command: 
 
 = NORM (Mean, Std Dev, [USD]) 
 = NORM (B35, B36, D13) 
 = NORM (B35, B36) 
 = NORM ( ) 
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where: Mean is the mean of the distribution (or a cell reference, as B35), 
 Std Dev is the standard deviation of the distribution (or a cell reference as B36), and  
  USD is an optional uniform standard deviate.  When a USD is not provided, Simetar 

generates its own uniform standard deviate.  This optional variable is included so 
Simetar can simulate multivariate normal distributions. 

 
 
 
 
 
 
 
 
3.2.2 Truncated Normal.  A truncated normal distribution uses the =TNORM() function.  The 
function is programmed as follows: 
 
 = TNORM (Mean, Std Dev, [Min], [Max], [USD]) 
 = TNORM (B47, B48, B49, B50, D13) 
 
where: Mean is the mean for the distribution entered as a number or stored in a cell as B47, 
 Std Dev is the standard deviation for the distribution as B48, 
 Min is the absolute minimum value as B49 and is optional, 
 Max is the absolute maximum value as B50 and is optional, and  
 USD is the optional uniform standard deviate generated by =UNIFORM( ). 
 
To simulate a truncated normal with a truncated minimum, use the function as: 
 
 = TNORM (Mean, Std Dev, Min,    , [USD]) 
 
To simulate a truncated normal distribution with a truncated maximum, use the function as:  
 
 = TNORM (Mean, Std Dev,  , Max, [USD]) 
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3.2.3  Two-Piece Normal.  The two-piece normal distribution combines half of the densities for 
two normal distributions with the same mean and possibly different standard deviations.  The 
distribution is simulated as: 
 
 =TPNORM(Mean, SD Lower, SD Upper, [USD] 
 
where: Mean is the middle value for the distribution, 
 SD Lower is the standard deviation for distribution less than the Mean, 
 SD Upper is the standard deviation for distribution greater than the Mean, and 
 USD is an optional uniform standard deviate. 
 
3.2.4 Modified Two-Piece Normal.  The two piece normal distribution is fully defined by 
specifying the minimum, middle point, the maximum and the standard deviations for the two 
sides.  The =MTPNORM( ) is specified as: 
 
 =MTPNORM(Min, Mid, Max, [USD], [Lower SD], [Upper SD]) 
 
where: Min is the minimum value for the random variable on the number scale (default -1), 
 Mid is the middle value for the random variable (default 0), 
 Max is the maximum value for the random variable on the number scale (default 1), 
 USD is an optional uniform standard deviate,  
 Lower SD is the number of standard deviations in the lower tail (default of 2 means the 

minimum value is two standard deviations below the middle value), and 
 Upper SD is the number of standard deviations in the upper tail (default of 2 means the 

maximum value is two standard deviations above the middle value). 
 
3.2.5 Student’s-t (Excel’s).  The student’s t-distribution is native to Excel but can be simulated 
using Simetar by providing a USD generated by =UNIFORM().  The probability distribution is 
simulated as: 

 
 =TINV (USD, Degrees of Freedom) 
 
where: USD is a uniform standard deviate generated by =UNIFORM( ), and  
 Degrees of Freedom is self explanatory. 
 
 
 
 
 
 
 
3.2.6 F (Excel’s).   The F distribution, an Excel function, is simulated as: 

 
 =FINV (USD, Degrees of Freedom1, Degrees of Freedom 2) 

 
where: USD is a uniform standard deviate generated by =UNIFORM( ), and  
 Degrees of Freedom 1 and 2 are self explanatory. 
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3.2.7 Chi-Squared (Excel’s).  The chi-squared distribution, an Excel function, is simulated as: 
 

 =CHIINV (USD, Mean) 
 

where: USD is a uniform standard deviate generated by =UNIFORM ( ), and 
 Mean is the average for the distribution. 
 
3.2.8 Log Normal (Excel’s).  The log normal distribution, an Excel function, is used to simulate 
quantities like a normal distribution. The distribution is simulated as: 
 
 =LOGINV (USD, Mean, Std Dev) 
 
where: USD is a uniform standard deviate generated by =UNIFORM ( ), 

 Mean is the average, and 
 Std Dev is the standard deviation for the distribution. 

 
The simulated values from =LOGINV( ) are in “natural log” form so take the anti-log of the 
stochastic values using the Excel function =LN( ).   
 
3.2.9 Power Normal.  The power normal distribution is simulated in Simetar using the 
=PNORM( ) function as: 
 
 =PNORM(Mean, Sigma, Exp P, [USD]) 
 
where: Mean is a real number and indicates the central tendency parameter for the distribution, 
 Sigma is a number greater than zero that represents the variance for the distribution, 
 Exp P is a value greater than zero, the exponent parameter for the distribution, and 
 USD is an optional uniform standard deviate. 
 
3.2.10 Inverse Gaussian.  The inverse Gaussian distribution is simulated using an iterative 
solution procedure.  The =INVGAUS( ) function is programmed as: 
 
 =INVGAUS (Mu, Sigma, [USD], [Max Iter], [Precision]) 
 
where: Mu is a positive real number representing the first parameter of the distribution, 
 Sigma is a number greater than zero that indicates the shape parameter for the 

distribution, 
 USD is an optional uniform standard deviate, 
 Max Iter is an optional maximum iterations used to find the stochastic value, and 
 Precision is an optional term to specify the precision of the answer. 
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3.3 Continuous Probability Distributions 
 
3.3.1 Gamma (Excel’s).  The gamma distribution, an Excel function, can be used to simulate the 
length of time to complete a task.  The distribution is specified as: 

 
 =GAMMAINV (USD, Alpha, Beta) 
 
where: USD is a uniform standard deviate generated by =UNIFORM ( ), 
 Alpha is the first parameter for the gamma distribution, and  
 Beta is the second parameter for the gamma distribution. 

 
3.3.2 Truncated Gamma.  The gamma distribution can be truncated at the lower or upper end 
with the =TGAMMAINV( ) function.  The function is used as: 
 
 =TGAMMAINV (Alpha, Beta, [Min], [Max], [USD]) 
 
where: Alpha is the first parameter for the gamma distribution and must be greater than zero, 
 Beta is the second parameter for the gamma distribution and must be greater than zero, 
 Min is the optional value for the absolute minimum (0 < min < max), 
 Max is the optional value for the absolute maximum (min < max < ∞), and 
 USD is an optional uniform standard deviate. 
 
3.3.3 Exponential.  The exponential distribution can be used to simulate times between 
independent events that occur at a constant rate, such as arrivals at a service center.  The 
distribution is simulated as: 
 
 = EXPONINV (Beta, [USD]) 
 
where: Beta is the only parameter for the exponential distribution, and 
  USD is an optional uniform standard deviate. 
 
3.3.4 Double Exponential.  The double exponential distribution can be used to simulate times 
between independent events that occur at a constant rate, such as arrivals at a service center.  The 
distribution is simulated as: 

 
 = DEXPONINV (Beta, [USD]) 
 
where: Beta is the only parameter for the double exponential distribution, and 
  USD is an optional uniform standard deviate generated by =UNIFORM( ). 
 
3.3.5 Weibull.  The Weibull distribution is often used to simulate reliability or lifetimes for 
machinery.  The distribution is simulated as: 
 
 = WEIBINV (Alpha, Beta, [USD]) 
 
where: Alpha is the first parameter for the Weibull distribution and must be greater than zero,  
  Beta, the second parameter for the Weibull distribution, must be greater than zero, and 
 USD is an optional uniform standard deviate generated by =UNIFORM( ). 
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3.3.6 Truncated Weibull.  The Weibull distribution can be simulated with a finite minimum 
and/or maximum as: 
 
 =TWEIBINV (Alpha, Beta, [Min], [Max], [USD]) 
 
where: Alpha is the first parameter of the Weibull distribution and must be greater than zero,  
  Beta is the second parameter of the Weibull distribution and must be greater than zero,  
  Min is the absolute minimum (0 < min < max), 
  Max is the absolute maximum (min < max < ∞), and 
  USD is an optional uniform standard deviate. 
 
3.3.7 Cauchy.  The Cauchy distribution is a symmetrical distribution about its parameter theta 
( ).θ   If median and sigma parameters are not provided the function defaults to a 
=CAUCHY(0,1) random variable.  The distribution can be simulated in Simetar as: 
 
 =CAUCHY ([Median], [Sigma], [USD]) 
 
where: Median is an optional value for the mid point of the distribution, 
 Sigma is an optional term to indicate the shape of the distribution, and    
 USD is an optional uniform standard deviate. 
 
3.3.8 Logistic.  A logistic distribution can be simulated using the =LOGISTICINV() function as: 
 
 =LOGISTICINV(Mu, Sigma, [USD]) 
 
where: Mu is the first parameter for the logistic distribution and it must be a real value, 
 Sigma is the second parameter for the distribution and must be greater than zero, and 
 USD is an optional uniform standard deviate. 
 
3.3.9 Log-Log.  The log-log distribution is simulated as: 
 
 =LOGLOGINV (Mu, Sigma, [USD]) 
 
where: Mu is any real value indicating the position of the distribution on the number scale,  
 Sigma is a value greater than zero indicating the scale parameter, and 
 USD is an optional uniform standard deviate. 
 
3.3.10 Log-Logistic.  The log-logistic distribution is simulated as: 
 
 =LOGLOGISTICINV (Alpha, Beta, [USD]) 
 
where: Alpha is a value greater than zero which represents the shape parameter, 
 Beta is the scale parameter and must be greater than zero, and 
 USD is an optional uniform standard deviate. 
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3.3.11 Extreme Value.  An extreme value distribution can be simulated as: 
 
 =EXTVALINV (Mu, Sigma, [USD]) 
 
where: Mu is the real value indicating the location parameter for the extreme value distribution. 
 Sigma any value greater than zero indicating the scale parameter of the distribution, and 
 USD is an optional uniform standard deviate generated by =UNIFORM( ). 
 
3.3.12 Pareto.  A Pareto distribution can be simulated using the =PARETO() function as: 
 
 =PARETO(Alpha, Beta, [USD]) 
 
where: Alpha is the first parameter for a Pareto distribution and it must be greater than zero, 
 Beta is the second parameter for the distribution and it must be greater than zero, and 
 USD is an optional uniform standard deviate. 
 
3.4 Finite-Range Continuous Probability Distributions 
 
3.4.1 Triangle.  The triangle distribution is defined by the minimum, mode, and maximum.  The 
distribution can be simulated as: 
 
 =TRIANGLE (Min, Mode, Max, [USD]) 
 =TRIANGLE (A95, A96, A97) 
 
where: Min is the minimum for the distribution, 
 Mode is the mode for the distribution,  
 Max is the maximum for the distribution, and 
 USD is an optional uniform standard deviate. 
 
 
 
 
 
 
 
3.4.2 Beta (Excel’s).  The beta distribution, an Excel function, can be used to simulate the 
proportion of defective items in a shipment or time to complete a task.  The distribution is 
simulated as: 

 
 =BETAINV (USD, Alpha, Beta, [Min], [Max]) 
 =BETAINV (UNIFORM ( ), Alpha, Beta) 
 
where: USD is a uniform standard deviate generated by =UNIFORM ( ), 

 Alpha is the first parameter for the distribution, 
 Beta is the second parameter for a beta, 
 Min is an optional value for truncating the minimum of the distribution, and 
 Max is an optional value for truncating the maximum of the distribution. 
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3.4.3 PERT Distribution.  A PERT distribution can be simulated by Simetar using the 
=PERTINV() function as: 
  
 =PERTINV(Min, Middle, Max, [USD]) 
 
where: Min is a lower bound parameter, 
 Middle is a middle parameter with min < middle < max,  
 Max is an upper bound parameter, and  
 USD is an optional uniform standard deviate. 
 
3.4.4 Cosine.  The cosine distribution is simulated by Simetar using an iterative solution 
procedure.  The =COSINV( ) function is programmed as: 
 
 =COSINV(Center, Radius, [USD], [Max Iter], [Precision]) 
 
where: Center is a real number that represents the first parameter for a cosine distribution, 
 Radius is a positive value that represents the second parameter, 
 USD is an optional uniform standard deviate, 
 Max Iter is the maximum number of iterations used to find the stochastic value, and 
 Precision is an optional term to specify the precision of the answer. 
 
3.4.5 Semicircle.  The semicircle distribution is simulated as: 
 
 =SEMICIRCINV(Center, Radius, [USD], Max Iter, Precision) 
 
where: Center is a real number that indicates the first parameter of the distribution, 
 Radius is the second parameter for the distribution and must be greater than zero, 
 USD is an optional uniform standard deviate, 
 Max Iter is the maximum number of iterations to find the value (max > 0), and 
 Precision is a positive value to specify how precise the optimum answer should be.  If an 

optimum answer is not found within the precision level in the maximum number of 
iterations, #VALUE1 error is returned. 

 
3.5 Analogs to Finite Range Probability Distributions 
 
3.5.1 GRK.  The GRK distribution is an empirical substitute for the triangle distribution and is 
similar to a two piece normal distribution.  The GRK distribution simulates values less than the 
minimum about two percent of the time.  Values greater than the maximum are observed about 
two percent of the time.  A GRK distribution can be simulated as: 
 
 = GRK (Min, Middle, Max, [USD]) 
 = GRK (A95, A96, A97) 
 
where: Min is the value for the minimum, 
 Middle is the value for the mid point of the distribution,  
 Max is the value (or cell) for the maximum, and 

 USD is an optional uniform standard deviate. 
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3.5.2 GRKS.  The GRKS distribution is a continuous probability distribution for sampling from 
a minimum data population.  Given a minimum, middle value and a maximum to describe the 
population the =GRKS( ) function is a continuous distribution substitute for the triangle 
distribution.  The LSD and USD parameters indicate the number of standard deviations below 
and above the middle value that the distribution can extend.  An LSD of 2 implies the minimum 
is at approximately the 2nd percentile and a LSD of 3 implies sampling with a minimum at 
approximately the 0.5 percentile.  Program =GRKS( ) as follows: 
 
 =GRKS (Min, Middle, Max, [USD], [LSD], [USD]) 
 =GRKS (C250, C251, C252, C253, C259, C260) 
 
where: Min is the value for the minimum, 
 Middle is the value for the mid point of the distribution,  
 Max is the value (or cell) for the maximum,  
 USD is an optional uniform standard deviate, 
 LSD optional number of standard deviations below the middle, as D97, and 

 USD optional upper number of standard deviations above the maximum, as D98. 
 

 
 
 
 
 
 
 
 
 
3.6 Discrete Probability Distributions 
 
3.6.1 Bernoulli.  A Bernoulli distribution can be used to simulate the occurrence of an event, 
such as a machine failure during a given time period.  Simulate a Bernoulli distribution as: 
 
 = BERNOULLI (P) 
 = BERNOULLI (A10) 
 
where: P is the probability (0 < P < 1), of the variable or condition being true (or 1).   
 
 
 
 
 
 
3.6.2 Binomial.  The binomial distribution is a discrete distribution for simulating the number of 
successes in N independent Bernoulli trials each having a probability P of success.  Other 
applications are to simulate the number of units demanded in a given time period.  Simulate the 
binomial distribution as: 
 =BINOMINV (N, P, [USD]) 
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where: N is the number of trials, 
 P is the probability of a positive success, and 
 USD is an optional uniform standard deviate. 
 
3.6.3 Negative Binomial.  The negative binomial distribution simulates the number of failures 
before the Nth success in a sequence of independent Bernoulli trials each having a probability P 
of success.  Simulate the negative binomial distribution as: 
 
 =NEGBINOMINV (N, P, [USD]) 
 
where: N is a positive integer representing the number of failures before the next success, 
 P is the probability of success, and 
 USD is an optional uniform standard deviate. 
 
3.6.4 Multinomial.  The multinomial probability distribution returns either an array of values or 
a scalar, depending upon how it is used.  If the probabilities (Probs) are entered as an array the 
function returns an array, but if Probs is a scalar it returns a scalar.  An example of the 
multinomial distribution in Step 3.6.4 of Probability Distributions Demo.xls demonstrates how 
the function can be used both ways. 
 
 =MULTINOMINV(No. Trials, Probs, [USD]) 
 
where: No. Trials is the sample size (integer greater than zero) used in the distribution, 
 Probs is a vector of cell probabilities associated with each cell’s random variable.  

Individual values are between zero and one and must sum to one.  If a single value is 
entered for Probs the function returns a binomial random variable. 

 USD is an optional univariate standard deviation. 
 
3.6.5 Poisson.  The Poisson distribution simulates the number of events that occur in an interval 
of time, such as arrivals at a service point.  The distribution can also be used to simulate random 
quantities demanded during an interval of time.  Simulate the Poisson distribution as: 
 
 =POISSONINV (L, [USD]) 
 
where: L, the only parameter for a Poisson, must be positive and is generally an integer, and 
 USD is an optional uniform standard deviate. 
 
3.6.6 Geometric.  The geometric distribution simulates the number of failures before the first 
success in a sequence of independent Bernoulli trials each with a P probability.  Also this 
distribution can simulate the number of items demanded in a given period.  The geometric 
distribution is simulated as: 
 
 =GEOMINV (P, [USD]) 
 
where: P is the probability of each independent Bernoulli trial, and 
 USD is an optional uniform standard deviate. 
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3.6.7 Hypergeometric.  The Hypergeometric distribution is used to simulate the number of units 
that are acceptable in a sample of size K taken from a population of size N when it is known that 
M of the units in the population are acceptable.  This is a sample without replacement problem 
made famous by the urn with N balls, m of which are green, (N-M are red), and a sample of K  
balls are drawn.  The Hypergeometric function returns the number of red balls in the sample of 
K. Simulate the Hypergeometric distribution as: 
 
 =HYPERGEOMINV (N, M, K, [USD]) 
 
where: N is the population size, 
 M is the number of units in the population with the desired characteristic, 
 K is the sample size, and 
 USD is an optional uniform standard deviate 
 
3.7 Sample Based Probability Distributions 
 
3.7.1 Empirical.  An empirical distribution can be simulated by Simetar using the 
=EMPIRICAL( ) or the =EMP() function.  The function assumes a continuous distribution so it 
interpolates between the specified points on the distribution (Si) using the cumulative 
distribution probabilities (F(Si)).  The most direct form of the function is =EMPIRICAL(Si) or 
=EMP(Si) which causes Simetar to calculate the F(Si) and USD values for the distribution.  The 
function is programmed as follows: 
 
 = EMPIRICAL(Si, F(Si), [USD], [Normal Tails]) 
 = EMP(B75:B89, A75:A89, D13) 
 
where: Si represents an array of N sorted random values including the min and max,   
 F(Si) cumulative probabilities for the Si values, including the end points of zero and one,  
 USD is an optional uniform standard deviate generated by =UNIFORM(), and   
 Normal tails is an optional term to extend the tails of the distribution beyond the end of 

the data (enter a 1) or to truncate the distribution with the default value of 0. 
 
Note: i = 1 to n for the Si and F(Si) parameters denotes that these are ranges and not individual 
values. 
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3.7.2 Truncated Empirical.  A truncated empirical distribution is the same as an empirical 
distribution but with a defined minimum and maximum.  The distribution is simulated as: 
 
 =TEMPIRICAL((Si, F(Si), Min, Max, [USD]) 
  
where: Si represents an array of N sorted random values including the min and max,   
 F(Si) cumulative probabilities for the Si values, including the end points of zero and one,  
 USD is an optional uniform standard deviate generated by =UNIFORM(),  
 Min is the minimum for the distribution, and 
 Max is the maximum for the distribution.  
 
3.7.3 Discrete Empirical.  When it is not appropriate to interpolate between the Si points on the 
empirical distribution, then the data are said to be distributed discrete empirical.  This 
distribution is applicable if the data can only take on set values.  Each value is assumed to have 
an equal chance of being selected.  The function is programmed in Simetar as follows: 
 
 =DEMPIRICAL (Si, [USD]) 
 =DEMPIRICAL (B75:B89, D13) 
 
where: Si represents an array of n random values; the values do not have to be sorted, and   
 USD is an optional uniform standard deviate. 

 
3.7.4 Kernel Density Estimated Random Variable.  The =KDEINV( ) function uses Parzen 
type kernel density estimators to evaluate a smoothed value that represents a point on a 
cumulative distribution function (CDF).  Eleven alternative kernel density estimators can be used  
to smooth an empirical distribution and simulate random values in Simetar.  A graphical 
representation of the kernel density smoothed function can be developed using the smoothing 
option in the CDF chart tool (see Section 6.2 for the CDF chart function).  The kernel density 
estimated random variable function is simulated as: 
 
 =KDEINV(Data Range,[BW], [KE], [USD], [Max Iter], [Precision]) 
 
where: Data range is the location for data series for the empirical distribution to simulate, 
 BW is an optional bandwidth to use in estimating the influence of each data point on the 

CDF estimation,  
 KE is an optional term to specify the kernel estimation type used to estimate the CDF. 

The KE types are: Gaussian (0 or 1), Uniform (2), Casinus (3), Triangle (4), Triweight 
(5), Epanechnikow (6), Quartic (7), Cauchy (8), Double Exponential (9), Histogram 
(10), and Parzen (11), 

 USD is an optional uniform standard deviate,  
 Max Iter is the maximum number of iterations to use to find the result, and 
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 Precision is an optional term to specify how precise the final solution should be.  If an 
optimal answer is not found #VALUE! will appear in the cell. 

 
 
 
 
 
 
 
 
 
 
 
 
3.7.5 Discrete Uniform.  A discrete uniform random variable can take on only certain values, 
each with an equal probability.  For example, a fair die can take on one of six values (1, 2, 3, 4, 
5, 6) with an equal probability. To simulate a discrete uniform random variable use the 
=RANDSORT( ) function.  For example, if the random values to define a distribution are 1, 2, 3, 
4, 5, 6, and are stored in cells A1:A6, simulate a random value, by typing the following 
command in a cell: 
 
 =RANDSORT(A1:A6) 
 
3.7.6 Random Sorting.  The array form of the =RANDSORT( ) function can be used to simulate 
(sample) random draws of a list of names or objects or numbers without replacement.  For 
example, if five names Jim, Joe, Sam, John, and Bill are to be randomly sorted (shuffled), enter  
the names in an array and use =RANDSORT( ) as an array function.  Assume the five names are 
in A1:A5 and the random sample is to appear in B1:B5; type the following command in B1 after 
highlighting array B1:B5: 
 
 =RANDSORT(A1:A5) 
 
Press Control Shift Enter, rather than Enter after typing the function, because this is the array 
form of the function. Press F9 to “resort” the data for a second iteration or sample.   
 
 
 
 
 
 
 
3.7.7 Bootstrapping (Random Sampling with Replacement).  Bootstrap sampling techniques 
are used for advanced simulation problems and assume that past deviates or errors can be re-
sampled an infinite number of times. This method of sampling can be accomplished using the 
=BOOTSTRAPPER( ) function which samples from a known distribution with replacement.  An 
example of the function is provided below and in Step 3.7.7 in Probability Distributions 
Demo.xls. 
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 =BOOTSTRAPPER (Array of Random Values, [Preserve Rows]) 
 =BOOTSTRAPPER (A27:A31, 1) 
 
where: Array of random values is the location for the array of random values to be sampled 

during simulation, and 
 Preserve Rows the optional term to retain the order of the values in rows, if the array of 

random variables is a matrix.  

 
3.8 Time Series Probability Distributions 
 
3.8.1 Random Walk.  The =RANDWALK( ) function generates a random variable that is 
characteristic of a random walk.  A random walk distribution for xt is characterized as 

t t-1 tX  = X  + e%  where te%  is normally distributed.  Simulating a variable for N iterations will result 
in a sample of length N.  The function is used as: 
 
 =RANDWALK (Mean, Std Dev, [USD], [Distribution], [Initial Value], [Coefficient]) 
 
where: Mean is the expected value for the random variable,  
 Std Dev is the standard deviation for the variable and is greater than zero, 
 USD is an optional uniform standard deviate, 
 Distribution is an optional code for the distribution for generating random changes as:  

normal (0 or 1), uniform (2), cosine (3), Cauchy (8), double exponential (9), logistic 
(12), extreme value (13), exponential (14), and log normal (15), 

 Initial Value is an optional initial value to start the random sequence; the default is zero, 
 Coefficient is an optional value on the lag variable as t t-1 tin X  =  X  + e .α α %  
 
 
 
 
 
 
 
3.9 Multivariate Distributions 
 
3.9.1 Correlated Standard Normal Deviates. Correlated standard normal deviates (CSND’s) 
are generated in Simetar using the =CSND( ) function.  An array of correlated standard normal 
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deviates can be used to simulate multivariate normal (MVN) probability distributions in a two 
step procedure.  An array of CSNDs is simulated as: 
 
 
 = CSND (Correlation Matrix Range, [Optional Range of Independent SNDs]) 
 = CSND (B152:G157) 
 = CSND (B152:G157, B161:B166) 
 
where: Correlation Matrix Range specifies the location of a non-singular NxN correlation 

matrix. Calculate the correlation matrix using the function described in Section 12.3. 
 Optional Range of Independent SND’s (ISND’s) is an Nx1 array of SND’s generated 

using =NORM( ) in N cells. 
 
As an array function =CSND( ) must be used as follows:  highlight the output location for N 
cells and type the command =CSND (correlation matrix location, optional range of ISNDs) and 
press the Control Shift Enter keys.   
 
 
 
 
 
 
 
 
 
 
 
3.9.2 Correlated Uniform Standard Deviates.  Correlated uniform standard deviates (CUSDs) 
are used to simulate multivariate non-normal (e.g., empirical) probability distributions in a two 
step process.  An array of CUSDs is simulated as: 
 
 =CUSD (Correlation Matrix Range, [Optional Range of Independent SNDs]) 
 =CUSD (B152:G157) 
 =CUSD (B152:G157, B161:B166) 
 
where: Correlation Matrix Range specifies location of a non-singular NxN correlation matrix.  
 Calculate the correlation matrix using the function described in Section 12.3. 
 Optional Range of Independent SNDs is an Nx1 array of SNDs generated using 

=NORM( ) in N cells. 
 
As an array function =CUSD( ) must be used as follows:  highlight the output location for N 
cells and type the command =CSND (correlation matrix location, optional range of ISNDs), and 
press the Control Shift Enter keys. 
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3.9.3 Multivariate Normal (MVN) Distribution in One Step 
 
Simetar provides a one step function for simulating a MVN distribution.  The =MVNORM( ) 
function uses an Nx1 array of means and an NxN covariance matrix to generate correlated 
random values that are distributed multivariate normal.  The array function is entered as follows: 
 
 =MVNORM (Means Vector, Covariance Matrix, [Array of ISNDs]) 
 
where: Means Vector is an Nx1 array of the averages to use for simulating MVN values, and 
 Covariance Matrix is an NxN covariance matrix for the N random variables. 
 Array of ISNDs is an optional Nx1 array of independent standard normal deviates 

generated with n cells of =NORM( ). 
 
To use the array function, first highlight the number of cells equal to the number of means at the 
output location, second type =MVNORM (location for the array of means, location of 
covariance matrix), and press the Control Shift Enter keys.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.9.4 Multivariate Normal Distribution in Two Steps.  A general formula for simulating a 
multivariate normal distribution is accomplished by first generating a vector of CSNDs and then 
using the CSNDs in the formula for a normal distribution.  In step 1 an Nx1 array of CSNDs is 
generated using =CSND( ), see Section 3.9.1.  The example provided here is for a three variable 
model so N equals 3.  Assume the non-singular covariance matrix is in A1:C3, the three means 
are in cells B7:B9, and the three standard deviations are in cells C7:C9. 
 
 Step 1: In A4:A6  = CSND (A1:C3) 
 
 Step 2: In A7   = B7 + C7 * A4 
   In A8   = B8 + C8 * A5 
   In A9   = B9 + C9 * A6 
 
These three Excel statements can be repeated for N variables.  The three random variables will 
be appropriately correlated within each period but will be independent across periods. 
 
An alternative two step procedure for simulating a multivariate normal distribution uses a vector 
of CUSDs.  In step 1 an Nx1 array of CUSDs is generated using =CUSD( ), see Section 3.9.2. In 
step 2 use the =NORM( ) function to simulate the random values.  The example provided here is 
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for a three variable model so N equals 3.  Assume the non-singular correlation matrix is in 
A1:C3, the three means are in cells B7:B9, and the three standard deviations are in cells C7:C9. 
 
 Step 1: In A4:A6  = CUSD (A1:C3) 
 
 Step 2: In A7   = NORM(B7, C7, A4) 
   In A8   = NORM(B8, C8, A5) 
   In A9   = NORM(B9, C9, A6) 
 
These three Simetar statements can be repeated for N variables.  The three random variables will 
be appropriately correlated within each period but will be independent across periods. 
 
3.9.5 Multivariate Empirical (MVE) in One Step 
 
Simetar provides a one step function for simulating a MVE distribution.  The  
=MVEMPIRICAL( ) function uses as input the MxN matrix of the M observations for the N 
random variables.  The result is an Nx1 array of MVE correlated random values for the N  
variables.  Program the function as: 
 
 =MVEMPIRICAL (Range for Random Variables ,,,, [Vector of Means], [Type]) 
 
where: Range for Random Variables is an MxN matrix of the M observed values for the N 

random variables,  
 Vector of Means is an array of forecasted means for the N random variables, and 
 Type is a option code for the type data transformation used to generate the forecasted 

means for the MVE:  (0) for actual data, (1) for percent deviations from mean, (2) for 
percent deviations from trend, and (3) is for differences from the mean. 

  
The =MVEMPIRICAL( ) function is an array function so highlight an Nx1 array at the output 
location and type the function, followed by pressing the Control Shift Enter keys.  An example 
of using the one step =MVEMPIRICAL( ) function is provided below for a MVE distribution 
with 6 (N) variables and 13 (M) observations. 
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3.9.6 Multivariate Empirical (MVE) Distribution in Two Steps 
 
Multivariate empirical distributions can be simulated in two steps using the =EMP( ) function 
and an array of correlated uniform standard deviates or CUSDs generated using the =CUSD( )  
function described in Section 3.9.2.  An example of the two step MVE is provided for a three 
variable model, assuming the correlation matrix is in H1:J3, the forecasted means are in cells 
A1:A3, the fractional deviations i(S )  from the mean are in cells C1:E12, and the three variables 
the probabilities for the deviates i(F(S ))  are in B1:B12. 
 
 Step 1: In A14:A16  = CUSD (H1:J3) 
 
 Step 2: In C14   = A1 + A1 * EMP(C1:C12, B1:B12, A14)) 
    In C15   = A2 + A2 * EMP (D1:D12, B1:B12, A15)) 
    In C16   = A3 + A3 * EMP (E1:E12, B1:B12, A16)) 
 
The values in cells C14:C16 are appropriately correlated based on the correlation matrix in cells 
H1:J3 and are distributed empirical about the respective forecasted means in cells A1:A3.  The 
formulas in cells A14:A16 and C14:C16 can be repeated for as many periods (years) as the 
model simulates.  Simulated MVE values will be correlated within each period but will be 
independent across periods. 
 
3.9.7 Multivariate Mixed Distribution 
 
Simetar can simulate a multivariate mixed distribution (MVM) which has correlated variables 
that are distributed differently.  For example a MVM could include variables that are distributed 
uniform, empirical, normal, and beta.  To simulate a MVM, use the =CUSD( ) function to 
simulate an Nx1 vector of correlated uniform standard deviates, one CUSD for each variable.  
Use each of the CUSDs in the appropriate Simetar function to simulate the random variables.   
Using an example of a four variable MVM with the variables distributed uniform, empirical, 
normal and beta, respectively, use the following functions: 
 
 Step 1: =CUSD(Correlation Matrix Range) 
 
 Step 2: =UNIFORM(Min, Max, CUSD1) 
  =EMP(Si, F(Si), CUSD2) 
  =NORM(Mean, Std, Dev, CUSD3) 
  =BETAINV(CUSD4, Alpha, Beta, [Min], [Max]) 
 
where:  CUSDi values refer to the ith correlated uniform standard deviate simulated in the Nx1 

CUSD array.   
 
The simulated random variables will be appropriately correlated based on the correlation matrix.  
 
3.9.8 Multivariate Log Normal.  A log normally distributed series of random variables can be 
simulated multivariate using the =MVLOGNORM( ) array function.  The function is used as: 
 
 =MVLOGNORM (Mean Vector, Covariance, [Array of ISNDs], [Matrix Row], [Moments]) 
 =MVLOGNORM (A1:A4, B1:E4, F1:F4, 1, TRUE) 
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where: Means Vector is the location of the Nx1 vector of means.  If the Moments switch is true, 
each mean must be greater than zero.  If the Moments is false, mean are reals. 

 Covariance is an NxN covariance matrix for the series,  
 Array of ISND is an optional nx1 array of independent standard normal deviates 

generated with N cells of =NORM( ). 
 Matrix Row is an optional term for the ith variable if the function is to return only the 

random value for the ith variable (Leaving this value blank makes the function return n 
values so treat it as an array function with Control Shift Enter.), and  

 Moments is an optional switch to use the function two ways:  if the term is TRUE (‘1’) 
the function is for the moments of a log normal vector, and FALSE (‘0’) indicates the 
moments are for a transformed normal distribution. 

 
3.9.9 Multivariate Student’s t.  A distribution of N variables can be simulated multivariate 
Student’s t using the =MVTINV( ) array function as: 
 
 =MVTINV (Means Vector, Covariance Matrix, [Array of ISND], [Matrix Row]) 
 =MVTINV (A1:A4, B1:E4, F1:F4, 1,) 
 =MVTINV (A1:A4, B1:E4, F1:F4) 
   
where: Means Vector is the location of the Nx1 vector of means, 
 Covariance Matrix is the location of the NxN covariance matrix for the series, 
 Array of ISND is an optional Nx1 array of N cells with =NORM( ) SNDs, and 
 Matrix Row is the optional ith variable if only the random number for the ith series is to 

be simulated.  Leaving this value blank makes the function return N values so treat it as 
an array function with Control Shift Enter.  

 
3.9.10 Hotelling T-Squared.  The Hotelling T2 distribution is a multivariate analog to the 
univariate Student’s t distribution.  If x is a Px1 random vector distributed as multivariate normal 
with a zero mean vector and an identity covariance matrix and W is a PxP random matrix 
distributed as Wishart with an identity covariance matrix and m degrees of freedom.  And x and 
W are independent, then the variable T2 = m xT W-1 x is distributed as a Hotelling T2 random 
variable.  A special case is the Hotelling T2 random variable with 1 and M degrees of freedom 
which is an F distribution with 1 and M degrees of freedom.  The parameters for the Hotelling T2 
function, which produces a Hotelling T2 random variable, are p and df = M.  Simulate Hotelling 
T-Squared distribution as: 
 
 =HOTELLTINV(P, DF, [USD]) 
 
where: P is an integer indicating the dimension of the PxP covariance or identity matrix for a 

Wishart distribution,  
 DF is the degrees of freedom or the number of observations in the MxP data matrix for a 

Wishart distribution, and 
 USD is an optional uniform standard deviate. 
 
3.9.11 Wishart.  The Wishart distribution is a matrix generalization of the univariate chi square 
distribution.  The Wishart array function produces a matrix of random values that are distributed 
Wishart.  The distribution is derived from an MxP matrix X of normally distributed independent 
vectors with mean zero and covariance matrix C.  The PxP matrix of X’X has a Wishart 
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distribution and is simulated as: 
 
 =WISHINV(C, DF) 
 
where: C is a PxP covariance matrix that is positive definite, and 
 DF is the degrees of freedom or the number of rows in an MxP data matrix of values 

used to calculate C. 
 
The Wishart function is an array function so highlight a PxP block of cells, type the function, 
and end by pressing the Control Shift Enter  keys. 
 
3.9.12 Wilks’ Lambda.  If two independent random matrices, X and Y, are distributed as 
Wishart, both with a PxP identity covariance matrix and N1 and N2 degrees of freedom, 
respectively, then the scalar |X|/|X+Y| has the Wilks’ lambda distribution with P, N1, and N2 
degrees of freedom.  This distribution is found in several likelihood ratio tests in multivariate 
testing settings.  Simulate Wilks’ lambda distribution as: 
 
 =WILKSLINV(P, N1, N2) 
 
where: P is an integer representing the dimension of the Wishart random matrix PxP 
 N1 is the integer value for the degrees of freedom in the random Wishart matrix X, and 
 N2 is the integer value for the degrees of freedom in the random Wishart matrix Y. 
 
3.9.13 Dirichlet.  A Dirichlet series of correlated random variables can be simulated using the 
Dirichlet array function as: 
 
 =DIRICHINV(Alpha Array, [Array of IUSD], [Matrix Row]) 
 
where: Alpha Array is the location of an Nx1 array of parameter values for the Dirichlet 

distribution; each value is greater than zero, 
 Array of IUSD is the location of an optional nx1 array of independent uniform standard 

deviates simulated =UNIFORM( ), and 
 Matrix Row is the ith variable of the random series if the function is to return only the 

ith series.  Leaving this value blank makes the function return n values so treat it as an 
array function with Control Shift Enter. 

 
3.9.14 Uncorrelating Random Deviates (USD and SND).  In advanced simulation applications 
it is useful to uncorrelate random values.  Simetar provides a function to calculate the implicit 
independent deviates from a vector of CUSDs.  The uncorrelated standard normal deviates 
function, =USND( ), converts a vector of CSNDs to a vector of independent SNDs.  The function 
is programmed as: 
 
 =USND (Correlation Matrix, CSND Array) 
 
where: Correlation Matrix is the cell reference location for the correlation matrix used to 

generate the CSNDs, and 
 CSND Array is the cell reference location for the array of CSNDs to be converted to 

independent SNDs. 
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The uncorrelated uniform standard deviates function, =UUSD( ), converts correlated uniform 
standard deviates (CUSDs) to uncorrelated USDs.  The function is programmed as follows: 
 
       =UUSD (Correlation Matrix, CUSD Array) 
 
3.10 Iteration Counter   
 
For advanced simulation applications it is useful to use the iteration number to key a simulation 
model to perform certain calculations.  For example a table lookup function can be used to draw 
values from a table where the rows correspond to the iterations for previously generated and 
tested random values.  The iteration number function in Simetar is =ITERATION() and returns 
the iteration number from 1 to N, where N represents the number of iterations.  As indicated in 
the example below, the function returns “1” until the workbook is simulated.  Selecting the cell 
with =ITERATION( ) as a KOV for simulation will produce a series of values: 1, 2, 3, … , 500  
for a stochastic simulation with 500 iterations. 
 
 =ITERATION ( ) 
  
 
 
 
4.0 Parameter Estimation for Probability Distributions 
 
4.1 Parametric Probability Distributions 
 
A univariate parameter estimator in Simetar estimates the 
parameters for simulating a random variable for 16 parametric 
probability distributions.  The univariate parameter estimator 
is activated by using the  icon.  The Simetar menu for the 
univariate parameter estimator requires the user to specify the 
historical data series for the random variable and the method 
for estimating the parameters:  method of moments or 
maximum likelihood estimator (Figure 12).  If a variable is not 
consistent with a distribution, its parameter cells will be blank 
rather than contain a value.   
Simetar also prepares the equations for simulating the random 
variable using the calculated distribution parameters in the 
Formulas column of the example above.  The formulas in the 
Formulas column can be simulated to test how well the 
different assumed distributions simulate the random variable.  
The =CDFDEV( ) function can be used to calculate a test 
scalar to determine which distribution is best for simulating 
the random variable.  See Section 5.7 for an explanation of =CDFDEV( ).  An example of the 
parameter estimation is provided in Parameter Estimation Demo.xls. The =CDFDEV( ) scalar in 
the example above indicates that the Beta distribution fits the data better than the other 
distributions tested. 
 

Figure 12. Univariate Parameter 
Estimator 
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4.2 Empirical Probability Distributions 
 
The parameters for an empirical probability distribution are 
estimated using a Simetar function activated by the  icon. The 
Select Input Ranges window indicates the data to be used for 
defining the probability distribution (Figure 13).  Be sure to 
select the Labels in First Cell box when there is a name in the 
first cell (row or column) of the Selected Input Ranges.  Four 
examples of using the Empirical Parameter estimation dialog 
box are provided in the Empirical Demo.xls workbook program. 
 
The dialog box (Figure 13) allows the user to estimate the 
parameters for one empirical distribution or for numerous 
distributions at once.  The only restriction for using this function 
is that all of the data series must have the same number of 
observations.  The dialog box allows estimation of the 
parameters four different ways: 
 

– Use actual data (no transformations) for the distribution,  
– Convert the actual data to differences (residuals) from 

the mean prior to estimating the parameters,  
– Convert the actual data to deviations (residuals divided 

by the mean) from the mean prior to estimating the 
parameters, and 

– Convert the actual data to deviations (residuals 
divided by the trend values) from a linear trend line 
prior to estimating the parameters. 

 
The empirical distribution parameter estimation output 
includes the random data (residuals from trend or mean), 

Figure 13.  Parameter 
Estimation for the 
Empirical Distribution 
Dialog Box. 
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summary statistics, correlation matrix if more than one variable is specified, and the sorted 
random values with cumulative distribution probabilities. The sorted deviations required by 
=EMP( ) to simulate an empirical distribution are demonstrated in the example output to the 
right. Once the Empirical distribution parameters are estimated, they can be simulated using the 
=EMP (Si, F(Si)) function (see Section 3.7.1). 
 
4.3 Multivariate Probability Distributions  
 
Correlation and covariance matrices are both parameters for multivariate probability 
distributions.  Correlation and covariance matrices can be calculated using the Correlation 
Matrix dialog box activated by the   icon.  This Simetar dialog box calculates the upper right 
triangle correlation matrix of size NxN when the user specifies N variables.  The first step to 
using the dialog box is to specify the location for placing the upper left hand corner of the 
generated correlation matrix by indicating the Output Range in the menu (Figure 14).  Next, 
specify whether the data to correlate are in columns or rows. The first cell of each column (or 
row) indicated in the Selected Arrays box should have a label so the output matrix is easier to 
read.   
 
The Correlation Matrix dialog box calculates either the 
Pearson’s (standard) correlation coefficient matrix or the rank 
correlation matrix.  The default is the Pearson’s correlation 
coefficient matrix.  The rank correlation coefficient matrix is 
calculated when the Rank Correlation radio button is selected. 
 
The statistical significance of each correlation coefficient can be 
tested by Simetar.  Student’s-t values for the correlation 
coefficients greater than the t-critical value indicate whether the 
correlation coefficient is statistically different from zero and are 
displayed in bold.  See Complete Correlation Demo.xls for 
examples of using the correlation matrix dialog box. 
 
A covariance matrix can be calculated using the Correlation 
Matrix dialog box (Figure 14).  The upper triangle covariance 
matrix is calculated by selecting the Covariance Matrix radio 
button after specifying the arrays to include in the matrix.  The 
Full Symmetric covariance matrix is calculated by selecting this 
option in the dialog box and the Covariance Matrix.  See the  
demonstration program Complete Correlation Demo.xls for examples of estimating covariance 
matrices. 

Figure 14.  Correlation Matrix 
Dialog Box. 
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4.4 GRKS Probability Distribution 
 
Parameters for the GRKS probability distribution can be 
estimated using the dialog box in Figure 15.  The GRKS 
distribution dialog box is accessed via the toolbar Simetar 
drop down menu – GRKS Distribution.  The GRKS pdf is 
defined by three values:  Minimum, Middle Value, and 
Maximum.  Simetar places the parameters on the 
worksheet starting in the designated Output Range.  The 
parameters are presented as values and their associated 
probabilities (see GRKS Distribution Demo.xls). Simetar 
also generates a chart of the distribution and that displays 
how the shape of the distribution changes as the 
minimum, middle, and maximum values change.  Test 
this feature by changing the three parameters and 
observing their affects on the GRKS distribution figure.  
The GRKS pdf parameters can be simulated using the 
=GRKS( ) function in Section 3.5.2. 
 
 

Figure 15.  Parameter Estimation 
for the GRK Distribution. 
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5.0 Statistical Tests for Model Validation 
 
Model validation must be done prior to application of a simulation model for decision making. 
Validation can utilize graphs, such as PDFs and CDFs, but statistical testing of the simulated 
distributions is required to determine whether the stochastic variables in the model are  
statistically from the same distribution as the historical data.  To facilitate the validation process 
several hypothesis tests have been included in Simetar.  The tests are organized using 5 tabs in 
the Hypothesis Testing for Data dialog box opened by the    icon (Figure 16). Examples of the 
validation tests described in this section are available in Hypothesis Tests Demo.xls. 
 
5.1 Univariate Distribution Tests for Model Validation 
 
The means and variances for two distributions (or 
series) can be compared by using the Compare Two 
Series tab for the Hypothesis Testing dialog box 
(Figure 16).  The mean and variance tests are 
univariate as they only test the difference between 
two variables.  This type of hypothesis testing is 
useful in validation for comparing the simulated 
distribution to the historical distribution.  The null 
hypotheses are that the simulated mean equals the 
historical mean and the simulated variance equals 
the historical variance.  As demonstrated in the 
example below, it is useful to statistically test if the 
simulated data have the same mean and variance as 
the historical data series.  
 
The statistical tests are performed when the Compare Two Series tab in Figure 16 is selected and 
you specify the two distributions (data series) to compare.  A two sample, Student-t test is used 
to allow comparison of means from distributions with an un-equal number of observations (see 
example below).  See Step 4 in Hypothesis Tests Demo.xls for an example of comparing two 
distributions. 

 
5.2 Multivariate Distribution Tests for Model Validation 
 
Means and variances for multivariate (MV) probability distributions can be statistically tested 
against the distribution’s historical data in one step by selecting the Compare Two Series tab in 
the Hypothesis Testing for Data dialog box and specifying matrices as the input Figure 17.   
 

Figure 16.  Univariate and Multivariate 
Distribution Tests. 
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The first MV test uses the two-sample Hotelling T2 test which tests whether two data matrices 
(the historical data MxN and the simulation results PxN) statistically have equivalent mean 
vectors and covariance matrices.  Assume historical data are arranged in an MxN matrix and the 
simulated data are in a PxN matrix, where P is the number of iterations, then the means can be 
tested with the Hotelling T2 test procedure. The 
Hotelling T2 test is analogous to a Student’s-t test 
of two means in a two-sample univariate case. 
 
The second MV test calculated for this statistical 
test, Box’s M, tests the equality of the covariance 
matrices with dimensions MxM and PxN, 
respectively, using a large sample likelihood ratio 
testing procedure.  The Box’s M test of 
homogeneity of covariances is used to test 
whether the covariance matrices of two or more 
data series, with n columns each, are equal.  The 
assumptions under this test are that the data 
matrices are MV normal and that the sample is 
large enough for the asymptotic, or central Chi-
Squared, distribution under the null hypothesis to 
be used. 
 

 
 
The third MV test is the Complete Homogeneity test.  This statistical test simultaneously tests 
the mean vectors and the covariance matrices for two distributions.  The historical data’s mean 
vector and covariance matrix are tested against the simulated sample’s mean vector and 
covariance matrix.  If the test fails to reject that the means and covariance are statistically equal, 
then one can assume that the multivariate distribution in the historical series is being simulated 
appropriately.  An example of this test is provided above and in Step 4 of Hypothesis Tests 
Demo.xls. 
 
5.3 Test Correlation  
 
Another multivariate distribution validation 
test in Simetar is a test to compare the 
correlation matrix implicit in the simulated 
output to the input (assumed) correlation 
matrix.  This test is useful for validating 
multivariate probability distributions, 
particularly the non-normal multivariate 
distributions.  Selecting the Check Correlation 

Figure 17.  Multivariate Hypothesis Tests 
for Six Variables. 

Figure 18.  Test Correlation of MV Distribution 
Simulation Results. 
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tab in the Hypothesis Testing for Data dialog box (Figure 18) calculates the Student’s-t test 
statistics for comparing the corresponding correlation coefficients in two matrices.  The dialog 
box requires information for the location of the simulated series (a PxN matrix) and the location 
of the NxN correlation matrix used to simulate the multivariate distribution (or the correlation 
matrix implicit in the historical data for the distribution).   
 
The confidence level for the resulting Student’s-t test defaults to a value greater than 0.95 but 
can be changed by the user after the test has been performed. An example of this test is provided 
in Step 6 of Hypothesis Tests Demo.xls.  If a correlation coefficient for two simulated variables 
is statistically different from the respective historical correlation coefficient, the Student’s t-test 
statistic will exceed the Critical Value and its respective statistic will be displayed as a bold 
value.  If the test shows several bold values check the formulas used to simulate the multivariate 
distribution to insure the distribution is modeled correctly. 
 
 
 
 
 
 
 
 
 
5.4 Test Mean and Standard Deviation  
 
The mean and standard deviation for any data series 
(e.g., simulated data) can be compared to a 
specified mean and standard deviation using the 
Test Parameters tab in Figure 19. The Student’s-t 
test is used to compare the user specified mean to 
the observed mean of any distribution (or series) as 
demonstrated in Figure 19.  A Chi-Squared test is 
used to test a user specified standard deviation 
against the standard deviation for any distribution.  
The null hypothesis is that the statistic for the series 
equals the user’s specified values.  An example of 
testing the historical data for a variable against a 
specified mean and standard deviation is provided 
below and in Hypothesis Tests Demo.xls.   

 
 

Figure 19.  Test Mean and Standard 
Deviation for a Univariate Distribution. 
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5.5 Univariate Tests for Normality 
 
Five different tests for normality can be 
performed by selecting the Test for Normality tab 
after the   icon is selected (Figure 20).  The 
normality tests are: Kolmogornov-Smirnoff, Chi-
Squared, Cramer-von Mises, Anderson-Darling, 
and Shapiro-Wilks.  The Chi-Squared test requires 
the number of bins (or intervals); 20 or more 
intervals appear to work for most data series.  In 
addition to the normality tests this option 
calculates the skewness and kurtosis, relative to a 
normal distribution (not shown in the example 
below).  See an example of these normality tests 
in Hypothesis Tests Demo.xls.  
 

 
5.6 Multivariate Tests for Normality 
 
A multivariate distribution test for normality 
can be performed on any data matrix of PxN. 
 The MV normality test can be performed by 
specifying a PxN matrix in the Data Series 
box for the Test for Normality tab in the 
Hypothesis Testing dialog box (Figure 21).  
The MV normality tests are:  skewness 
criterion, kurtosis criterion, and Chi-Squared 
quantile correlation.  Simetar reports the test 
statistics, critical value, and p-value for the 
first two tests and the test statistic for the 
third test.  The null hypothesis is that the data 
matrix is distributed MV normal.  See the 
example output for this test below and in 
Hypothesis Tests Demo.xls. 

Figure 20.  Univariate Normality Test. 

Figure 21.  Multivariate Normality Tests Dialog 
Box.
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5.7 Compare Means (ANOVA) 
 
The Hypothesis Testing for Data dialog box 
includes a means test (ANOVA) capability 
(Figure 22). Selecting the Compare Means tab in 
the Hypothesis Testing for Data dialog box 
produces a menu for specifying the two series to 
compare.  For this test the user must specify the 
two distributions (or series) using the Select Data 
Series to compare window and the Add button to 
list the series in the window at the bottom.  The 
confidence level defaults to 0.95 and must be 
specified before clicking the OK button.  The 
results of the ANOVA test are the sum of squares, 
mean square error, F-statistic and its p-value.  A 
sample ANOVA test is demonstrated below and is 
provided in Hypothesis Tests Demo.xls. 
 
 
 
 
 
 
 
5.8 Compare Two Cumulative Distribution Functions (CDFs) 
 
A scalar measure to compare the difference between two cumulative distribution functions 
(CDFs) is calculated by the =CDFDEV( ) Simetar function.  The function calculates the sum of 
the squared differences between two CDFs with an added penalty for differences in the tails.  
The scalar is calculated for two CDFs, F(x) and G(x) as: 
 

 
N

2
(i) (i) i

i=1
CDFDEV =  (F(x ) - G(x ))  + w∑  

 
where: wi is a penalty function that applies more weight to deviations in the tails than values 

around the mean. 
 
If the G(x) distribution is the same as the F(x) distribution, then the CDFDEV value equals zero. 
The CDFDEV measure is programmed to compare a historical series Nx1 to a simulated series 
Px1 as follows:  
 

=CDFDEV(Range for Historical Series, Range for Simulated Series) 
 
where: Range for Historical Series is the location for the historical data, such as B1:B10, and 
 Range for Simulated Series is the location for the simulated values, such as B9:B109.  
 

Figure 22.  Compare Means Test Dialog Box 
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The =CDFDEV( ) function is useful when testing the ability of different assumed probability 
distributions to simulate a random variable.  In this case, the =CDFDEV( ) measure is calculated 
using the simulated values for each of the alternative probability distributions.  The probability 
distribution associated with the lowest =CDFDEV( ) scalar is the “best” distribution for 
simulating the random variable. See Parameter Estimation Demo.xls for an example. 
 
 
 
 
 
 
 
6.0 Graphical Tools for Analyzing Simulation Results 
 
Simetar provides nine graphics tools for displaying the results of stochastic simulations and for 
analysis of data.  These graphics tools utilize the charting capabilities of Excel so all charts and 
graphs can be edited and enhanced using standard Excel charting tools. Simetar charts and 
graphs are developed using menus which allow the user to easily specify the data, titles, and 
labels for charts that are used frequently for simulation.  An example of Simetar’s charts is 
provided in Charts Demo.xls. 
 
6.1 Line Graph 
 
Any series of numbers can be graphed on an X-
Y axis as a line graph using this option.  The 
icon to access line graphs is   .  The Line 
Graph menu (Figure 23) requires that you 
specify the values for the X axis (such as, 
years) and the Y values (such as, prices) in the 
X and Y-Range boxes.  Labels for these 
variables are optional and are entered in the Y 
and X-Axis Label boxes.  The Chart Title is 
optional.  You may include a label in the first 
cells (row or column) indicated for each Y 
variable, if you select the box for Series Labels 
in First Cell. 
 
The chart can have more than one line by using 
the Add Y’s button and indicating multiple Y 
series in the Select Y-Axis Range, one at a time 
or all at once if the variables are contiguous.  
Once the graph is drawn by Excel, it can be 
edited using Excel chart commands.   
 
The Line Graph dialog box allows the user to label the points on line graphs.  For example, a 
price/quantity chart can be developed with year labels on the individual data points to show 

Figure 23.  Dialog Box for Developing a Line 
Chart. 
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years when structural changes took place.  To use this option indicate the column or row of 
labels in the Data Labels box, being sure to have the same number of labels as there are rows (or 
columns) of data to graph.  The result of the chart specified in Figure 18 is presented below and 
in Charts Demo.xls. 
 
   
 
 
 
 
 
 
 
 
 
 
6.2 CDF Graph 
 
Cumulative distribution function (CDF) charts of 
individual or multiple variables (simulated values) 
can be developed using Simetar.  CDF graphs are 
initiated by selecting the   icon.  Identify the 
variables to graph by highlighting the column(s), 
after first clicking in the Select Range to Graph 
box (Figure 24).  Include names in the first cell of 
the variable range, so the chart will include names 
for the individual lines.  (Be sure the variable 
names begin with a letter.) The chart can be placed 
on the current worksheet or in a new chart sheet.  
Use Excel’s chart commands to format the scale for 
the X axis and to make changes to the title.  
 
CDF graphs developed using Simetar are dynamic 
so when the values referenced for the chart change, 
the CDF graph is automatically updated by Excel.  
This feature is particularly useful for simulation.  
Each time the simulation results are updated in 
SimData, the CDF graphs will be updated. 
 
The Smoothing option in the CDF menu utilizes kernel density functions to smooth the observed 
values and develop smoothed CDF charts.  In addition to the CDF charts, the output for this 
option includes a text box with a drop down menu to allow the user to select the kernel.  The 
default kernel is the Gaussian, but ten more are provided.  The kernel smoothed CDF for a 
historical series depicts the probability distribution Simetar would use if the series was simulated 
using =KDEINV( ), see Section 3.7.4. 
 
 

Figure 24.  CDF Chart Dialog Box. 
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The CDF graph option is useful for comparing simulated values of a random variable to the 
variable’s historical data.  This is possible in Simetar even though the two series have a different 
number of observations.  See the example below and in Charts Demo.xls. 
 
 
 
 
 
 
 
 
 
 
 
 
6.3 PDF Graph 

 
Probability distribution function (PDF) graphs of 
individual or multiple variables can be estimated 
using the   icon.  Identify the variables to 
include in the PDF graph by selecting the 
variables in the Select Range to Graph box and the 
Add button if the variables are not in continuous 
columns (or rows) (Figure 25).  The PDF graph 
function uses kernel estimators to smooth the data 
rather than just using line segments to connect the 
dots.  Eleven kernels are available to develop the 
PDF graphs:  Gaussian, Cauchy, Cosinus, Double 
Exp., Epanechnikov, Histogram, Parzen, Quartic, 
Triangle, Triweight, and Uniform. Once the graph 
is drawn you can change the kernel by editing the 
output range in the worksheet. 
 
If the data series have names in the first cell 
indicate this on the menu, otherwise unselect the 
Labels in First Cell option.  Multiple PDFs can 
appear on the same axis so the simulated values 
and their historical values can both be graphed on 
the same axis.  This feature is possible because the data series being graphed do not have to be 
the same lengths. 
 
PDF graphs developed using Simetar are dynamic so when the values in the Selected Range to 
Graph, change the graph is instantly updated.  This feature is useful when displaying simulation 
results using PDFs.  The mean of the variables in a PDF is included in the chart.  Confidence 
intervals at the alpha equal 5 percent level can be added by selecting the Plot Quantiles.  The 
quantiles can be redrawn by changing the Alpha equal 0.9 to 0.10 in the seventh row of the PDF 
Graph output table.  The title can be changed by editing the first line of the PDF Graph output.  

Figure 25.  PDF Chart  Dialog Box. 
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See the example below of a PDF chart developed for a simulated series in Charts Demo.xls. 
 
 
 
 
 
 
 
 
 
 
 
6.4 Histograms  
 
Histograms of individual variables (simulated output) 
can be developed using the Simetar menu. The 
histogram icon   activates this option.  Indicate the 
variable to graph by clicking the Select Range to 
Graph box in the dialog box (Figure 26) and 
highlighting the variable in the worksheet.  Specify 
the Number of Bins (intervals) and select OK.  The 
more bins the smoother the histogram.  The 
maximum number of bins is the number of 
observations minus one.  Experiment with the number 
of bins to find the number which best suits the data.  
An added feature of the histogram option in Simetar 
is to display data as a cumulative distribution with the 
bins growing in height from zero to one as the X 
value gets large.   
 
 

 
 
 
 
 
 
 

 
 
 
 

Figure 26.  Histogram Dialog Box. 
Histogram of Simulated Corn Prices
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Figure 27.  Fan Graph Dialog Box. 

6.5 Fan Graph 
 
A Fan Graph consists of multiple lines in the Y axis 
for multiple scenarios (or multiple years of one 
variable) graphed in the X axis.  The variables 
graphed in the X axis can be successive years for a 
simulated output variable.  Alternatively, the variables 
on the X axis can be the same simulated variable but 
for different scenarios.  The purpose of a Fan Graph is 
to show the effect of risk on a variable over time or 
across scenarios. 
 
A Fan Graph showing the simulated mean and 
percentiles or confidence interval lines about the mean 
can be developed using the  icon in Simetar.  The 
range of variables to be graphed on the X axis must be 
specified in the Select Ranges to Graph box (Figure 
27).  The variables (scenarios or years) must be 
specified in the order they appear in the graph.  For 
example, if the graph is for 10 years of a probabilistic 
forecast, specify the 10 variables across the, say, 500 
iterations as the selected range to graph.  If the 
variables are not contiguous, they can be specified one at a time using the Add box. 
The Fan Graph dialog box (Figure 27) provides boxes to specify up to six percentile or 
confidence lines about the mean.  The individual lines to add to the Fan Graph must be specified 
as fractions, such as 0.05 and 0.95 would result in a graph with 3 lines:  the mean, the 5 
percentile and the 95 percentile lines.  Once the Fan Graph has been developed, you can 
dynamically change the graph by editing the percentile values in the output table.  For example, 
if the 5% and 95% lines need to be changed to 1% and 99%, simply change the 0.05 to 0.01 and 
the 0.95 to 0.99 in the Fan Graph output table.  Changing the percentile causes Excel to re-draw 
the graph.  An example of a fan graph developed to show the relative risk between three 
distributions is provided below.   
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6.6 StopLight Chart 
 
The StopLight chart compares the target probabilities 
for one or more risky alternatives and is activated by 
selecting the    icon.  The user must specify two 
probability targets (Lower Target and an Upper 
Target) for the StopLight and the alternative scenarios 
to compare (Figure 28).  The StopLight function 
calculates the probabilities of: (a) exceeding the upper 
target (green), (b) being less than the lower target 
(red), and (c) observing values between the targets 
(yellow).  An example is provided below. 
 
 
 
 
 
 
 
 
 
 
 
 
6.7 Probability Plots  
 
Three types of probability plots can be generated by 
selecting the probability plot icon   .  The 
probability plot function develops Normal 
Probability (or NP), Quantile–Quantile (or Q–Q) 
Plots and Probability–Probability (or P–P) Plots 
(Figure 29).  See Charts Demo.xls for an example of 
all three types of probability plots. 
 
The Normal Plot is a method for checking how 
close to normal a random variable is distributed.  A 
Normal Plot compares the ordered data to the 
standard normal distribution’s percentiles.  If a 
variable is normally distributed the sorted data 
values will be entirely on a straight line with the 
only deviations from the line due to sampling error. 
  
A Quantile-Quantile (Q-Q) Plot can be used to 
compare two distributions.  If the two random 
variables have the same distribution, their paired 
observations lie on a 45° line.  If the two random 

Figure 28.  StopLight Dialog Box. 
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variables are in the same family of distributions, their paired observations tend to be linear 
although they may not lie on the 45° line.  A P-P Plot consists of a graph of the percentiles for 
the sorted values of two variables graphed on one axis.  If the two random variables have the 
same distribution (shape) the observations for a P-P Plot will be on a 45° line. 
 
6.8 Box Plots  
 
Box plots of one or more variables can be prepared by selecting the    icon.  The Box Plot 
dialog box (Figure 30) indicates the information required for this function.  The Box Plot is a 
quartile summary of a random variable in graphical form that indicates whether a variable is 
skewed to the left or right.  The names and values of the Box Plot are best defined in a chart: 
 
where: IQR = [75th Quartile – 25th Quartile] 
 
Fifty percent of the observed values fall within the box (25th to 75th quartile).  If the distribution 
is skewed to the right then the bottom line segment is longer than the top line segment, and vice 
versa if the distribution is skewed left.  Values that lie outside the extreme lines are likely to be 
outliers.  The median and mean will show up as one line for symmetrical distributions. 
 

 
 
6.9 Scatter Matrix Graph 
 
A scatter matrix of multiple univariate data series can 
be created using the scatter matrix icon  (Figure 
31). The scatter matrix is an array of individual 
graphs of several univariate data series.  Each series 
is plotted against each of the other series, one at a 
time, like a correlation matrix (see the example 
below).  The graphs show the linear relationships 
between individual series and can be useful in 
multiple regression to determine collinearity and for 
identifying linear relationships between variables for 
a multivariate probability distribution.  See Charts 
Demo.xls for an example of a scatter matrix.   
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Figure 31.  Scatter Matrix Dialog Box. 
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7.0 Scenario Analysis 
 
Simulation models are most useful when used to 
simulate alternative scenarios.  Scenario analysis 
involves specifying different values for several 
exogenous or management control variables and 
simulating the model for the different scenarios.  
The Simetar Simulation Engine dialog box (Figure 
32) provides an input field for entering the 
Number of Scenarios.  When the number of 
scenarios exceeds 1, Simetar executes the 
=SCENARIO( ) functions in the model. 
 
A separate =SCENARIO( ) function must be 
specified for each variable to be systematically 
changed for the alternative scenarios.  The 
=SCENARIO( ) function specifies the values the variable can take on for each scenario.  For 
example, simulating three input variables for example, Hours Producti for five scenarios (see the 
example below) is programmed using three =SCENARIO( ) functions as follows: 
 
 In B21:D25     enter the values for 3 variables for the exogenous variables 
 In B27 = SCENARIO (B21:B25) 
 In C27 = SCENARIO (C21:C25) 
 In D27 = SCENARIO (D21:D25) 
 

Figure 32.  Scenario Analysis Dialog Box. 
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The values for the first scenario in cells B21:D21 appear in the =SCENARIO( ) after the 
functions have been entered.  During simulation the subsequent scenario values of Hours Productij 
(values in rows 22-25) are used, when the Simulation dialog box (Figure 32) is set to simulate 5 
scenarios. If the Number of Scenarios cell in Figure 32 is set to 1, only the values for the first 
scenario are used in simulation.  The cells containing the =SCENARIO( ) function must be used 
in the equations of the model for the multiple scenario option to work.  For example B27 is used 
in B30 and B32 below.  See Simulate Scenarios Demo.xls for the example provided below. 
 

 
The results of a scenario simulation can be reported to SimData two ways using the Group Output 
option in the Simulation Dialog Box (Figure 32).  Grouping the results by Variable causes 
Simetar to present the results in SimData as:  Scenario 1-M for Variable 1, then Scenario 1-M for 
Variable 2, and so on for K output variables.  Grouping the results by Scenario causes Simetar to  
present the results as:  Variables 1-K for Scenario 1, then Variables 1-K for Scenario 2, and so on 
for M scenarios.  Both formats have their own advantage, use the one which best suits your 
purpose.  It is recommended when using the Scenario option that the List of Output Variables 
include the cells associated with the =SCENARIO( ) functions.  This will facilitate verifying that 
the values in the Scenario Table were appropriately used in the simulation.  
 
The benefit of using the =SCENARIO function is that Simetar runs the model multiple times 
using exactly the same random deviates (risk) for each scenario.  Thus the analysis guarantees 
that each scenario was simulated using the same risk and the only difference is due to the 
differences in the scenario variables.  The results can be presented as charts and used in risk 
ranking analyses. 
 
 
 
 
 
 
 
 

CDF

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

Pr
ob

TNR: 1 TNR: 2 TNR: 3 TNR: 4 TNR: 5



 
 

46

Figure 34.  Estimate Sensitivity Elasticity Option.   

8.0 Sensitivity Analysis 
 

When the Conduct Sensitivity Analysis 
option in the Simulation Engine dialog box 
is selected, the Simulation Engine dialog 
box expands to add the sensitivity options 
in Figure 33.  Simetar systematically 
manipulates one exogenous variable at a 
time to quantify the sensitivity of the 
output variables. The Select Input Variable 
to Manipulate cell can refer to any cell in 
the Excel workbook.  The variable to 
manipulate can be either a constant or a 
formula.  In either case, Simetar uses the 
initial value as the base and simulates the model using fractional deviations about the base value. 
 
The range of test values for the manipulated input variable are specified using the three 
Sensitivity Ranges.  If you are interested in testing the effects of +/- 5, 10, and 15 percent 
changes in the selected input variable, type these values in the Sensitivity Range boxes and 
simulate the model.  If further investigation shows that the ranges could be +/- 3, 6, and 9 
percent, then type in these values and re-simulate the model.   
 
Results of sensitivity analyses are summarized in the SimData worksheet.  The results are 
presented, by output variable, in the following order:  the Base value for the Input Variable to 
Manipulate (or IVM) is 1.0 * IVM, the smallest IMV (say, 0.85 * IVM), the next larger IMV 
(say, 0.9 * IVM), and so on until the seventh value which is the largest IMV tested (say, 1.15 * 
IVM).  This organization of results facilitates direct comparison of the impacts of the IMV on 
each of the Output Variables using a Fan Graph. 
 
It is recommended that when sensitivity analyses are being simulated, the list of Output 
Variables in the Simulation Engine should include the Input Variable to Manipulate.  Using this 
convention, one can easily verify that the Input variable indeed took on the intended values.  
 
 9.0 Sensitivity Elasticity Analysis 
 
The sensitivity of a key output variable 
(KOV) in a simulation model to 
changes in several exogenous variables 
can be measured using sensitivity 
elasticities i(SE ).   A iSE  is like an 
elasticity, but it quantifies the average 
percentage change in a KOV to a one 
percent change in the exogenous 
variable X.  Simetar calculates iSE  
values by simulating the model for the 
base value of each iX  exogenous variable to be tested.  Next Simetar changes one iX  at a time 

Figure 33.  Simulation Sensitivity Dialog Box. 
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by a specified percentage change and simulates the model.  The iSE  values are calculated for 
each iX  value across all iterations and the mean and standard deviation of the iSE  are reported in 
worksheet SEDATA.  
 
A chart of the iSE  values is provided so 
the analyst can see which iX  variable has 
the greatest impact on the KOV.  The 
standard deviation for the iSE 's  is 
displayed in the SE chart as well.  To 
simulate SE values for stochastic 
simulation model in Excel, select the 
Calculate Sensitivity Elasticities button in 
the Simulation Engine (Figure 34).  This 
action causes Simetar to expand the Simulation Engine menu to include the inputs for SEs.  
Select the one KOV to be used for the analysis and select the exogenous variables for which 
SE’s are to be estimated.  Specify the percentage change to use for estimating the SE’s; 5 percent 
is usually adequate for this purpose.  Simulate the model and review the simulated results in the 
SimData and SEData worksheets.  Edit the SE chart using the Excel chart commands. An 
example Sensitivity Elasticity chart is presented in Simulate Sensitivity Elasticities Demo.xls. 
 
10.0 Simulating and Optimization 
 
Stochastic simulation and optimization of a model is complicated because it requires iteratively 
simulating random shocks to the equations and then optimizing the system.  For example, in a two 
equation supply and demand model with 
stochastic shocks we would solve for the price 
that makes demand equal supply or: 
 
QS  = a + b Price + cX + (Std Dev * SND)  
QD = a + b Price + cY + (Std Dev * SND) 
E  =  Q  -  QS S D   
 
If the stochastic shock is zero (SND = 0.0) we 
simply use Excel’s Solver (Figure 35) to solve for 
the price where ending stocks (E )S  equals zero. 
See the Sim Solve Demo.xls for an example.  Sim 

Solve Demo.xls demonstrates how a 
simultaneous equation system can be simulated 
using the Incorporate Solver option in Simetar 
(Figure 36).   
 
The first step in simulating a stochastic 
simultaneous equation model is to use Excel’s 
Solver (Tools > Solver) to specify the change 
variable (price, in the example) and the target 
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variable (stocks or ES, in the example).  An example of Excel’s Solver dialog box is provided in 
Figure 35.  While the spreadsheet is set to Expected Value, solve the model using Solver, after 
specifying the Solver parameters, and then open the Simetar Simulation Engine.  In the 
Simulation Engine dialog box select the Incorporate Solver option and specify the output 
variables and simulate the model as usual (Figure 36).  It is recommended that the Output 
Variables include the control variable and the target value which Solver is programmed to 
optimize. This pair of output variables allows one to check Solver’s results for each iteration.  As 
should be expected the Incorporate Solver option is slow.  The reason being that Excel is solving 
an optimal control problem 100 or more times.  Sim-Solver option works well for small models 
but will not be efficient for large simulation models with numerous (10 or more) simultaneous 
equations.  See the example in Sim Solve Demo.xls. 
 
11.0 Numerical Methods for Ranking Risky Alternatives 
 
The results of a Simetar simulation are written to the SimData 
worksheet.  The results can be analyzed many different ways to 
help the decision maker determine the most preferred alternative. 
 Functions in Simetar to facilitate analysis of simulation results 
are described in this section.   
 
11.1 Stochastic Dominance (SD) 
 
11.1.1 First Degree Stochastic Dominance.  First degree SD is 
the least discriminating stochastic dominance method for ranking 
risky alternatives.  However, if the CDFs for the risky alternatives 
do not cross, this is the preferred method for ranking alternatives. 
 First degree SD can be accessed in Simetar by selecting the  
icon.  Select the 1st and 2nd Degree Dominance Table option 
Simetar will develop first degree stochastic dominance table 
(Figure 37). The Stochastic Dominance dialog box (Figure 35) 
requires the analyst enter the location for the simulated values of 
the risk alternatives (or scenarios) specify the risk aversion 
coefficients (RACs). The first degree SD table will be placed in 
the SD1 spreadsheet.  See the example below and in Stochastic 
Dominance Demo.xls.  
 
11.1.2 Second Degree Stochastic Dominance.  Second degree SD assumes the decision maker 
is risk averse so the RACs must be positive.  The  icon causes Simetar to open the Stochastic 
Dominance menu (Figure 37) which asks for the simulated values for the risky alternatives and 
the RACs  (say  -0.0001 and 0.0001).  By selecting the 1st and 2nd Degree Dominance Table 
option Simetar will develop a second degree SD output table in the SD1 worksheet.  The results 
for a second degree SD analysis are generally inconclusive.  See the example below and in 
Stochastic Dominance Demo.xls. 

Figure 37.  Stochastic 
Dominance Dialog Box. 
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11.1.3 Generalized Stochastic Dominance with Respect to a Function (SDRF).  The SDRF 
option is initiated by selecting the    icon which opens the dialog box depicted in Figure 37.  
When specifying the simulation results in Select Arrays to Compare, be sure to highlight the 
label in row one and all of the rows (simulated values) and columns (scenarios or alternatives) to 
compare. Use the Add button to add scenarios that are not adjacent to the first scenario added in 
the Select Array window.  All of the scenarios must have the same number of observations. 
The SDRF comparison of risky alternatives uses the Lower and Upper Risk Aversion 
Coefficients (RACs) the user specifies in the dialog boxes (Figure 37).  The lower RAC must be 
less than the upper RAC . No scaling takes place with the user’s RAC values. If a RAC is too 
large in absolute terms (relative to the series to analyze), the STODOM ranking results will show 
“#VALUE!” rather than ranking each scenario.  This result comes about because an exponent 
overflow is caused by excessively large RACs. 
 
The SDRF results table are written to worksheet SDRF1 (see the example below).  The SDRF 
results table is dynamic so the user can systematically change the RACs in the stochastic 
dominance results table and observe the effect on scenario rankings.  When the SDRF table uses 
simulation results in the SimData worksheet, the SDRF table will be updated automatically each 
time Simetar simulates the model.   
 
 
 
 
 
 
 
 
 
11.2 Stochastic Efficiency with Respect to a Function (SERF)  
 
SERF is a new procedure for ranking risky alternatives based on 
their certainty equivalents (CE) for alternative absolute risk aversion 
coefficients (ARACs).  The CEs for risky alternatives are calculated 
and the results are presented in a table and a chart by selecting the 
SERF option in the Simetar toolbar,  .  The SERF icon opens the 
SERF Analyzer dialog box (Figure 38).  The SERF table and chart 
are placed in a worksheet named SERFTbl1.  The CE values in the 
table and chart are dynamic so the lower and/or upper ARACs and 
the utility function can be changed after the dialog box has been run. 
 The SERF procedure defaults to the Exponential Utility Function, 
yet six more utility functions are available in cell D4 of SERFTbl1.  
The SERF table values and chart can be calculated assuming a Power 
Utility Function by 
typing a “2” in place 
of the “1” in cell D4.  
The rule for ranking 
risky alternatives is 
that at any given 
ARAC value, the 

Figure 38.  SERF Dialog Box. 
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preferred alternative is the one which is the highest on the Y (or CE) axis.  An example of the 
SERF analysis is available in SERF Analysis Demo.xls. 
 
11.3 Risk Premiums 
 
The confidence premium (or the conviction level) 
with which a decision maker would prefer one 
alternative over another is visually displayed in 
the SERF Chart as the vertical distance between 
the CE lines at each RAC.  The SERF analysis 
also produces a certainty equivalents risk 
premium (RP) table and chart in the SERFTbl1 
worksheet.  The RP table compares the absolute 
differences in the CE’s for a base alternative with 
the other alternatives across RAC values.  A chart 
of the RP’s displays the relative position of each 
alternative to the base over the range of the 
RACs.  The user can change the lower and upper 
RACs and the alternative designated as the base.  
An example of the RP analysis is presented here and in SERF Analysis Demo.xls. The dynamic 
nature of the SERF option will degrade execution time if the model is re-simulated.  If this is a 
problem, delete the SERFTbl1 Worksheet before re-simulating the model.   
 
11.4 Target Probabilities for Ranking Risky Alternatives  
 
The probability of a variable taking on a value less than or equal to a specified target value for a 
simulated distribution can be calculated using the =EDF( ) function in Simetar.  Risky 
alternatives can be ranked with respect to their probabilities exceeding target vales.  The     
=EDF( ) function is programmed as follows: 
 
 = EDF (Array Location, Target Value) 
 = EDF (B8:B108, B110) 
 
where: Array Location is the location for the distribution (simulation results) to analyze, and  
 Target Value is the location for the target value or an actual number. 
 
An example of how the =EDF( ) function can be used is to first simulate net returns for a business. 
The probabilities of observing net returns less than particular target values are calculated using 
=EDF( ).  Alternative target values for net returns can be specified by the decision maker.  See the 
Stoplight chart in Section 6.6 for a graphical means of calculating and displaying target 
probabilities.  An sample table of EDF values is presented below from the Simulate Scenarios 
Demo.xls workbook. 
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11.5 Target Quantiles for Ranking Risky Alternatives 
 
Instead of ranking risky alternatives based on their probability of exceeding a target, some decision 
makers want to know the target value which has a particular probability of being true, or the 
quantile for their KOV.  This method can be implemented by calculating the value of the key 
output variable at, say, the 25 percentile.  The =QUANTILE( ) function returns the value of a 
series that is associated with a specified probability.  If =QUANTILE( ) is given a series of values, 
such as, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and asked to locate the 35th quantile, then the function returns 
the value of 3.5 as the 35th quantile value.  The array of values to evaluate does not have to be 
sorted from low to high.  An sample table of QUANTILE values is presented above from the 
Simulate Scenarios Demo.xls workbook.  The function is used as: 
 
 =QUANTILE (Array Location, Percentile) 
 =QUANTILE(B9:B108,0.56) 
   
where: Array Location is the cell reference for the distribution to be evaluated, and  
 Percentile is the percentile to evaluate and is a fraction, such as 0.56. 
 

12.0 Tools for Data Analysis and Manipulation 
 
The Simetar functions developed to facilitate data analysis and manipulation are described in this 
section.  All of the Simetar functions in this section are dynamic so if the historical data for a 
model or its stochastic variables change, the parameters are automatically updated.  This feature 
is particularly useful when developing simulation models that can use different input data from 
one application to another.  Another feature of Simetar functions is that the formulas are cell 
locked so the formulas can generally be copied and pasted or dragged to new locations to speed 
up the data analysis process 
 
12.1 Matrix Operations 
 
Most data in an Excel workbook can be thought of as a matrix.  Thirty-three Simetar functions 
that facilitate the manipulation and analysis of data matrices can be accessed by clicking the  
icon (Figure 39).  The Simetar functions are programmed in C++ and therefore not constrained 
to Excel’s restrictions on array size. The matrix functions are in alphabetical order in the Matrix 
Operations dialog box: 
 
 Center Matrix of a Specified Dimension 
 Choleski Factorization of a Matrix 
 Cofactor of a Square Matrix  
 Column Vector to a Diagonal Matrix 
 Column Vector to a Matrix 
 Column Vector to a Toeplitz Matrix 
 Concatenate Two Matrices 
 Determinant of a Square Matrix 
 Eigenvalues of a Square Matrix 
 Eigenvectors of a Square, Symmetric Matrix 
 Equicorrelation Matrix of a Specified Dimension 
 Exponential Power of a Matrix 
 Factor a Square, Symmetric Matrix 
 Generalized Inverse of a Matrix 
 Inner Product of Two Matrices Figure 39.  Matrix Operation Menu. 
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Figure 40.  Dialog Box for Changing a  
Vector to a Matrix. 

 Invert a Nonsingular Square Matrix 
 Kronecker Multiply Two Matrices 
 Mahalanobis Distance of Two Data Matrices 
 Matrix of 1s 
 Matrix to a Vector 
 Multiply Two Matrices 
 Norm of a Matrix 
 Orthoganalize a Matrix 
 Rank of a Matrix 
 Reduced Row Echelon Form of a Matrix 
 Reverse a Column or Row of Values 
 Row Echelon Form of a Matrix 
 Sequence of Numbers 
 Sort a Matrix by a Specified Column 
 Sweep a Square Matrix on a Diagonal Element 
 Trace of a Square Matrix 
 Transpose a Matrix 
 Wishart Matrix of Random Variables 
 
The most frequently used matrix functions are described in detail in this section.  The Simetar 
Matrix and array functions are dynamic so changes made to the data are automatically observed 
in the output functions.  For example, changes to the input data will change the associated 
correlation matrix, the Choleski decomposition matrix of the correlation matrix, and subsequent 
calculations for parameter estimation and stochastic simulation.  The matrix functions described 
in Section 12.0 are demonstrated in the Excel workbook Matrix Operation Functions.xls.   
 
12.1.1 Column Vector to a Matrix.  The Matrix Operations dialog box accessed by selecting 
the  icon contains a function to Change a Column Vector to a Matrix (Figure 40).  The 
function is dynamic so changes in the original vector are observed in the matrix.   
 
12.1.2 Reverse a Column or Row of Values.  A vector of values can be reversed by selecting 
the Reverse a Column or Row of Values in the Matrix Operations menu.  The function outputs 
the data as a column if a column of input is provided and as a row if the input is in a row.   

 
12.1.3 Convert a Matrix to a Vector.  The task of converting a matrix of weekly, monthly, or 
quarterly data to a vector for time series analysis is simplified with the Matrix to a Vector 
function.  To use this function indicate the matrix to operate on and the output location for the 
vector.   
 
12.1.4 Sort a Matrix.  An array or a matrix can be sorted 
in Simetar using the Sort a Matrix by a Specified Column 
in the Matrix Operations menu.  The user must specify the 
Column to Sort By as well as the location for the matrix.  
The sort is dynamic so as the values in the original data 
matrix change, the values in the sorted matrix will be 
updated. 
 
12.1.5 Factor a Square Matrix.  Simetar can factor a 
covariance or correlation matrix for simulating a 
multivariate probability distribution by either the Square 
Root method or the Choleski method. Both of these Figure 41.  Factor a Square Matrix 

Dialog Box. 
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methods are accessed via the  icon for matrix functions (Figure 41).   
12.1.6 Transpose a Matrix (Excel).  A matrix can be transposed by selecting the Transpose a 
Matrix option in the Matrix Operations dialog box, specifying the matrix to transpose and the 
upper-left hand cell to anchor the output matrix.  This procedure simplifies Excel’s transpose 
function by eliminating the need to block the area for the transposed matrix and avoids array size 
limitations in Excel.   
12.1.7 Generalized Inverse of a Rectangular Matrix.  The Generalized Inverse of a Matrix 
function in the Matrix Operations dialog box uses Simetar’s function.  Select this option and 
specify the input matrix (highlight only the numbers) and the output range for the upper left hand 
value, then select OK.  The inverse of the input matrix will appear in the worksheet without 
row/column names.  Copy and paste in the names if needed.   

 
12.1.8 Invert a Nonsingular Square Matrix (Excel).  The Invert a Nonsingular Square Matrix 
option in the Matrix Operations dialog box is demonstrated in Figure 42.  (Simetar uses Excel’s 
function but provides an easy to use menu.) Select this option and then specify the input matrix 
(highlight only the numbers) and the output range for the 
upper left hand value, then click OK.  The inverse of the 
input matrix will appear in the worksheet without 
row/column names.  Copy and paste in the names if needed. 
  
 
12.1.9 Multiply Two Matrices (Excel).  Excel’s matrix 
multiplication, MMULT, function is made easier by 
selecting the Multiply Two Matrices option in the Matrix 
Operations dialog box. An additional feature is that 
Simetar’s matrix multiplication will handle larger matrices 
than the Excel function MMULT. 
 
12.1.10 Concatenate Two Matrices.  A new matrix of data 
can be developed by concatenating the data from two 
locations in the workbook.  The Concatenate Two Matrices 
option in the Matrix Operations menu requires as input the location of the two input arrays or 
matrices and the output location. 
 
12.1.11 Convert a Vector to a Diagonal Matrix.  In simulation it is useful to convert a vector 
of standard deviations to a diagonal matrix.  The Simetar function =MDIAG( ) can be used to 
convert an array to a diagonal matrix using the Column Vector to a Matrix option in the Matrix 
Operations dialog box.   
 
12.1.12 Find the Determinant of a Square Matrix.  The determinant of a square matrix can be 
calculated by selecting the Determinant of a Square Matrix option in the Matrix Operations 
dialog box.  The Excel function =MDETERM (square matrix) is used for this calculation.   
 

Figure 42.  Invert a Square Matrix 
Dialog Box. 
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12.2 Data Manipulation 
 
Data often comes in the wrong format or orientation.  Data may be in an array when we need it 
in a matrix or vice versa.  Sometimes we need to reverse the order of the data or concatenate 
arrays from different places in the worksheet.  Functions to make these data manipulations easy 
have been included in Simetar and can be accessed by selecting the  icon.  Additional data 
manipulation functions are also presented in this section. 
 
12.2.1 Create an Identity Matrix.  An indemnity matrix of dimension NxN can be generated 
using the =MIDEN( ) function in Simetar.  The format for the function is =MIDEN (dimension) 
where dimension is a scalar to specify the number of rows in the square identity matrix.   

 
11.2.2 Create a Sequence of Numbers.  A sequence of numbers in an array can be created 
using the =SEQ( ) function.  The =SEQ( ) returns a column of numbers that follow any sequence 
you specify.  The function is programmed as: 
 
 =SEQ(No. of Values, Starting Value, Interval or Increment) 
 
where: No. of Values is the number of cells to be highlighted, 
 Starting Value is the first value in the sequence, and  
 Interval or Increment is the interval between each value. 
 
For example the sequence of number for 10, 20, 30, …, 200 is generated by programming the 
function as =SEQ(20,10,10) and a sequence of 2, 4, 6, …, 20 is generated by programming the 
function as =SEQ(10, 2, 2).   

 
11.2.3 Create a Matrix of Ones.  In statistics a J matrix is an array or matrix with a 1.0 in each 
cell.  The Simetar function =MJ( ) is used to create a J matrix.  To create a 10x1 array of 1.0s 
highlight 10 cells in column and type the function =MJ(10).  To create a 10x10 matrix of 1.0s, 
highlight a 10 cells in 10 columns and type =MJ(10,10).  Be sure to hit the Control Shift, Enter 
keys after typing the =MJ( ) function as it is an array function.   
 
11.2.4 Create a Centering Matrix.  The =MCENTER() array function that creates an NxN 
centering matrix when n is specified as the dimension.   
 
11.2.5 Create an Equicorrelation Matrix.  The =MEQCORR() array function generates an 
NxN equicorrelation matrix using any specified correlation coefficient.  The =MEQCORR( ) 
function is an array function so you must highlight the cells for the square equicorrelation matrix 
and end the function by hitting Control Shift Enter.  The function is programmed as 
=MEQCORR( Rho), where Rho is the correlation coefficient.   
 
11.2.6 Create a Toeplitz Matrix.  The =MTOEP() array function creates a square symmetric 
Toeplitz matrix given a column or row of data.  To create a Toeplitz matrix of an array in A1:A4, 
highlight a 4X4 array and type the function as =MTOEP(A1:A4).  Be sure to press Control Shift 
Enter as this is an array function.    
 



 
 

55 

12.3 Box-Cox Transformation   
 
The =BOXCOX() function can be used to transform the data for a skewed distribution to make it 
approximately normally distributed.  The function uses a user specified exponent to transform 
the data.  The =BOXCOXEXP() function is provided to estimate an appropriate exponent.  The 
format for the Box Cox transformation functions are: 
 
 =BOXCOX( Data Array, Power Value, [Shift to Plus])  
 
where: Data Array refers to the location of the Nx1 data series to be transformed, 
 Power Value is the exponent for the transformation, and 
 Shift to Plus is an optional term if the data are to be shifted to positive values enter 

‘TRUE or 1’, otherwise enter ‘FALSE or 0’. 
 
The =BOXCOX( ) function is an array function so highlight the appropriate number of cells and 
type the function and press Control Shift Enter.  See Data Analysis Demo.xls for an example.  
Once a model has been estimated using a Box-Cox transformation, the =UNBOXCOX() function 
can be used to transform the forecast values back to original data.  The reverse Box-Cox 
transformer function is: 
 
 =UNBOXCOX (Data Array, Power Value, Original Data Array, [Shift to Plus]) 
 
where: Data Array is the location for the Nx1 array transform back to the original data,  
 Power Value is the exponent for the transformation, 
 Original Data Array is the location for the original data Nx1 array, and 
 Shift to Plus is an optional term if the data are to be shifted to positive values enter 

‘TRUE or 1’, otherwise enter ‘FALSE or 0’. 
 
The maximum likelihood estimation of the Box-Cox transformation exponent function can be 
calculated using the following function: 
 
 =BOXCOXEXP( Data Array, [Shift to Plus], [Lower], [Upper], [Max Iter]) 
 
where: Data Array refers to the location of the data n-1 array to be transformed, 
 Shift to Plus is an optional term if the data are to be shifted to positive values, 
 Lower is an optional minimum for the search routine, -2 is the default, 
 Upper is an optional maximum for the search routine, +2 is the default, and 
 Max Iter is an optional parameter for the search routine.   
 
12.4 Workbook Documentation   
 
12.4.1 Delete Numbers in a Cell. When a cell has both numbers and text, to extract only the 
text, use the =DELNUM( ) function.  See Data Analysis Demo.xls for an example.  If cell A1 
contains the string “1013 Sycamore Street” and we want the text in cell A2, then in A2 type: 
 
 =DELNUM(A1) 
 
12.4.2 Delete Text in a Cell. Often times the numbers in a cell are needed even though the cell 
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contains both numbers and text.  For example, the worksheet may have an address in a cell as 
“1013 Sycamore Street” and we want the number without the text.  Rather than re-typing the 
numbers to a new cell or editing the existing cell use the =DELTEXT( ) function.  See Data 
Analysis Demo.xls for an example.  Say the cell A1 has the string “1013 Sycamore Street” and 
you want just the number to appear in cell B1, then in B1 type: 
 
 =DELTEXT (A1) 
 
12.4.3 View Cell Formulas.  To show the formula typed in a particular cell use   
=VFORMULA( ).  An advantage of using this function is that you can both see the formula for a 
cell, say B24, and you can see the value in B24.  The =VFORMULA( ) function is dynamic and 
changes (updates itself) as rows and columns are added to or removed from the worksheet.  The 
Simetar function to view the formula in cell B24 can be typed into any cell (say, C24) as follows: 
 
 = VFORMULA (B24) 
 
12.4.4 View All Formulas.  In the process of writing and documenting simulation models in 
Excel we often write formulas that need to be printed.  Simetar provides a function to easily view 
every cell in the worksheet as a formula, and then switch the worksheet back to values.  This 
function can be accessed by clicking the  icon in the Simetar toolbar.  Click the  icon a 
second time and the worksheet will return to the normal view.   
  
12.4.5 Workbook and Worksheet Name.  Functions in Simetar have been provided to 
dynamically show the name of the workbook or the worksheet in a cell.  These functions are 
useful for documenting a model.  The workbook name is shown in any cell that contains the 
following command: 
 
 =WBNAME( ) 
 
The worksheet name is shown in any cell that contains the following command: 
 
 =WSNAME( ) 
 
If you rename the workbook or the worksheet, the function updates the text in the cell after 
pressing F5. 
 
13.0 Regression Analysis 
 
Simple and multiple regression (ordinary least square (OLS), Probit, Logit, GLS, Ridge, 2SLS, 
and GLS) capabilities are included in Simetar to facilitate estimating parameters for simulation 
models.  Not only are the regression coefficients (beta-hats) useful, but in simulation the 
residuals are used to quantify the unexplained risk for a random variable.  The regression 
functions in Simetar take advantage of Excel’s ability to recalculate all cells when a related value 
is changed.  Thus when an observed X or Y value is changed the betas are recalculated.  Also, 
multiple regression models can be instantly re-estimated for different combinations of the X 
variables by using restriction switches to ignore individual variables. 
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13.1 Simple Regression  
 
The parameters for a simple OLS regression are calculated when you select the  icon.  The 
simple regression icon opens the dialog box depicted in Figure 43 so the X and Y variables can 
be specified.  The intercept (a) and slope (b)$ $  parameters for the equation:    
 
 $ $ $Y  =   a  +   b X  
 
are estimated and placed in the worksheet starting where the Output Range specifies.  The names 
of the estimated parameters appear in the column to the left of the parameters.  The R2, F-Ratio, 
Student’s -t test statistics, and residuals are calculated if you select the appropriate boxes.   

 
Be sure that X and Y have the same number of observations when you specify their ranges in the 
Simple Regression dialog box.  This Simetar function is useful for checking the presence of a 
trend in a random variable Y.  In this case, create a column of X values that increment from 1, 2, 
3, ..., N and then use Simetar to estimate the regression parameters.  A feature to this function is 
that the coordinates for the X variable are cell reference locked (fixed) so the formula cells can 
be copied and pasted across the spreadsheet to estimate simple regressions for numerous Y’s 
using a common X or trend variable.  An example of the simple regression function in Simetar is 
provided below and in the Data Analysis Demo.xls workbook.  
 
13.2 Multiple Regression  
 
The Multiple Regression option is accessed through the    icon.  Multiple regression estimates 
the least squares $ $a and bi parameters for: 
$ $ $ $ $Y  =   a +  b  X   +   b  X   +  .  .  .   +  b  X1 1 2 2 n n  

The Multiple Regression dialog box (Figure 44) allows the user to specify the Y and X variables, 
and the type of output for seven different multiple regression models.  
 
A sample output for a multiple regression is provided below to show the format for the first part 
of the results. The name of an X variable and its beta are in bold if the variable is statistically 

Figure 43.  Simple Regression Dialog Box. 
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significant at the indicated one minus alpha level (e.g., X1, 
X2, X3, and X4 in the example). Standard errors for the betas, 
the t-test statistics and the probability (p) value of the t-
statistics are provided for each explanatory variable.  The 
elasticity at the mean for each independent variable as well 
as the partial and semi-partial correlations for these variables 
is provided as well.  The variance inflation factor is reported 
for each X variable to indicate the degree of multicolinearity 
of Xi to other variables in the model.  See Multiple 
Regression Demo.xls for the example presented in this 
section. 
 
The Restriction row in the parameter block of output values 
allows the user to interactively experiment with various 
combinations of X variables.  After the initial parameter 
estimation the Restriction coefficients are all blank, meaning 
that every X variable is included in the unrestricted model.  
The user can interactively drop and re-include a variable by 
changing its restriction coefficient from blank to 0.  
Compare the results in the first example to those in the 
second example where X5 was restricted out of the model.  
The exclusion of X5 improves the F –test (61.5 vs. 79.2).  
Three test statistics (F, R2 and R

2
) for the Unrestricted 

Model are provided and remain fixed while testing alternative specifications of the model’s 
variables. This is done to facilitate the comparison to the original unrestricted model to the 
restricted models.  If you type a non-zero number in the restriction row, the value becomes the 
beta-hat coefficient for a restricted regression. 

 
In addition to the ability to exclude and 
re-include variables in the model, 
Simetar’s multiple regression function 
allows the analyst to make corrections to 
the data for the actual observations of the 
X and Y values, without having to re-run 
the regression.  The Simetar multiple 
regression routine is not limited in the 
number of exogenous variables that can 
be included in the model.  Regression 

Figure 44.  Multiple Regression 
Dialog Box. 
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models with 5000 observations and 250 X variables can be estimated with Simetar. 
 
If the analyst specifies more observations for the X variables than for the Y variable, Simetar 
will forecast the Y values.  The forecast values in the “Predicted Y” column of the output uses 
the betas for the regression and the additional Xs.  Probabilistic forecasts of the Y variable are 
provided as bold values in the Actual Y column of the output.  For the example, there are five 
extra X values indicated for the regression dialog box (Figure 44) so Simetar calculated the 
deterministic forecast values in column B and the probabilistic forecast values in column A, 
starting in row 91 (see the output above).  Probabilistic forecasts are calculated assuming 
normality, the mean equals the deterministic forecast, and the standard deviation is the standard 
error of the predicted Y in column E for the example.   Press F9 to make Excel simulate the 
probabilistic forecasts.  The probabilistic forecasts can be used in a stochastic simulation model. 
  
Residuals for the regression are also 
included in the example output. The 
residuals for the regression are 
calculated as i i i

ˆê  = Y  - Y  for each 
observation i and represent the 
unexplained risk for the dependent Y 
variable.  The standard error for the 
mean predicted value (SE mean 
predicted) is provided for each 
observation i.  In addition the SE of the 
Predicted Y for each observation is 
provided in column E of the example 
output.  As indicated in the example 
output, the SE Predicted Values increase as the forecasted period gets longer.  Prediction and 
confidence intervals for the model are provided in the table (above) and graphically (below) for 
the alpha equal 5 percent level.  The alpha level can be changed by changing the value in line 47 
of the output example from 95% to, say, 90% or 99%. 
 
The observed and predicted Y values can be viewed graphically along with the confidence and 
prediction intervals.  For the example program five more Xs than Ys were used to estimate the 
model, as a result the last five values in the Observed line to the right are the probabilistic 
forecast values and will change each time the F9 function key is pressed. 
 
The covariance matrix for the betas is an optional output for multiple regressions.  The beta 
covariance matrix is used in simulation when the model is assumed to have stochastic betas. The 
beta covariance matrix is provided when specified as an option in the multiple regression dialog 
box (Figure 44). 

Observed and Predicted Values for Y

5.25
5.30
5.35
5.40
5.45
5.50
5.55
5.60

Predicted Observed
Lower 95% Predict. Interval Upper 95% Predict. Interval
Lower 95% Conf. Interval Upper 95% Conf. Interval
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If requested in the regression dialog box (Figure 44), observational diagnostics are calculated 
and reported for the unrestricted model (see the example to the right).  The column of 1’s in the 
DFBetas Restriction column indicate that the unrestricted model was fit using all of the observed 
data.   
 
If you change a DFBetas Restriction to 0 for a particular row the model is instantly updated 
using a dummy variable to ignore the effects for that row of X’s and Y.  The rule for excluding 
an observation is if its Studentized Residual is greater than 2 (is bold).  This is the case for 
observation 24 in the sample output.  Setting the Restriction value to 0 for observation 24 causes 
the F statistic to increase from 88 to 107, given that X5 has not been excluded from the model.  
The R2 increases to 96.1 from 96.9 (see Multiple Regression Demo.xls).  This result suggests 
that observation 24 is either an outlier or should be handled with a dummy variable.  A priori 
justification should be used when handling observations in this manner.   
 
 
 
 
 
 
 
 
 
 
 
13.3 Bivariate Response Regression 
 
13.3.1 Probit Analysis.   The PROBIT regression function estimates a logistic regression given 
dependent and independent variables.  Probit regression models can be estimated by using the 
multiple regression icon  and selecting the Probit option in the menu, see Figure 44 for the 
menu.  The PROBIT function allows for independent variables to be restricted from the complete 
model (enter ‘0’ in place of the ‘1’).  In addition, individual observations can be restricted from 
the regression (enter ‘0’ in place of ‘1’).  The PROBIT Function uses an iteratively re-weighted 
least squares technique to estimate the model parameters.  A sample Probit output for Simetar 
from the Probit and Logit Demo.xls is summarized below. 
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13.3.2 Logit Analysis.  The LOGIT function estimates a logistic regression given dependent and 
independent variables.  Logit regression models can be estimated by using the multiple 
regression icon  and selecting the Logit option in the menu, see Figure 44 for the menu.  The 
LOGIT function allows for independent variables to be restricted from the complete model.  In 
addition, individual observations can be restricted from the regression.  The LOGIT function 
uses an iteratively re-weighted least squares technique to estimate the model parameters.  A 
sample Logit output for Simetar is presented below from the Probit and Logit Demo.xls. 
 

 
14.0 Cyclical Analysis and Exponential Forecasting 
 
Functions to facilitate analysis of seasonal and cyclical data 
are included in Simetar.  Seasonal indices and moving average 
analysis of cyclical data are described in this section.  Three 
different procedures for developing exponential forecasts 
included in Simetar are described as well.  
 
14.1 Seasonal Index 
 
A seasonal index of any array can be calculated by Simetar 
using the Forecasting and Cyclical Data icon  and clicking 
on the Seasonal Indexing tab.  The Seasonal or Cyclical 
Indexing dialog box (Figure 45) allows the user to specify the 
data series to analyze and the number of periods in the cycle, 
(say, 4 or 8 or 12).  A sample output table is presented below 
and in Seasonal Analysis Demo.xls.  
  
When the input data are months and the Number of Periods in 
the Cycle is 12 the result will be a 12 month seasonal index.  
The quarterly index in the example below is developed from 
five years of quarterly sales to calculate a seasonal sales 
index.  
 
A seasonal index can be calculated one of two ways, namely:  simple average or centered 
moving average.  The simple average index is a more reliable indicator of the seasonal pattern if 
the data has no trend.  If the data series has an underlying trend the Centered Moving Average 
will remove a portion of the variability caused by the trend.  The Seasonal and Cyclical Indexing 

Figure 45.  Seasonal or 
Cyclical Indexing Dialog Box. 
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dialog box (Figure 45) assumes the user wants a simple average index.   
 
 
 
 
 
 
 
 
 
 
 
14.2 Seasonal Decomposition Forecasting 
 
A Seasonal Decomposition forecast of a data series can be 
calculated by Simetar using the Forecasting and Cyclical 
Data icon  and clicking on the Seasonal Indexing tab 
(Figure 46).  After indicating where the data series is 
located and the number of periods in the cycle, click on 
the last box in the menu to Include Seasonal 
Decomposition with Forecast Periods.  This will cause 
Simetar to calculate the parameters for a seasonal 
decomposition forecast for the number of periods 
indicated in the last window of the dialog box, four for the 
example presented below. 
 
The output for the seasonal decomposition forecast 
contains two switches that allow the user to alter the type 
of decomposition model that best fits the data series being 
forecasted.  The options are Additive and Cycle (see the 
example output below).  The default value for the 
ADDITIVE option, “TRUE”, is for an additive model 
which assumes the seasonal component is additive. If the 
seasonal effects are multiplicative, use the “FALSE” 
setting for the ADDITIVE option.  The second option, 
CYCLE, defaults to “TRUE” assuming the series has an 
underlying cycle. If a cycle is not present change this option to “FALSE”.   
 
The user’s requested forecast values are presented in the charts, the trend component forecast is 
the series of dashes on the linear trend line.  The cyclical and seasonal forecasts are the dashes 
on their respective lines.  The composite forecast is the dashes on the actual data line (Sales in 
the example).  The values for these forecast components are indicated in the table after the 
historical values, the last four values for the example below and in Seasonal Analysis Demo.xls. 
 
 
 

Figure 46.  Seasonal 
Decomposition  Forecasting.
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14.3 Moving Average Forecast 
 
A moving average of any series can be calculated by selecting 
the forecasting icon  and selecting the Moving Average tab 
(Figure 47).  The Moving Average dialog box requires 
information on the number of periods to include in the moving 
average and the number of periods to forecast. 
 
Once Simetar has completed the analysis you can change the 
number of periods for the moving average using the sliding scale 
to observe how the number of periods affects the goodness of fit 
measures. The MAPE, WAPE, Thiel U2, RMSE, and MAE are 
included in the output so you can experiment with different 
moving average lengths and observe the affects on forecast 
error.  A graph of the historical and predicted values is provided 
as well. The example of a moving average forecast below comes 
from the Moving Average Demo.xls workbook. 
 
 
 
 
 

Figure 47.  Moving Average 
Forecast Dialog Box. 
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14.4 Exponential Smoothing Forecast 
 
An exponential smoothing forecast for any data series can be developed using the forecasting 
icon  and selecting the Exponential Smoothing tab (Figure 48).  Before running the 
Exponential Smoothing option, open Solver to make Excel activate Solver in the worksheet 
where you want the forecast model to appear.  Solver can be opened and closed by clicking on 
Tools > Solver > Close  
 
Simetar provides three different exponential smoothing estimator/forecasts tools:   

• Single exponential smoothing estimates one parameter alpha (Dampening Factor).   
• Double exponential smoothing or Holt’s method estimates parameters for two parameters 

alpha and beta (Optional Trend Factor).   
• Triple exponential smoothing or Holt-Winter’s method estimates three parameters alpha, 

beta, and gamma (Optional Seasonal Factor).   
Additionally, Simetar estimates the parameters for the exponential smoothing model with 
different assumptions about the trend and seasonal component.  The options are: 

• Holt Method Trend with 
o No trend 
o Dampened additive trend 
o Dampened multiplicative trend 

• Holt Winters Seasonal with 
o No seasonal component 
o Additive seasonal component 
o Multiplicative seasonal component 

These alternative specifications are effected by changing the Trend Method and the Trend 
Method options from 0 to 1 or 2 in the output.  Re-run Solver after changing any option. 
 
Simetar estimates and forecasts the requested model based on the 
non-zero initial guesses the user provides in the dialog box or by 
using SOLVER to optimize the parameters by selecting 
parameters that minimize the MAPE (Figure 48). Probabilistic 
forecasts of the exponential smoothing model can be observed by 
setting the Stochastic Forecast option to “TRUE”. The 
probabilistic forecast values appear at the bottom of the second 
column of the results. See Exponential Smoothing Demo.xls for 
the example presented below.   
 
After Simetar estimates the initial model, you can experiment 
with alternative parameters by using the slide scales for the Level 
Smoothing Constant, the Trend Smoothing Constant, the Season 
Smoothing Constant, and the Dampening Parameter, to see what 
they do to the MAPE,  
RMSE, MAE, etc.  
 
 
 
 Figure 48.  Exponential 

Smoothing Forecast Dialog Box. 
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14.5 Measuring Forecast Errors 
 
Five functions are included in Simetar for quantifying forecast errors.  The functions are found in 
most statistics books so the equations are not presented here.  An example of the five forecast 
error statistics is available below and in Forecast Errors Demo.xls. 
 

− Mean Absolute Percent Error function is: 
=MAPE (Array of Residuals, Array of History) 

− Weighted Absolute Percent function is: 
=WAPE (Array of Residuals, Array of History) 

− Mean Absolute Error function is: 
=MAE (Array of Residuals) 

− Root Mean Square Error function is: 
=RMSE (Array of Residuals) 

 
− Theil U2 statistic function is: 

=THEILU2 (Array of Residuals, Array of History, Change) 

where: Array of Residuals is the cell reference for the array of errors or residuals, 
 Array of History is the cell reference for the array of historical data that was used to 

generate the residuals, and 
 Change is an optional term to indicate if the statistic is to be calculated in the given 

levels of the data or as a function of the changes in forecast.  FALSE returns the statistic 
based on levels; TRUE returns the statistic based on changes.  The default value is 
FALSE. 
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15.0 Time Series Analysis and Forecasting 
 
Functions for estimating and forecasting time series models in Simetar are presented in this 
section.  Functions used to test for stationarity and number of lags are described first, followed 
by a general autoregressive model menu for estimating autoregressive (AR) and vector 
autoregressive (VAR) models.  The time series analysis functions facilitate parameter estimation 
and forecasting with both AR and VAR models to aid in developing probabilistic forecasts for 
simulation.  The time series capabilities of Simetar are demonstrated in Time Series Demo.xls. 
 
15.1 Tests for Stationarity 
 
Time series models should only be estimated for data series that are stationary.  A series can 
generally be made stationary by differencing.  An accepted test for determining if a series is 
stationary is the Dickey-Fuller test.  The Dickey-Fuller Test can be calculated using the Simetar 
function =DF ( ).  The =DF( ) function allows the user to test for alternative combinations of 
differences in an efficient manner to find the combination of adjustments necessary to make a 
series stationary.  The equation used to calculate the DF statistic is: 

 Δ ΔY   =   B   +   B Y   +   B  T   +     Yt 0 1 t-1

Dickey-Fuller Test

3 t
i=1

n

i t-i

Augmented Dickey-Fuller Test

1 24444 34444
1 2444444444 3444444444

∑ σ  

 
where: ΔYt  is the first difference of the data series Y, 
 B0  is the intercept, 
 B1  is the slope parameter estimated for the lagged Y variable (Y ),t-1  
 B3 is the slope parameters estimated for the trend variable (T), and 
 σ i  is the parameter for the ΔYt-i  for different lengths of higher order lags (i), such as 

first, second, third, … order lags. 
 
The Dickey-Fuller Test uses the first two components of the above equation and tests for the 
presence of nonstationarity, in the absence of trend.  The Augmented Dickey-Fuller Test 
includes the third and/or the fourth components of the equation to test for the presence of a trend 
in the series and for higher order differences.  The Simetar function to calculate the Dickey-
Fuller Tests on a series of data is: 
 
 [ ] [ ] [ ]( )=DF Y Values Range, Time Trend , No. of Lag Diffs , No. of Diff.  
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where: Y Values Range is the location of the data series to be tested (this is all that is necessary 

for the basic Dickey-Fuller Test), 
 Time Trend is a true or false switch to indicate whether a trend is to be included in the 

Augmented Test:  “False or 0” for no trend and “True or 1” for a trend,   
 No. of Lag Diffs is the number of higher order lags to use for the Augmented Test, 

usually 0, (this is the value for n in the ΔYt-i summation), and 
 No. of Diff is the number of differences for the original data series Y.  This parameter 

can be used to test for nonstationarity of a specified number of differences, say 2. 
 

Examples of using the =DF( ) function are provided below and in Time Series Demo.xls to 
demonstrate how it can be used.  The basic Dickey-Fuller Test is entered as: 
 =DF(Y Values Range) 
The Augmented Dickey-Fuller Test that includes a trend is entered as : 
 =DF(Y Values Range, 1) 
The Augmented Dickey-Fuller Test that has no trend and tests for the presence of a second order 
autocorrelation lag is entered as: 
 =DF(Y Values Range, 0, 2) 
The Augmented Dickey-Fuller Test that includes trend and tests for the presence of a second 
order autocorrelation lag is entered as: 
 =DF(Y Values Range, 1, 2) 
 
The null hypothesis for the Dickey-Fuller 
Tests is:  H0:  data series is nonstationary.  
The critical test statistic for the Dickey-
Fuller Test, based on large sample theory, 
is approximately -2.9 at the 5% level.  The 
null hypothesis is rejected if the DF statistic 
is less than the -2.9 critical value.  The 
Dickey-Fuller test demonstrated above is in 
the Tests worksheet of Time Series 
Demo.xls workbook.  The Dickey-Fuller 
tests for the data are reported for alternative 
lags, differences, and trend show how the 
function can help identify the combination of differences, trend, and lags necessary to make the 
raw data series stationary.   
 
15.2 Number of Lags 
 
For time series analysis it is necessary to determine the optimal number of lags for the AR model 
after determining the number of differences necessary to make the series stationary.  The 
=ARLAG() function in Simetar suggests the optimal number of lags to use for the AR model.  
The =ARLAG( ) function returns the number of lags that minimizes the Schwarz criterion given 
a particular number of differences.  The function is programmed as: 
 
 =ARLAG (Y Values Range, [Constant], [No. of Diff]) 
 
where: Y Values Range is the range of the time series data to be evaluated,  
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 Constant is an optional term if the AR model is expected to have a constant term (true or 
1) or has no constant (false or 0).  The default is to use a constant term (true) if the 
value is omitted, and 

 No. of Diff is the optional number of differences of the original data series Y assumed to 
make the series stationary. 

 
The =ARLAG( ) function bases its suggestion for the number of lags on the Schwarz criterion 
test.  The test statistic for the Schwarz criterion can be calculated using the following Simetar 
function 
 
 =ARSCHWARZ (Y Values Range, [Constant], [No. of Diff]) 
 
where: All parameters are defined the same as the ARLAG function.   
 
A table for implementing the =ARLAG( ) and =ARSCHWARZ( ) functions is demonstrated 
above.  In Excel these functions are dynamic, so you can change the number of differences or the 
presence of a constant and observe the change in the test statistics.  An example of how the 
=ARLAG( ) and the =ARSCHWARZ( ) functions are used is provided in the Tests worksheet of 
Time Series Demo.xls workbook.  Both tests are demonstrated for 1-4 differences, with and 
without the constant term.  Use the =ARSCHWARZ( ) function to test alternative differences 
and select the lag structure that minimizes the Schwarz test statistic. 
 
15.3 Sample Autocorrelation Coefficients 
 
In time series modeling it is useful to estimate the sample autocorrelation coefficients and the 
sample partial autocorrelation coefficients.  These coefficients are calculated using the Simetar 
functions =AUTOCORR( )  and  =PAUTOCORR( ).  The functions are programmed as: 
 
 =AUTOCORR (Y Values Range, No. of Lags, No. of Diff) 
 and 
 =PAUTOCORR (Y Values Range, No. of Lags, No. of Diff) 
 
where: Y Values Range is the range of the time series data to be evaluated, 
 No. of Lags is the number of higher order lags to test, and  
 No. of Diff is the number of differences of the original data series Y to test. 
 
Both of these functions can be used as 
“scalar” or “array” functions.  When used 
as a scalar, the functions return a single 
value in the cell which is highlighted.  The 
value returned is the correlation coefficient 
or the partial autocorrelation coefficient.  
To use these functions in their array form, 
highlight three cells in a 3x1 or 1x3 
pattern, enter the function name and 
parameters indicated above, and then press 
the Control Shift Enter keys.  Three values 
will be calculated and placed in the 
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highlighted array.  The first value (top or left most) is the autocorrelation or partial 
autocorrelation coefficient.  The next (middle) value is the Student’s -t statistic for the 
coefficient.  The last value is the standard error for the coefficient.  In the array form these 
functions can be used to develop tables showing the autocorrelation coefficients and their levels 
of statistical significance for alternative numbers of lags and differences. 
 
The example on the right demonstrates 
using the two functions to estimate 
sample autocorrelation and partial 
autocorrelation coefficients.  The 
example comes from the Tests 
worksheet of the Time Series Demo.xls 
workbook.  Four different lags and first 
and second differences were tested for 
the data series.  Both autocorrelation 
functions are demonstrated in array form 
and the partial autocorrelation 
coefficient function is demonstrated as a 
scaler to develop a table of test statistics. 
 
15.4 Maximum Likelihood Ratio Test 
 
A maximum likelihood ratio test (LRT) is included as a function in Simetar to facilitate 
estimation of the number of lags for an unrestricted vector autoregressive (VAR) model.  The 
LRT is estimated for alternative possible lags using the following function: 
 
 =LRT (Y Values Range, No. of Lags, Constant, No. of Diff, Error Correction) 
 
where: Y Values Range is the range of the time series data to be evaluated for potential 

inclusion in a VAR.  Two or more data series must be identified. 
 No. of Lags is the number of lags to test, 
 Constant is a switch as to whether a constant term (True or 1) is to be included or not 

(False or 0), 
 No. of Diff is the number of differences of the original data series to test, and 
 Error Correction is whether to perform an error correction (True or 1) on the data or not 

(False or 0). 
 
The =LRT( ) is demonstrated in the Tests worksheet of the Time Series Demo.xls workbook.  
Two data series were tested for 7 different lags assuming three differences, a constant, and error 
correction. The parameters for the =LRT( ) are displayed in a table below the LRTs so one can 
easily change a parameter and observe the changes in the LRTs. 
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15.5 Estimating and Forecasting Autoregressive (AR) Models 
 
The Time Series Analysis menu (Figure 49) provides the 
mechanism to program the information necessary to 
estimate and forecast an auto-regressive (AR) model.  The 
Time Series Analysis menu is activated by selecting the 

  icon.  If you specify the data to analyze as a single 
variable (column of data) in the Data Series window, the 
Time Series Analyzer will estimate an AR model.  
(Specifying two or more columns causes Simetar to 
estimate a VAR model.)  The Number of Lags and 
Number of Differences for the original data must be 
specified for the AR model.  In addition, provisions are 
available in the dialog box to indicate whether or not the 
Constant is Zero.  The number of Forecast Periods to 
project using the estimated model is also specified in the 
dialog box.  It is recommended that the Time Series menu 
be programmed to:  (a) calculate the residuals, (b) graph 
the historical and projected values, and (c) graph the 
impulse response function (see example below). 
 
The results of estimating an AR model with four lags and 
one difference or an AR (4,1) model is presented below 
and in the AR worksheet of the Time Series Demo.xls 
workbook.  Several supporting tests are provided along with the coefficients, namely, the 
Schwarz test, and two Dickey-Fuller tests.  The forecast values for the AR model are provided 
for 10 periods, as programmed in the dialog box, and are labeled “Forecast.”  “Impulse 
Response” values are provided for each forecast period (see th example below).  Student-t 
statistics for the sample and partial autocorrelation coefficients are provided for the 10 periods of 
forecast output.   

 
The time series output generated by Simetar is dynamic meaning that the beta coefficients in the 
AR model will update if you change the values in the original data or replace the input data array 
with another series of data.  An added feature is the capability to impose restrictions on the 
initial AR model by dropping out/re-entering lags in real time.  The Restriction Matrix has 1’s 

Figure 49.  Time Series 
Analysis Dialog Box. 
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beneath each lags’ coefficient.  When the restriction value of 1 is changed to 0 the model is re-
estimated without that particular variable or lag.  The example AR model in DemoSimetar-Ar 
was run with 4 lags so the user can experiment with deleting unnecessary lags using the 
Restriction Matrix.  When the 2nd, 3rd and 4th lags are restricted out the standard deviation for the 
residuals increases slightly from 2.86 to 3.06.  As these higher order lags are removed the MAPE 
increases only about 1.3 percentage points.  The AIC is minimized when lags 3 and 4 are 
removed. 
 
Note that the initial number of lags and differences specified for the AR model determines the 
number of observations used to estimate the coefficients.  When an AR model of 1st differenced 
data is estimated with four lags initially but the 3rd and 4th lags are restricted out, the resulting 
coefficients will not equal those for an AR(1) model estimated with two lags.  The reason the 
coefficients are slightly different is that the latter model uses two more observations to estimate 
the parameters.  It is recommended that the restricted AR model be re-estimated using the exact 
number of lags once the restricted model is acceptable. 
 
As the restrictions on the lags are imposed on the unrestricted model the following test statistics 
do not change:  Dickey-Fuller Test, Augmented Dickey-Fuller Test, and Schwarz Test (see 
example above).  These statistics do not change because they reflect the number of differences 
specified for the unrestricted model.  For example, the Dickey-Fuller Test statistic for an 
AR(4,1) model is calculated as =DF(data,,,1) and for an AR(4,2) model it is =DF(data,,,2).  The 
Schwarz Test statistic is based on the number of differences [=ARSCHWARZ(data,,No. of 
Differences)] and does not change as the number of lags is restricted. 
 
 It is possible to interactively analyze the impact of changing the number of differences to 
the data in the AR model.  In the second row of the Restriction Matrix (see the example above) is 
the word Differences followed by a value, in this case 1.  The 1 in the Difference row means the 
data have been differenced once.  To “re-run” the model with second differenced data, type a 2 
into the restriction matrix in place of the 1.  This change causes Simetar to re-estimate all of the 
parameters and update the goodness of fit test statistics. 
 
The predicted values over the historical period and their residuals are provided for the AR 
model. The residuals are also expressed as a fraction of the predicted data.  The predicted values 
and the residuals begin with observation 6, for this example, because the lag/difference structure 
of an AR(4,1) model uses the first 5 observations. 
 
A graph of the historical and predicted values for the data series is generated by the Time Series 
function.  The thin line represents the original data while the bold line represents the predicted 
values.  Projections beyond the historical data in the graph correspond to the 10 period forecast 
requested in the dialog box (Figure 43). 
 
A graph of the Impulse Response Function is also included in the forecast.  The impulse 
response values are included in the output, but they are easier to see in the graph.  A stationary 
model will exhibit continuously decreasing impulse responses to a 1 unit change at the outset of 
the period, as depicted by the graph in the AR Worksheet.  The Impulse Response Function 
graph changes as the lags in the model are restricted out.  Not shown in example above are the 
autocorrelation and partial autocorrelation function graphs for the AR model. 
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15.6 Estimating and Forecasting Vector Autoregressive (VAR) Models 
 
The Time Series Analysis Engine dialog box (Figure 50) 
can be used to estimate and forecast VAR models.  VAR 
model analyses begin by selecting the   icon on the 
Simetar toolbar.  To estimate a VAR model, take all the 
steps used to estimate an AR model with one exception, 
specify two or more adjacent series in the Data Series 
menu (Figure 50).  When two or more data series are 
specified, Simetar uses the more general estimation 
procedure for a VAR.  The number of lags and differences 
should be specified based on prior analyses and tests. 
 
The results of estimating and forecasting a two variable 
unrestricted VAR model are presented in the VAR 
worksheet of the Time Series Demo.xls Workbook and 
below.  The Time Series function estimated the parameters 
for the VAR model using 4 lags and 1 difference with a 
constant, so 18 parameters are presented in the results. 
Various time series tests statistics for the model are 
presented below the parameters.   
 
The first and second rows of the Restriction Matrix 
contain 1’s indicating all lags are initially in the model.  
These restriction values can be changed to 0’s to re-fit the VAR in real time by selectively 
deleting lags for one or both of the variables (see the example below).  Changing the 1’s to 0’s 
and observing the change in the test statistics will enable the user to instantly experiment with a 
large number of model specifications.  The interaction among the variables and their lags can be 
tested interactively using this feature in the Simetar VAR.  The third row in the Restriction 
Matrix provides the switch to re-fit the VAR model with alternative numbers of differences, in 
real time. 
 

 
 

Figure 50.  Time Series 
Analysis Dialog Box for a VAR 
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Forecasted values for both of the data series are provided in the output section.  Impulse 
responses for the system of variables are also provided.  These impulse response values are also 
summarized in a graph when requested. 
 
Actual and predicted values over the historical period are presented in the top chart.  Numbers 
behind the predicted values over the historical period are provided, beginning with period 6.  The 
forecast values have a label with the word “Pred” following the variables name.  Residuals for 
the VAR predicted values are also included in the output. 
 
The residuals from the historical data can be used to simulate the unexplained variability or 
stochastic components of the random variables.  Use the residuals to estimate the standard 
deviation about the forecasted values.  Also use the residuals to estimate the correlation matrix 
for correlating random values about the forecasts.   
 
16.0 Other Statistical and Data Analysis Functions  
 
16.1 Summary Statistics  
 
The dialog box used to calculate summary statistics for a variable 
(Figure 45) appears when the Summary Statistics menu item or 
icon   is selected.  Select in the Select Range box and highlight 
the range (column or row) to analyze.  Next click in the Output 
Range box and click the cell where the results are to be placed.  
All of the statistics and their names (mean, standard deviation, 
coefficient of variation, minimum, maximum, lower and upper 
confidence interval, and sum) will be placed in the worksheet 
starting with the Output Range cell if the Add Output Labels 
button is clicked.  The standard deviation can be calculated using 
either the population or the sample formula.  The coefficient of 
variation, sum, count and autocorrelation coefficient are not 
calculated unless these statistics are specified by selecting their 
boxes.  Experiment with the dynamic nature of Simetar by 
changing the values in the original data and observing the 
updated summary statistics.  See Data Analysis Demo.xls for an 
example. 
  
The Count and Sum options in the Summary Statistics menu are 
available for conditional counts and sums of the data.  Consider 
the situation where you have 2,500 observations and need to know how many values are less 
than or equal to 10.0.  Perform this calculation by clicking on Count, followed by selecting the 
IF < = box, and then type the target value in the right hand box 10.0.  The conditional count will 
appear with the other statistics.   
 

Figure 51.  Summary Statistics 
Dialog Box. 
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16.2 Jackknife Estimator  
 
Simetar provides a jackknife function which can be used to estimate parameters for any 
statistical formula or function in Excel or in Simetar.  Given an n-dimensional vector or matrix 
of data and an associated statistic based on the data, the jackknife procedure sequentially re-
estimates the statistic, leaving out the ith row at each iteration, where i = 1,...,N.  These n 
statistics are then used to calculate the average statistic, the bias relative to the original statistic, 
and the jackknife variance of the statistic.  The format for the =JACKKNIFE() function is: 
 
 =JACKKNIFE(DataRange, FormulaRef, RetVariance, Delete_D) 
 =JACKKNIFE(A2:B20,C2:D3) 
 
Where: Data Range is a reference to a range of data that will be resampled to calculate the 

jackknife estimator.  If this range is an Nx1 vector, then the estimator will be calculated 
based on sequentially removing the ith row of the vector, where i = 1,…,N. Similarly, if 
this range is an NxK matrix, the estimator will be calculated based on sequentially 
removing the ith row of the matrix.  Thus, multivariate data should be arranged with 
variables in columns, 

 FormulaRef is a reference to a range or cell that contains a formula which calculates an 
estimate based on the given Data Range.  The jackknife estimator will be an average of 
the result of this formula based on the sequentially re-sampled data, 

 RetVariance is an optional term to include if only the jackknife estimate of the estimator 
variance is desired.  A value of TRUE (or 1) will produce only the variance.  A value of 
FALSE (or 0) will produce the jackknife estimator, bias, and variance.  The default 
value is FALSE, and 

 Delete_D is an optional term to include if D rows are to be deleted at a time instead of 
one, where D is a positive integer less than n, the number of rows.  The JACKKNIFE 
Function will then estimate statistics based on removing D adjacent rows at a time 
sequentially.  This method is recommended when dealing with nonlinear statistics and 
should be used in conjunction with random sub-sampling methods.  The default is one. 

 
17.0 Function Evaluation 
 
Two Simetar functions are available for evaluating user specified nonlinear functions.  The first, 
=OPT( ), finds the minimum or maximum of a function given boundary constraints on the control 
variables.  The =OPT( ) function can also be used to find the value of X when a function equals a 
target value, as zero.  The second function, =RINTEGRAL( ) integrates a function over a given 
range.  Both functions provide approximate answers using efficient optimal control search and 
solve algorithms.  The level of precision can be increased, but at a slight cost of longer execution 
times. 
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17.1 Optimize a Function 
 
The =OPT( ) function uses the Golden Section method for 
optimizing a non-linear function specified by the user.  The 
function to optimize (maximize or minimize) can be either 
typed into the =OPT( ) function as a literal or as an equation 
typed into a cell.  Optimization Function Demo.xls 
demonstrates both techniques for optimizing functions. 
 
The easiest method for using the =OPT( ) function is to 
type =OPT and then click on Excel’s Equation editor, , 
and fill in the blanks in the OPT equation editor form 
(Figure 52).  The optimization function parameters are: 

 
 =OPT (Formula, Constraint Type, Change Variable, Lower Guess, Upper Guess, Max 

Iterations, Precision) 
 
where: Formula is the function to be optimized, as:  = 100 – 25X + 45X2 and must be typed into 

the referenced cell as a formula, 
 Constraint Type must be typed as the word “Min” or “Max” for minimization or 

maximization, respectively, 
 Change Variable is the cell which refers to the X variable in the function and can be any 

feasible value of X, 
 Lower Guess is the minimum X, 
 Upper Guess is the maximum X, 
 Max Iterations is the maximum number of calculation cycles to use, and 
 Precision is the degree of accuracy, such as 0.000001. 
 
The value of X which causes the Y function to be optimized will appear in the cell where   
=OPT( ) is typed.  Changing the parameters will cause Excel to calculate a new optimal value if 
the current solution is at a boundary or more precision can be obtained.  Changing the function 
or input values to the function of course changes the =OPT( ) answer. 
 
17.2 Value of a Function 
 
Given a complex polynomial function that can be programmed in a cell as Y = f(X), Simetar can 
solve for the value of X where Y equals a target value such as zero.  A variation on the =OPT( ) 
function can be used to solve this type of optimization problem.  The parameters for the function 
are: 
 
 =OPT (Formula, Target Value, Change Variable, Initial Guess, Upper Bound, Max 

Iterations, Precision) 
 
where: Formula is the cell reference for the function to be optimized, 
 Target Value is the value of Y when the function is optimized, 
 Change Variable is the cell referring to the X variable in the function and can be any 

feasible value of X, 
 Initial Guess is the lower bound constraint of X, 

Figure 52.  Equation Editor for the 
Optimization Function =OPT( ).
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 Upper Guess is the upper bound constraint of X, 
 Max Iterations is the maximum number of calculation cycles, and 
 Precision is the degree of accuracy, such as 0.000001. 
 
When the =OPT( ) function fails to find the target value for Y over the range of the function it 
returns #VALUE in the cell where =OPT( ) is typed.  In this case, try another initial guess, the 
upper bound, the level of precision or the maximum number of iterations.  Excel will solve some 
functions very fast; for example, Y = X4 will find that Y equals 23 at 2.1958 very rapidly.  See 
Optimization Function Demo.xls for this example. 
 
17.3 Integral of a Function 
 
A function can be integrated over a specified range using the 
=RINTEGRAL( ) function.  This function provides an 
approximate value for the integral using Riemann Integration. 
 The level of precision can be increased by increasing the 
number of partitions.  The easiest way to use the function is to 
develop a table of parameters and then use Excel’s Equation 
editor after typing =RINTEGRAL, as depicted in Figure 53.  
An example of integrating a function Y = 100 – 25X + 45X2 
over the interval of X equal 0 to 100 is provided in 
Optimization Function Demo.xls.  The parameters for the 
integration function are: 
 
 =RINTEGRAL (Formula, Variable Ref, Lower Bound, Upper Bound, Partitions) 
 
where: Formula is the cell reference to the equation to be integrated, 
 Variable Ref is the cell reference for the independent variable (X) in the equation, 
 Lower Bound is the minimum X for the range of the integration, 
 Upper Bound is the maximum X for the range of the integration, and 
 Partitions is the number of intervals X range is partitioned into for integration. 
 
The answer will appear in the =RINTEGRAL( ) function cell.  It is recommended that you 
increase the number of partitions until the change in the integral answer is zero.  As you increase 
the number of partitions, response time will slow.  For the example in Optimization Function 
Demo.xls the true value of 14,885,000 is reached at 300,000 partitions in about 25 seconds. 
 
18.0 Getting Help with Simetar 
 
Simetar Help is provided in two forms:  detailed description of the functions and equation 
editing help.  Detailed descriptions are available for all of the Simetar functions by clicking the 
help icon  on the toolbar.  When the help icon is selected the Help Index for Simetar window 
(Figure 54) appears on the screen.  Scroll down to the function of interest and click on the 
function name.  This action results in the requested Simetar Help screen appearing on the screen. 
  
 
An example of requesting help from the Simetar Help Index for the =NORM( ) function is 

Figure 53.  Equation Editor 
for the Integral Function.  
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displayed in Figure 55.  The help provided in the screen is designed to supplement the material 
in this manual.  You can either print the help screen, return to the Help Index, or close the help 
screen by clicking on the appropriate button at the bottom of the Help Screen. Additional help on 
the function is available from Simetar by clicking on the line “Help on the function” as 
demonstrated for the =NORM() function below. 
 
Excel provides pop-up help menus to assist with writing or editing equations.  To access help for 
equation programming simply type “equal and the function name” in a cell and then click the 
“=” button or the  icon on the formula bar.  An example of how this works for getting help 
with the =CSND( ) function is provided in the worksheet example below and Figure 56.  In the 
example the analyst has highlighted three cells (B7:B9) in preparation for using the CSND 
function as an array.  After typing “=CSND” click the “fx” button in the formula toolbar at the 
top of the worksheet and Excel will place a dialog box like Figure 50 on the screen.  

 
The equation help box in Figure 50 indicates the order of parameters for the =CSND( ) function 
and the names of the parameters.  You can fill in the worksheet cell locations for the parameters 
by clicking the miniature grid to the right of each parameter and painting the appropriate cells 
with the mouse.  After filling in values for the parameters select OK.   
 
The equation editor help function can be used to develop new equations and to de-bug existing 
equations.  Select a cell with an existing equation and click the “=” or “fx” button on the formula 
bar to see the equation editing help box.  Equation editing help screens are available for all 
Simetar and Excel functions. 

Figure 54.  Help Index Dialog Box. Figure 55.  Example of a Simetar Help Screen. 
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19.0 Solutions to Problems in Simetar Application 
 
Like all computer programs Simetar 2006 is the result of many enhancements.  Each time one 
function is complete we find two more to add and in the process a better way to do the first 
function is developed.  The program has come a long way given that it began in May 2000.  
Simetar continues to grow and become more useful. 
 
Most problems are associated with installing Simetar on computers with old operating 
systems/versions of Excel and operators without administrative privilege.  The optimal 
environment is Windows 2000 operating system with Microsoft Office XP.  The Demo programs 
were developed in this environment.  The first time you open one of the Demo workbooks it may 
warn you of embedded macros – select “Enable Macros” and proceed.  Next your Excel may 
warn you that the Demo has external links – select “No” and proceed.  Save the workbook to 
your hard drive and the next time it is opened you will not have link warnings.  The workbook 
link warnings are caused by your computer storing Simetar in a different location than the 
developer’s computer.  Excel will update the links on its own. 
 
This section documents errors we have observed.  Most of the problems occur because Excel’s 
Calculation is set to Manual or the Operating System burps and sets Calculation to Manual 
during your Excel session.  Set Calculation to Automatic and leave it there and check it if 
errors occur. 
 
19.1 My program was working when I saved it, but now the Simetar functions have 
#NAME 
 
Sometimes Simetar and Excel gets confused and you need to remind Excel that Simetar is 
loaded, to do this follow these steps: 

Tools > Add-Ins >    Uncheck the box for Simetar 
Then repeat the process 
Tools > Add-Ins >    Check the box for Simetar 

 

Figure 56.  Example of the Equation Help 
Box.
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19.2 File Not Found dialog box with a file name of “PBJ.XLA” listed, appears when I open 
a workbook  
 
Click the “Cancel” button and Excel will update the links to Simetar and PBJ using the current 
location of these files on your computer.  This error occurs when the workbook was created on a 
different computer.  Save the workbook and the next time it is opened there will be no problem. 
 
19.3 Simetar Functions returns  #NAME!  instead of values 
 
Sometimes Simetar and Excel gets confused and you need to remind Excel that Simetar is 
loaded, to do this follow these steps: 

Tools > Add-Ins >    Uncheck the box for Simetar 
Then repeat the process 
Tools > Add-Ins >    Check the box for Simetar 
 
If your computer is running Excel 97, load Service Pack 2.  If your computer is running 
Excel 95, get a newer version of Excel. 
 

19.4 Scenario names in Stochastic Dominance tables appear as #NUM! 
 
Press Function key F9 
Set calculation to automatic by following these steps: 

 Tools > Options > Calculation, set the calculation option to Automatic 
 
19.5 Statistics for the first stochastic variable in SimData Worksheet appear as #DIV/0! 

 
Press Function key F9 if the problem goes away, do the following: 

Check Tools > Options > Calculation, set the Calculation option to Automatic 
 
Check if the variable is a constant.  If it is then the means will not be zero but the standard 
deviation and coefficient of variation will be #DIV/0! 
 

19.6 Values for SERF table and chart in SERFTbl1 do not change when you change the 
ARACs or the utility function 

 
Check Tools > Options > Calculation, set the Calculation option to Automatic 

 
19.7 Results from Testing a Single Variable for Normality returns #VALUE! in place of 
values 
 
Check Tools > Options > Calculation, set the Calculation option to Automatic 
Delete the formats in the cells for the output range that may be left over from previous sessions. 

 
19.8 Results of Compare Two Data Series returns #DIV/0! and #NUM! in place of values 
 
Check Tools > Options > Calculation set the Calculation option to Automatic 
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19.9 Multiple regression returns #DIV/0! for standard deviation of residuals and/or MAPE 
is #VALUE! 
 
Check Tools > Options > Calculation, set the Calculation option to Automatic 

 
19.10 Multiple regression does not update the beta hats and goodness of fit statistics when a 
restriction value is changed  
 
Check Tools > Options > Calculation, set the Calculation option to Automatic 

 
19.11 Multiple regression does not update the beta hats and goodness of fit statistics when 
one of the X or Y observations is changed 

 
Check Tools > Options > Calculation, set the Calculation option to Automatic 

 
19.12 Multiple regression, time series, and other menu enabled functions return numbers 
instead of the names for the X and/or Y variables 

 
The dialog boxes allow you to enter “Labels in First Cell,” you did not include the label in the 
first cell, so Simetar used the first observation as the name of each X variable and/or for Y.  
Include the variables label when dialog boxes are used to enter data for functions. 

 
19.13 Time series (AR and/or VAR) procedure returns #VALUE! instead of the coefficients 
 
Check Tools > Options > Calculation, set the Calculation option to Automatic  

 
 19.14 Stochastic variables (cells) in the worksheet do not change when the Enter or F9 Keys 
 are pressed 
 
Check Tools > Options > Calculation, set the Calculation option to Automatic 
 
Check the Simetar Toolbar to see if worksheet sampling has been set to “Expected Value”, if so 
click the Expected Value button on the Simetar Toolbar. 

 
19.15 Stochastic variables (cells) in the worksheet are fixed at zero or the mean and do not 
change when F9 is pressed 
 
The “Expected Value” button in the Expected Value button on the Toolbar is turned on.  Turn 
the option off by clicking on the Expected Value button.   

 
19.16 The CDF or SERF chart has numbers instead of names on the lines and/or the 
scenario names in the legend are numbers 

 
The “Labels in First Cell” option was turned on so the program used the first observation for 
each scenario as the scenario names. 
Be sure that the label in the first row starts with a letter, not a number, as 1998 or 2000. 

 
19.17 Results and calculations in the simulation output worksheet, SimData, are gone 
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Simetar writes the iteration results to worksheet SimData after each run.  It uses as many 
columns of the worksheet required for the output variables in the Simulation Engine.  If you had 
tables from a previous simulation run in the columns needed for the current run, they got over 
written. When you place summary tables, tests, or chart data in SimData, rename the worksheet 
so it will be protected from the next simulation. 

 
19.18 Simulation used to run fast and now it has slowed down 

 
• Another Excel workbook which contains stochastic variables may be open.  When Simetar 

simulates the stochastic variables in the open workbook, Excel also simulates the workbooks 
that are minimized.  

• The SERF option is dynamic and can slow the simulation down if the model is simulating 
more than 500 iterations and SERF is tied to the SimData worksheet. 

• Simulation can be slowed down if the SimData output is being used to calculate a large 
number of CDF and PDF charts. 

• The number of Key Output Variables that Simetar is collecting for statistical analysis may 
have been expanded from previous runs. 

• The number of Scenarios is greater than previous runs. 
• The SimSolver option in the Simulation Engine is turned on. 
 
19.19 A Simetar matrix or array function returns a single value when you expected an 
array or matrix of answers. 

 
Press F2 to edit the function; if it is typed correctly press three keys:  Control Shift Enter. 
Any time an array function is used, you MUST end by pressing these three keys: Control Shift 
Enter. 

 
19.20 Hypothesis Test statistics appear wrong.  
 
• Re-do the test and be careful to indicate no labels in the first row and only include the data. 
• Change the variable labels or names so they begin with a letter, as Y1988, not 1988 and re-

do the test. 
• The t-tests are two tailed tests, so thye will not be the values you expect for a one-tailed test. 
 
19.21 After installation, if the Excel Tool Bar does not show “Simetar,” it can be re-loaded 
to the toolbar using the following steps: 
 
Tools > Select Add-Ins ... > scroll down and click the box for Simetar > OK 
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20.0 List of All Simetar Functions 
 
Following is a list and short description of all functions in Simetar: 
Function Name Description 
· ANOVA  One way analysis of variance 
· ARLAG  Recommends the number of lags in an autoregressive model 
· ARSCHWARZ Schwarz criterion associated with recommended number of lags 
· AUTOCORR  Autocorrelation function for a univariate time series 
· BANDWIDTH Bandwidth function in kernel density estimation 
· BERNOULLI Bernoulli random variable 
· BERNOULLIDIST  Bernoulli distribution function 
· BINOMINV  Binomial random variable 
· BLOCKIT  Column Vector to a Matrix 
· BOOTSTRAPPER  Bootstrap resampling of a univariate or multivariate series 
· BOXCOX  Box-Cox transformation of a data series for normalization 
· BOXCOXEXP Estimate of the Box-Cox exponent in a Box-Cox transformation 
· BOXM  Box’s M statistic for testing multivariate variances 
· CAUCHY  Cauchy random variable 
· CAUCHYDIST Cauchy distribution function 
· CDFDEV  Indicate goodness of fit between sample data & known distribution data  
· CELLSUB  Replace an item or items in a block of data 
· CERTEQ  Certainty equivalent of a data series assuming a utility function 
· CMOVAVG  Centered moving average 
· CONCAT  Concatenate two or more matrices 
· COSDIST  Cosine distribution function 
· COSINV  Cosine random variable 
· CSND  Correlated standard normal deviates 
· CUSD  Correlated uniform standard deviates 
· DELNUM  Remove the numbers from a string of text and numbers 
· DELTEXT  Remove the text from a string of text and numbers 
· DEMPIRICAL Discrete empirical distribution random variable 
· DEXPONDIST Double exponential distribution function 
· DEXPONINV Double exponential random variable 
· DF   Dickey-Fuller test statistic 
· DIRICHINV  Dirichlet random variable 
· EDF  Empirical distribution function 
· EMP  Empirical random variable 
· EMPCOPULA Empirical copula function 
· EMPIRICAL  Empirical random variable 
· EPANDIST  Epanechnikov distribution function 
· EWMA  Exponentially weighted moving average 
· EXPONINV  Exponential random variable 
· EXTVALDIST Extreme value distribution function 
· EXTVALINV Extreme value random variable 
· GEOMDIST  Geometric distribution function 
· GEOMINV  Geometric random variable 
· GMDIF  Gini’s mean difference 
· GRK  GRK random variable 
· GRKS  GRKS random variable 
· GRKSDIST  GRKS distribution function 
· GUMBELDIST Gumbel distribution function 
· GUMBELINV Gumbel random variable 
· HOTELLTDIST Hotelling T-squared distribution function 
· HOTELLTINV Hotelling T-squared random variable 
· HYPERGEOMINV  Hypergeometric random variable 
· IMPULSE  Impulse response function in a vector autoregression 
· INVGAUS  Inverse Gaussian random variable 
· INVGAUSDIST Inverse Gaussian distribution function 
· IQR  Inner quartile range of a sample 
· ITERATION     Show the iteration number during simulation 
· ITERSUM  Sum a value across iterations during a simulation 
· JACKKNIFE  Jackknife estimate of statistic, bias, and variance 
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· KDEINV  Random variable based on a kernel density estimate 
· KTAU  Kendall's Tau measure of concordance 
· LOGISTICDIST Logistic distribution function 
· LOGISTICINV Logistic random variable 
· LOGIT  Logit binary response regression 
· LOGLOGDIST Log-log distribution function 
· LOGLOGINV Log-log random variable 
· LOGLOGISTICDIST  Log-logistic distribution function 
· LOGLOGISTICINV    Log-logistic random variable 
· LR   Linear regression (OLS) 
· LRAIC  Akaike information criterion for a regression 
· LRBIG  Linear regression (OLS) for large data sets 
· LRDFBETA  Observational diagnostics for a regression 
· LRDHATMAT Diagonal of the hat matrix 
· LRDW  Durbin-Watson test statistic in a regression 
· LREGLS  Estimated generalized least squares (EGLS) 
· LRGLS  Generalized least squares (GLS) 
· LRGQ  Goldfeld-Quandt test statistic for a regression 
· LROBS  Regression observation count and degrees of freedom 
· LRPARTCORR Partial correlation function in a regression 
· LRRESID  Residuals and predicted values in a regression 
· LRRHO  Autocorrelation coefficient in the errors of a regression 
· LRRIDGE  Ridge regression 
· LRSEMICORR Semi-partial correlation function in a regression 
· LRSIC  Schwarz information criterion for a regression 
· LRT  Likelihood ratio test in univariate or multivariate autoregression estimation 
· LRVIF  Variance inflation factor for a regression 
· LRWLS  Weighted least squares (WLS) 
· MAE  Mean absolute error 
· MAHANGLE Mahalanobis angle of a data matrix 
· MAPE  Mean absolute percent error 
· MCENTER  Centering matrix of a specified dimension 
· MCHOL  Choleski factorization of an nx(n+p) matrix, () 
· MCOFACTOR Cofactor of a square matrix 
· MCOR  Correlation matrix 
· MCOV  Covariance matrix 
· MDAPE  Median absolute percent error 
· MDET  Determinant of a square matrix 
· MDIAG  Diagonalize a vector or matrix 
· MDIST  Squared Mahalanobis distance of two data matrices 
· MEDAVG  Median average 
· MEQCORR  Equicorrelation matrix of a specified dimension 
· MEVAL  Eigenvalues of a square matrix 
· MEXP  Exponential power of a matrix 
· MGINVERSE Generalized inverse of a matrix 
· MIDEN  Identity matrix 
· MINV  Inverse of a square matrix 
· MIP  Inner product of two matrices 
· MJ   Matrix of 1s 
· MKRON  Kronecker multiply two matrices 
· MLEBETA  Beta MLE of parameter(s) 
· MLEBINOM  Binomial MLE of parameter(s) 
· MLEDEXPON Double Exponential MLE of parameter(s) 
· MLEEXPON  Exponential MLE of parameter(s) 
· MLEGAMMA Gamma MLE of parameter(s) 
· MLEGEOM  Geometric MLE of parameter(s) 
· MLELOGISTIC Logistic MLE of parameter(s) 
· MLELOGLOG Log-Log MLE of parameter(s) 
· MLELOGLOGISTIC  Log-Logistic MLE of parameter(s) 
· MLELOGNORM        Lognormal MLE of parameter(s) 
· MLENEGBIN Negative Binomial MLE of parameter(s) 
· MLENORM  Normal MLE of parameter(s) 
· MLEPARETO Pareto MLE of parameter(s) 
· MLEPOISSON Poisson MLE of parameter(s) 
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· MLEUNIFORM Uniform MLE of parameter(s) 
· MLEWEIB  Weibull MLE of parameter(s) 
· MNORM  Norm of a matrix 
· MOMBETA  Beta MOM of parameter(s) 
· MOMBINOM Binomial MOM of parameter(s) 
· MOMDEXPON Double Exponential MOM of parameter(s) 
· MOMEXPON Exponential MOM of parameter(s) 
· MOMGAMMA Gamma MOM of parameter(s) 
· MOMGEOM  Geometric MOM of parameter(s) 
· MOMLOGISTIC Logistic MOM of parameter(s) 
· MOMLOGLOG Log-Log MOM of parameter(s) 
· MOMLOGLOGISTIC  Log-Logistic MOM of parameter(s) 
· MOMLOGNORM        Lognormal MOM of parameter(s) 
· MOMNEGBIN Negative Binomial MOM of parameter(s) 
· MOMNORM Normal MOM of parameter(s) 
· MOMPARETO Pareto MOM of parameter(s) 
· MOMPOISSON Poisson MOM of parameter(s) 
· MOMUNIFORM Uniform MOM of parameter(s) 
· MOMWEIB  Weibull MOM of parameter(s) 
· MORTH  Orthoganalize a matrix 
· MOVAVG  Moving average 
· MPROD  Multiply two or more conformable matrices 
· MRANK  Rank of a matrix 
· MRECH  Row Echelon Form of a matrix 
· MRRECH  Reduced row echelon form of a matrix 
· MSE  Mean squared error 
· MSQRT  Factor a square, symmetric matrix 
· MSTACK  Stack two or more matrices 
· MSVD  Singular value decomposition of a matrix 
· MSWEEP  Sweep a square matrix on a diagonal element 
· MTOEP  Column vector to a Toeplitz matrix 
· MTPNORM  Modified two-piece normal random variable 
· MTPNORMDIST  Modified two-piece normal distribution function 
· MTRACE  Trace of a square matrix 
· MULTINOMDIST  Multinomial distribution function 
· MULTINOMINV    Multinomial random vector 
· MULTSORT  Sort a matrix by a specified column 
· MVCHT  LRT for complete homogeneity of multiple data matrices 
· MVCV  Multivariate coefficient of variation 
· MVEMP  Multivariate empirical random vector 
· MVEMPIRICAL Multivariate empirical random vector 
· MVEPANDIST Multivariate Epanechnikov distribution function 
· MVLOGNORM Multivariate lognormal random vector 
· MVNORM  Multivariate normal random vector 
· MVNORMDIST Multivariate normal distribution function 
· MVPDENSITY Percentile based on a multivariate kernel density estimator 
· MVTINV  Multivariate student's t random variable 
· NEGBINOMINV  Negative binomial random variable 
· NORM  Normal random variable 
· NORMAD  Anderson Darling statistic for test of normality 
· NORMCHI  Chi-squared statistic for a test of normality 
· NORMCVM  Cramer von Mises statistic for test of normality 
· NORMKS  Kolmogorov Smirnov statistic for test of normality 
· NORMSW  Shapiro-Wilks statistic for test of normality 
· OPT  Find an iterative optimum solution 
· PARETO  Pareto random variable 
· PARETODIST Pareto distribution function 
· PAUTOCORR Partial autocorrelation function for a univariate time series 
· PDENSITY  Percentile based on a Kernel density estimator 
· PERTDIST  Project evaluation and review technique (PERT) distribution function 
· PERTINV  Project evaluation and review technique (PERT) random variable 
· PNORM  Power normal random variable 
· PNORMDIST Power normal distribution function 
· POISSONINV Poisson random variable 
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· PROBIT  Probit binary response regression 
· QUANTILE  Find the quantile of an empirical CDF given the probability 
· RANDSORT  Randomly sort a vector 
· RANDWALK Generate a random walk series 
· RANKCORREL Rank correlation of two data series 
· REVERSE  Reverse the order of a vector 
· RINTEGRAL Riemann integral of a bounded function 
· RMSE  Root mean squared error 
· RUSD  Rank correlation matrix 
· SCENARIO  Return a value associated with different scenarios in a simulation 
· SEMICIRCDIST Semicircle distribution function 
· SEMICIRCINV Semicircle random variable 
· SEQ  Sequence of numbers 
· SIMETARCR Returns copyright information for Simetar 
· STRETCHIT  Matrix to a vector 
· TEMPIRICAL Truncated empirical random variable 
· TGAMMADIST Truncated gamma distribution function 
· TGAMMAINV Truncated gamma random variable 
· THEILU2  Theil’s U2 statistic for forecasts 
· TNORM  Truncated normal random variable 
· TNORMDIST Truncated normal distribution function 
· TPNORM  Two-piece normal random variable 
· TPNORMDIST Two-piece normal distribution function 
· TRANS  Transpose a matrix 
· TRIANGLE  Triangle random variable 
· TRIANGLEDIST  Triangle distribution function 
· TSDECOMP  Time series decomposition 
· TWEIBDIST  Truncated Weibull distribution function 
· TWEIBINV  Truncated Weibull random variable 
· TWOSLS  Two stage least squares (2SLS) 
· UNBOXCOX Convert a Box-Cox transformed value back to the original level 
· UNIFORM  Uniform random variable 
· UNIFORMDIST Uniform distribution function 
· USND  Uncorrelated standard normal deviate 
· UUSD  Uncorrelated uniform standard deviate 
· VARAIC  Akaike information criterion in univariate or multivariate autoregression models 
· VAREST  Univariate or multivariate autoregression estimation function 
· VARLRT  Likelihood ratio test in univariate or multivariate autoregression estimation 
· VARRESID  Predictions & residuals in univariate or multivariate autoregression models 
· VFORMULA View the formula in the referenced cell 
· WAPE  Weighted absolute percent error 
· WBNAME  Return the name of the workbook 
· WEIBDIST  Weibull distribution function 
· WEIBINV  Weibull random variable 
· WILKSLDIST Approximate cdf of the Wilks' Lambda random variable 
· WILKSLINV Wilks Lambda random variable 
· WISHDIST  Wishart distribution function 
· WISHINV  Wishart random matrix 
· WSNAME  Return the name of the worksheet 
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21.0 Cross Reference of Functions and Demonstration Programs 
 
       Topic             Demonstration Program Name 
ANOVA       Data Analysis Tools Demo.xls 
ANOVA test      Hypothesis Tests Demo.xls 
AR and VAR models estimated    Time Series Demo.xls 
AR model dynamic probabilistic forecast   Time Series Forecasting Demo.xls 
AR model estimation     Time Series Functions Demo.xls 
AR model estimation     Time Series Analysis Tools Demo.xls 
ARLAG function      Time Series Functions Demo.xls 
ARSCHWARZ function     Time Series Functions Demo.xls 
AUTOCORR function     Time Series Functions Demo.xls 
Additive seasonal decomposition forecasting with cycle  Seasonal Decomposition Forecasts Demo.xls 
Additive seasonal decomposition forecasting without cycle  Seasonal Decomposition Forecasts Demo.xls 
Amortize land debts     Farm Simulator Demo.xls 
Amortize loans with monthly payments    Monthly Payments Demo.xls 
Augmented Dickie Fuller test     Time Series Functions Demo.xls 
Autocorrelation coefficients     Time Series Forecasting Demo.xls 
Autocorrelation coefficients     Time Series Analysis Tools Demo.xls 
Autocorrelation coefficients     Time Series Demo.xls 
Autocorrelation test     Time Series Functions Demo.xls 
BERNOULLI function application                      Simulate Alternative Distributions Demo.xls 
BOXCOX function      Data Analysis Tools Demo.xls 
BOXCOXEXP function     Data Analysis Tools Demo.xls 
Bad (singular) correlation/covariance matrix   Bad Correlation Matrix Demo.xls 
Bernoulli distribution     Conditional Probability Distributions Demo.xls 
Bernoulli distribution     Probability Distribution Demo.xls 
Bernoulli distribution     Probability Distributions Demo.xls 
Bernoulli distribution parameter estimation   Trend Regression to Reduce Risk Demo.xls 
Beta distribution      Probability Distribution Demo.xls 
Beta distribution      Simulate All Probability Distributions Demo.xls 
Beta distribution      Probability Distributions Demo.xls 
Bingo        Games of Chance Demo.xls 
Binomial distribution     Simulate All Probability Distributions Demo.xls 
Binomial distribution     Probability Distributions Demo.xls 
Boot strap simulation     Simulate All Probability Distributions Demo.xls 
Bootstrap for singular matrix     Bad Correlation Matrix Demo.xls 
Bootstrap simulation     Probability Distributions Demo.xls 
Bootstrapper distribution     Probability Distribution Demo.xls 
Box plot chart of risky alternatives    Analysis of Simulation Results Demo.xls 
Box's M test      Data Analysis Tools Demo.xls 
Box-Cox transformation     Data Analysis Tools Demo.xls 
Business model      Deterministic Demo.xls 
Simplified Business model of net returns   Business Model with Risk Demo.xls 
CDF chart of random variables    Analysis of Simulation Results Demo.xls 
CDFDEV function      Univariate Parameter Estimator Demo.xls 
CDFs for 12 distributions      Test Parameters Demo.xls 
CV stationarity for Normal distributions   CV Stationarity Normal Demo.xls 
CV stationarity for empirical distributions   CV Stationarity Empirical Demo.xls 
Capital Investment Analyzer ©    Net Present Value Internal Rate of Return Demo.xls 
Cauchy distribution      Probability Distribution Demo.xls 
Cauchy distribution      Simulate All Probability Distributions Demo.xls 
Cauchy distribution      Probability Distributions Demo.xls 
Centering a matrix      Matrix Operation Tools Demo.xls 
Centering matrix of size n     Matrices Demo.xls 
Chi-Squared distribution     Probability Distribution Demo.xls 
Chi-Squared distribution     Probability Distributions Demo.xls 
Chi-Squared test      Data Analysis Tools Demo.xls 
Choleski decomposition of a covariance matrix    Parameter Estimation Tools Demo.xls 
Coin toss       Games of Chance Demo.xls 
Column vector to a matrix     Matrix Operation Tools Demo.xls 
Compare means and variance for multivariate distributions  Hypothesis Tests Demo.xls 
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Compare means and variance for univariate distributions  Hypothesis Tests Demo.xls 
Compare means for two distributions -- ANOVA   Hypothesis Tests Demo.xls 
Compare means for two series    Data Analysis Tools Demo.xls 
Compare two data series     Analysis of Simulation Results Demo.xls 
Compare two multivariate distributions    Validation Tests Demo.xls 
Compare two tests -- t and F tests    Data Analysis Tools Demo.xls 
Compare two univariate distributions    Validation Tests Demo.xls 
Complete Homogeneity test     Data Analysis Tools Demo.xls 
Concatenate data from two locations    Matrix Operation Tools Demo.xls 
Concatenate two matrices     Matrices Demo.xls 
Conditional distribution for simulating sales bonus  Conditional Probability Distributions Demo.xls 
Conditional probability distributions    Conditional Probability Distributions Demo.xls 
Confidence interval for seasonal index    Seasonal Analysis Demo.xls 
Confidence intervals for Multiple Regression forecasts  Probabilistic OLS Forecasts Demo.xls 
Convert a matrix to a vector     Matrices Demo.xls 
Convert a vector to a matrix     Matrices Demo.xls 
Corporate federal income taxes    Income Tax Demo.xls 
Corporate income taxes     Farm Simulator Demo.xls 
Correct for CV non-stationarity Normal distribution  CV Stationarity Normal Demo.xls 
Correlated standard normal deviates    Probability Distributions Demo.xls 
Correlated uniform standard deviates    Probability Distributions Demo.xls 
Correlating Normal, Empirical, Uniform in a MV distribution Multivariate Mixed Probability Distribution Demo.xls 
Correlation matrix calculated     Data Analysis Tools Demo.xls 
Correlation matrix t test of rho vs. zero    Data Analysis Tools Demo.xls 
Correlation matrix test simulated vs. historical   Data Analysis Tools Demo.xls 
Correlation matrix validation for MV distributions  Validation Tests Demo.xls 
Correlation significance test     Hypothesis Tests Demo.xls 
Correlation test of MVE method    Multivariate Empirical Distribution Demo.xls 
Cosine distribution      Simulate All Probability Distributions Demo.xls 
Cosine distribution      Probability Distributions Demo.xls 
Cost of a project with risk     Project Management Demo.xls 
Covariance matrix calculated     Data Analysis Tools Demo.xls 
Covariance matrix estimation     Parameter Estimation Tools Demo.xls 
Covariance matrix estimation     Matrix Operation Tools Demo.xls 
Crop Insurance premium estimation    Insurance Premium Demo.xls 
Cumulative distributions for ranking risky alternatives  Stochastic Dominance Demo.xls 
Cycle length estimation     Probabilistic Cycle Forecasts Demo.xls 
Cyclical decomposition of times series data   Exponential Smoothing Demo.xls 
Cyclical decomposition of times series data   Moving Average Demo.xls 
Cyclical index      Cyclical Analysis Tools Demo.xls 
Cyclical index      Exponential Smoothing Demo.xls 
Cyclical index      Moving Average Demo.xls 
Cyclical index      Seasonal Analysis Demo.xls 
DELNUM function      Data Analysis Tools Demo.xls 
DELTEXT function     Data Analysis Tools Demo.xls 
DEMPIRICAL function application    Simulate Alternative Distributions Demo.xls 
DF Betas       Parameter Estimation Tools Demo.xls 
DF function      Time Series Functions Demo.xls 
DF function      Time Series Analysis Tools Demo.xls 
Decomposition forecasting     Seasonal Decomposition Forecasts Demo.xls 
Decomposition forecasts     Seasonal Index Forecasts Demo.xls 
Decomposition of a time series    Cyclical Analysis Tools Demo.xls 
Delivery time and inventory management    Inventory Management Demo.xls 
Determinant of a square matrix    Matrices Demo.xls 
Determinate of a square matrix    Matrix Operation Tools Demo.xls 
Deterministic farm model     Deterministic Demo.xls 
Deterministic simulation NPV and IROR   Net Present Value Internal Rate of Return Demo.xls 
Deterministic simulation model    Cotton Model Demo.xls 
Dice        Games of Chance Demo.xls 
Dickie Fuller (DF) test     Time Series Functions Demo.xls 
Dickie Fuller test      Time Series Forecasting Demo.xls 
Dickie Fuller test      Time Series Analysis Tools Demo.xls 
Dickie Fuller test      Time Series Demo.xls 
Discrete empirical distribution    Probability Distributions Demo.xls 
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Discrete uniform distribution     Probability Distribution Demo.xls 
Discrete uniform distribution     Simulate Alternative Distributions Demo.xls 
Discrete uniform distribution -- numbers and names  Simulate All Probability Distributions Demo.xls 
Double exponential distribution    Simulate All Probability Distributions Demo.xls 
Dummy variables in Multiple Regression for seasonal analysis Regression for Seasonal Forecasts Demo.xls 
Dynamic forecast of AR model    Time Series Forecasting Demo.xls 
E Factors to control heteroskedasticy    Heteroskedasticy Demo.xls 
EMP function      Empirical Distribution Demo.xls 
EMP function application     Simulate Alternative Distributions Demo.xls 
EMP icon for estimating parameters    Multivariate Empirical Distribution Demo.xls 
Econometric model for soybeans    Soybean Model Demo.xls 
Econometric model for wheat     Wheat Sim Solve Demo.xls 
Econometric stochastic model    Soybean Model Demo.xls 
Econometric wheat model      Wheat Model Demo.xls 
Eigenvalues for a square matrix    Matrix Operation Tools Demo.xls 
Eigenvalues for a square matrix    Matrices Demo.xls 
Empirical distribution     Probability Distribution Demo.xls 
Empirical distribution     Probability Distributions Demo.xls 
Empirical distribution -- actual data    Empirical Distribution Demo.xls 
Empirical distribution -- actual data w/ CV stationary  CV Stationarity Empirical Demo.xls 
Empirical distribution -- deviations from mean   Empirical Distribution Demo.xls 
Empirical distribution -- deviations from trend          Empirical Distribution Demo.xls 
Empirical distribution -- differences from mean   Empirical Distribution Demo.xls 
Empirical distribution -- general and direct   Simulate All Probability Distributions Demo.xls 
Empirical distribution -- percent deviates from mean  CV Stationarity Empirical Demo.xls 
Empirical distribution parameter estimation   Trend Regression to Reduce Risk Demo.xls 
Empirical distribution using interpolation   Empirical Distribution Demo.xls 
Empirical distribution using inverse transform method  Inverse Transform Demo.xls 
Empirical parameter estimation using actual data   Parameter Estimation Tools Demo.xls 
Empirical parameter estimation using deviates from the mean Parameter Estimation Tools Demo.xls 
Empirical parameter estimation using deviates from trend  Parameter Estimation Tools Demo.xls 
Empirical parameter estimation using differences from the mean Parameter Estimation Tools Demo.xls 
Equation editor to use Simetar functions   Equation Editor Demo.xls 
Equicorrelation matrix     Matrices Demo.xls 
Equicorrelation matrix      Matrix Operation Tools Demo.xls 
Equilibrium displacement model    Cotton Model Demo.xls 
Ethanol feasibility study     Project Feasibility Demo.xls 
Excel's equation editor for using Simetar functions  Equation Editor Demo.xls 
Exponential distribution     Probability Distribution Demo.xls 
Exponential distribution     Simulate All Probability Distributions Demo.xls 
Exponential distribution     Probability Distributions Demo.xls 
Exponential smoothing Holt method    Exponential Smoothing Forecasts Demo.xls 
Exponential smoothing Holt-Winters method   Exponential Smoothing Forecasts Demo.xls 
Exponential smoothing for probabilistic forecasts   Exponential Smoothing Demo.xls 
Exponential smoothing forecast    Cyclical Analysis Tools Demo.xls 
Exponential smoothing forecasts    Exponential Smoothing Forecasts Demo.xls 
Exponential smoothing probabilistic forecasts   Exponential Smoothing Forecasts Demo.xls 
Exponential smoothing trend only    Exponential Smoothing Forecasts Demo.xls 
Extreme value distribution     Simulate All Probability Distributions Demo.xls 
Extreme value distribution     Probability Distributions Demo.xls 
F distribution      Simulate All Probability Distributions Demo.xls 
F distribution      Probability Distributions Demo.xls 
F test of variances      Data Analysis Tools Demo.xls 
Factor a correlation matrix for a MVE distribution  Parameter Estimation Tools Demo.xls 
Factor a correlation matrix for a MVE distribution  Matrix Operation Tools Demo.xls 
Factor a square symmetric matrix    Matrices Demo.xls 
Fan graph of random variable over time    Analysis of Simulation Results Demo.xls 
Farm simulator 3 crops     Farm Simulator Demo.xls 
Feasibility of purchasing a business    Investment Management Demo.xls 
Feasibility study for new business    Project Feasibility Demo.xls 
Federal income taxes      Income Tax Demo.xls 
Financial statements      Feedlot Demo.xls 
Financial statements      Financial Risk Management Demo.xls 
Financial statements for a business    Business Demo.xls 
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Financial statements for multiple enterprise business  Investment Management Demo.xls 
Financial statements multi year business   Deterministic Demo.xls 
Financial statements with risk     Farm Simulator Demo.xls 
Financial statements with risk     Project Feasibility Demo.xls 
First degree stochastic dominance    Stochastic Dominance Demo.xls 
Forecasting with AR and VAR models    Time Series Functions Demo.xls 
GRK and GRKS distributions    Probability Distributions Demo.xls 
GRK distribution      GRK Distribution Demo.xls 
GRK distribution      Simulate All Probability Distributions Demo.xls 
GRK distributions      Probability Distributions Demo.xls 
GRK function application     Simulate Alternative Distributions Demo.xls 
GRKS distribution      Probability Distributions Demo.xls 
GRKS distribution       GRKS Distribution Demo.xls 
GRKS distribution for sparse data    Parameter Estimation Tools Demo.xls 
Games of chance       Games of Chance Demo.xls 
Gamma distribution     Probability Distribution Demo.xls 
Gamma distribution     Simulate All Probability Distributions Demo.xls 
Generalized inverse of a square matrix    Matrix Operation Tools Demo.xls 
Generalized inverse of a square matrix    Matrices Demo.xls 
Generalized stochastic dominance for ranking risky alternatives Stochastic Dominance Demo.xls 
Generate random numbers     Probability Distributions Demo.xls 
Geometric distribution     Simulate All Probability Distributions Demo.xls 
Geometric distribution     Probability Distributions Demo.xls 
Harmonic regression for seasonal analysis   Regression for Seasonal Forecasts Demo.xls 
Hedging and options for risk management   Financial Risk Management Demo.xls 
Heteroskedasticy correction in simulation   Heteroskedasticy Demo.xls 
Heteroskedasticy test     Heteroskedasticy Demo.xls 
Histogram of a random variable    Analysis of Simulation Results Demo.xls 
Hotelling T-Squared distribution    Simulate All Probability Distributions Demo.xls 
Hotelling T-squared distribution    Probability Distributions Demo.xls 
Hypergeometric distribution     Probability Distribution Demo.xls 
Hypergeometric distribution     Simulate All Probability Distributions Demo.xls 
Hypergeometric distribution     Probability Distributions Demo.xls 
IROR simulated for a business    Net Present Value Demo.xls 
Identity matrix      Matrices Demo.xls 
Identity matrix       Matrix Operation Tools Demo.xls 
Inflation rates stochastic     Farm Simulator Demo.xls 
Inner product of two matrices     Matrix Operation Tools Demo.xls 
Inner product of two matrices     Matrices Demo.xls 
Insurance premium estimation     Insurance Premium Demo.xls 
Integrate a function      Data Analysis Tools Demo.xls 
Integrate a function      Optimization Function Demo.xls 
Internal rate of return for a risky business   Net Present Value Demo.xls 
Interpolate function      Empirical Distribution Demo.xls 
Intra- and inter-temporal correlation    Complete Correlation Demo.xls 
Inventory management  with stochastic demand   Inventory Management Demo.xls 
Inverse Gaussian distribution     Simulate All Probability Distributions Demo.xls 
Inverse Gaussian distribution     Probability Distributions Demo.xls 
Inverse transform method of simulating random variables  Inverse Transform Demo.xls 
Invert a nonsingular square matrix    Matrix Operation Tools Demo.xls 
Invert a nonsingular square matrix    Matrices Demo.xls 
Investment analysis under risk    Project Evaluation Demo.xls 
Iteration counter ITERATION function    Simulate All Probability Distributions Demo.xls 
Iteration counter function     Probability Distributions Demo.xls 
Iteration number comparison     Latin Hypercube vs Monte Carlo Demo.xls 
Iteration number comparison     Latin Hypercube Demo.xls 
Iteration number comparison     Business Model with Risk Demo.xls 
J Factor to correct for non-stationarity of CV   Heteroskedasticy Demo.xls 
J-factor for CV stationarity Normal distribution   CV Stationarity Normal Demo.xls 
Jack knife a covariance matrix    Jack Knife Demo.xls 
Jack knife estimator for statistical functions   Jack Knife Demo.xls 
Jack knife summary statistics for distributions   Jack Knife Demo.xls 
Kernel density estimator     Probability Distributions Demo.xls 
Kernel distribution      Probability Distribution Demo.xls 
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Kernel distribution      Simulate All Probability Distributions Demo.xls 
Kernel distribution for 9 kernels    Probability Distributions Demo.xls 
Kernel distribution simulation    Sparse Data Demo.xls 
Kronecker multiply two matrices    Matrices Demo.xls 
Kronecker product of two matrices    Matrix Operation Tools Demo.xls 
Latin hyper cube sampling method    Latin Hypercube vs Monte Carlo Demo.xls 
Latin hyper cube sampling method    Latin Hypercube Demo.xls 
Latin hyper cube vs. Monte Carlo sampling method  Latin Hypercube vs Monte Carlo Demo.xls 
Latin hyper cube vs. Monte Carlo sampling method  Latin Hypercube Demo.xls 
Likelihood ration test LRT function    Time Series Analysis Tools Demo.xls 
Line graph with labels for points    Analysis of Simulation Results Demo.xls 
Loan amortization      Feedlot Demo.xls 
Log Normal distribution     Probability Distribution Demo.xls 
Log normal distribution     Simulate All Probability Distributions Demo.xls 
Log normal distribution     Probability Distributions Demo.xls 
Log-log distribution     Simulate All Probability Distributions Demo.xls 
Log-log distribution     Probability Distributions Demo.xls 
Log-logistic distribution     Simulate All Probability Distributions Demo.xls 
Logistic distribution     Simulate All Probability Distributions Demo.xls 
Logistic distribution     Probability Distributions Demo.xls 
Logit regression      Probit and Logit Demo.xls 
Lottery       Games of Chance Demo.xls 
MAE        Forecast Errors Demo.xls 
MAE -- Mean absolute error     Measuring Forecast Errors Demo.xls 
MAPE       Forecast Errors Demo.xls 
MAPE -- Mean absolute percent error    Measuring Forecast Errors Demo.xls 
MLE and MOM to estimate distribution parameters  Parameter Estimation Demo.xls 
MLE for estimating distribution parameters   Parameter Estimation Tools Demo.xls 
MLE for estimating distribution parameters   Univariate Parameter Estimator Demo.xls 
MOM for estimating distribution parameters   Parameter Estimation Tools Demo.xls 
MOM for estimating distribution parameters   Univariate Parameter Estimator Demo.xls 
MPCI simulation      Crop Insurance Demo.xls 
MSQRT function      Matrix Operation Tools Demo.xls 
MSQRT function to factor a square matrix   Matrices Demo.xls 
MVE distribution      Complete Correlation Demo.xls 
MVE distribution      Multivariate Empirical Distribution Demo.xls 
MVE distribution in one step     Multivariate Empirical Distribution Demo.xls 
MVE distribution parameter estimation in detail   Multivariate Empirical Distribution Demo.xls 
MVE distribution prices and costs    Project Feasibility Demo.xls 
MVE in one step      Feedlot Demo.xls 
MVE intra- and inter-temporal correlation   Complete Correlation Demo.xls 
MVE with exogenous projected means    Farm Simulator Demo.xls 
MVE with trend projected means    Farm Simulator Demo.xls 
MVN distribution      Multivariate Normal Distribution Demo.xls 
MVN distribution in one step     Multivariate Normal Distribution Demo.xls 
MVN distribution parameter estimation in detail   Multivariate Normal Distribution Demo.xls 
MVN parameter estimation and simulation   Multivariate Normal Distribution Demo.xls 
MVN validation test     Multivariate Normal Distribution Demo.xls 
Marketing options simulation     Futures and Options Demo.xls 
Marketing strategies simulated    Futures and Options Demo.xls 
Matrix of 1s      Matrices Demo.xls 
Matrix of one's      Matrix Operation Tools Demo.xls 
Matrix to a vector      Matrix Operation Tools Demo.xls 
Maximum likelihood estimation for parameter estimation  Parameter Estimation Tools Demo.xls 
Maximum likelihood estimation for parameter estimation  Univariate Parameter Estimator Demo.xls 
Maximum likelihood estimator for parameter estimation  Parameter Estimation Demo.xls 
Mean absolute error -- MAE     Measuring Forecast Errors Demo.xls 
Mean absolute percent error -- MAPE    Measuring Forecast Errors Demo.xls 
Mechanical repair costs/failure simulation   Conditional Probability Distributions Demo.xls 
Method of Moments for parameterestimation   Parameter Estimation Demo.xls 
Method of moments for parameter estimation   Parameter Estimation Tools Demo.xls 
Method of moments for parameter estimation   Univariate Parameter Estimator Demo.xls 
Model validation statistical tests    Hypothesis Tests Demo.xls 
Modified two piece normal distribution    Simulate All Probability Distributions Demo.xls 
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Monte Carlo sampling method    Latin Hypercube vs Monte Carlo Demo.xls 
Monte Carlo sampling method    Latin Hypercube Demo.xls 
Moving average forecast     Cyclical Analysis Tools Demo.xls 
Moving average forecast     Moving Average Demo.xls 
Moving average forecasts     Moving Average Forecasts Demo.xls 
Moving average seasonal index    Seasonal Index Forecasts Demo.xls 
Multi peril crop insurance analyzer    Crop Insurance Demo.xls 
Multinomial distribution     Simulate All Probability Distributions Demo.xls 
Multinomial distribution     Probability Distributions Demo.xls 
Multiple Regression forecast stochastic w/ SE of predictions Probabilistic OLS Forecasts Demo.xls 
Multiple Regression forecast stochastic w/ Std Dev  Probabilistic OLS Forecasts Demo.xls 
Multiple Regression forecast with stochastic betas  Probabilistic OLS Forecasts Demo.xls 
Multiple Regression harmonic and dummy variable regression Regression for Seasonal Forecasts Demo.xls 
Multiple Regression linear trend regression    Trend Forecasts Demo.xls 
Multiple Regression multiple regression model   Parameter Estimation Tools Demo.xls 
Multiple Regression non-linear trend regression    Trend Forecasts Demo.xls 
Multiple Regression probabilistic forecasting   Multiple Regression Forecasts Demo.xls 
Multiple Regression regression with restrictions   Parameter Estimation Tools Demo.xls 
Multiple Regression to estimate risk for a random variable  Multiple Regression to Reduce Risk Demo.xls 
Multiple enterprise business     Business Demo.xls 
Multiple enterprise business     Farm Simulator Demo.xls 
Multiple enterprise business     Feedlot Demo.xls 
Multiple regression      Parameter Estimation Tools Demo.xls 
Multiple regression forecasting    Multiple Regression Forecasts Demo.xls 
Multiple regression model vs. trend model vs. mean model  Multiple Regression to Reduce Risk Demo.xls 
Multiple regression to reduce risk    Trend Regression to Reduce Risk Demo.xls 
Multiple regression with probabilistic forecast   Multiple Regression Demo.xls 
Multiple year financial statement    Net Present Value Demo.xls 
Multiplicative seasonal decomposition forecasting with cycle Seasonal Decomposition Forecasts Demo.xls 
Multiplicative seasonal decomposition forecasting without cycle Seasonal Decomposition Forecasts Demo.xls 
Multiply two matrices     Matrix Operation Tools Demo.xls 
Multiply two matrices     Matrices Demo.xls 
Multivariate Student's t distribution    Probability Distributions Demo.xls 
Multivariate empirical distribution    Multivariate Empirical Distribution Demo.xls 
Multivariate empirical distribution    Simulate All Probability Distributions Demo.xls 
Multivariate empirical distribution -- 1 and 2 steps  Probability Distributions Demo.xls 
Multivariate lognormal distribution    Probability Distributions Demo.xls 
Multivariate mixed distribution    Multivariate Mixed Probability Distribution Demo.xls 
Multivariate mixed distribution    Simulate All Probability Distributions Demo.xls 
Multivariate mixed distribution     Probability Distributions Demo.xls 
Multivariate normal distribution    Multivariate Normal Distribution Demo.xls 
Multivariate normal distribution    Simulate All Probability Distributions Demo.xls 
Multivariate normal distribution -- 1 and 2 steps   Probability Distributions Demo.xls 
Multivariate test of two distributions    Data Analysis Tools Demo.xls 
NORMAL function application    Simulate Alternative Distributions Demo.xls 
NPV        Farm Simulator Demo.xls 
NPV        Project Feasibility Demo.xls 
NPV - Net Present Value     Investment Management Demo.xls 
NPV and IROR simulated for 20 year investment   Net Present Value Internal Rate of Return Demo.xls 
NPV for alternative discount rates    Feedlot Demo.xls 
NPV optimization for a business    Deterministic Optimal Control Demo.xls 
NPV simulated for a business     Net Present Value Demo.xls 
Negative binomial distribution    Probability Distribution Demo.xls 
Negative binomial distribution    Simulate All Probability Distributions Demo.xls 
Negative binomial distribution    Probability Distributions Demo.xls 
Negative ending cash reserves    Feedlot Demo.xls 
Negative ending cash reserves    Financial Risk Management Demo.xls 
Net present value for a risky business    Net Present Value Demo.xls 
Net returns for one enterprise     Truncated Normal Distribution Demo.xls 
Norm of a square matrix     Matrix Operation Tools Demo.xls 
Norm of a square matrix     Matrices Demo.xls 
Normal distribution      Probability Distribution Demo.xls 
Normal distribution      Probability Distributions Demo.xls 
Normal distribution      Test Simetar Demo.xls 
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Normal distribution -- general and direct   Simulate All Probability Distributions Demo.xls 
Normal distribution using inverse transform method  Inverse Transform Demo.xls 
Normality tests      Conditional Probability Distributions Demo.xls 
Normality tests      Data Analysis Tools Demo.xls 
Normality tests      Hypothesis Tests Demo.xls 
Normality tests for random variable    Validation Tests Demo.xls 
Number of iterations     Latin Hypercube vs Monte Carlo Demo.xls 
Number of iterations     Latin Hypercube Demo.xls 
Number of iterations test     Business Model with Risk Demo.xls 
Observational diagnostics -- DF Betas    Parameter Estimation Tools Demo.xls 
Optimal control theory for a deterministic simulation model Optimal Control Demo.xls 
Optimal control theory for crop mix decision   Deterministic Optimal Control Demo.xls 
Optimal control theory for simulation model   Deterministic Optimal Control Demo.xls 
Optimal control theory to maximize NPV   Deterministic Optimal Control Demo.xls 
Optimal control theory to solve of equilibrium prices  Wheat Model Demo.xls 
Optimal number of lags ARLAG function   Time Series Functions Demo.xls 
Optimize a function OPT      Data Analysis Tools Demo.xls 
Optimize a non-linear function    Optimization Function Demo.xls 
Options and hedging for risk management   Financial Risk Management Demo.xls 
Options contracts simulated for market strategy   Futures and Options Demo.xls 
Orthoganalize a matrix     Matrix Operation Tools Demo.xls 
Orthoganalize a matrix     Matrices Demo.xls 
PDF chart of random variables    Analysis of Simulation Results Demo.xls 
PDFs for 12 distributions      Test Parameters Demo.xls 
PERT distribution      Probability Distributions Demo.xls 
PERT distribution  -- general and direct    Simulate All Probability Distributions Demo.xls 
Parameter estimation for 16 distributions   Parameter Estimation Tools Demo.xls 
Parameter estimation for 16 distributions   Univariate Parameter Estimator Demo.xls 
Parameter tests -- t and Chi-Square    Data Analysis Tools Demo.xls 
Parametric distribution parameter estimator   Parameter Estimation Demo.xls 
Pareto distribution      Probability Distributions Demo.xls 
Pareto distribution       Simulate All Probability Distributions Demo.xls 
Partial autocorrelation coefficients    Time Series Forecasting Demo.xls 
Partial autocorrelation coefficients    Time Series Analysis Tools Demo.xls 
Partial autocorrelation coefficients    Time Series Demo.xls 
Partial autocorrelation test     Time Series Functions Demo.xls 
Percentiles with EDF function    Analysis of Simulation Results Demo.xls 
Poisson distribution      Probability Distribution Demo.xls 
Poisson distribution      Simulate All Probability Distributions Demo.xls 
Poisson distribution      Probability Distributions Demo.xls 
Poker        Games of Chance Demo.xls 
Portfolio analysis      Portfolio Analysis Demo.xls 
Power normal distribution     Simulate All Probability Distributions Demo.xls 
Power normal distribution     Probability Distributions Demo.xls 
Premium calculation for term life insurance   Life Insurance Demo.xls 
Premium calculation for whole life insurance   Life Insurance Demo.xls 
Probabilistic forecast of Multiple Regression structural model Multiple Regression Demo.xls 
Probabilistic forecast of monthly data            Seasonal Analysis Demo.xls 
Probabilistic forecast of time series model   Time Series Forecasting Demo.xls 
Probabilistic forecast of time series model   Time Series Analysis Tools Demo.xls 
Probabilistic forecasting of Multiple Regression equations  Multiple Regression Forecasts Demo.xls 
Probabilistic forecasting of cycles    Probabilistic Cycle Forecasts Demo.xls 
Probabilistic forecasting of harmonic regression   Regression for Seasonal Forecasts Demo.xls 
Probabilistic forecasting of seasonal index   Regression for Seasonal Forecasts Demo.xls 
Probabilistic forecasting with Multiple Regression  Probabilistic OLS Forecasts Demo.xls 
Probabilistic forecasting with moving average   Moving Average Forecasts Demo.xls 
Probabilistic forecasts with exponential smoothing  Exponential Smoothing Demo.xls 
Probabilistic linear and non-linear trend regression  Trend Forecasts Demo.xls 
Probabilistic moving average forecast         Moving Average Demo.xls 
Probability annual cash flow deficits    Farm Simulator Demo.xls 
Probability annual cash flow deficits    Project Feasibility Demo.xls 
Probability losing real net worth    Farm Simulator Demo.xls 
Probability losing real net worth    Project Feasibility Demo.xls 
Probability of success     Feedlot Demo.xls 
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Probability-Probability (PP) plot chart    Analysis of Simulation Results Demo.xls 
Probit regression      Probit and Logit Demo.xls 
Production function with risk     Production Function Demo.xls 
Production function with risk     Stochastic Production Function Demo.xls 
Production insurance (MPCI)     Financial Risk Management Demo.xls 
Project management analysis      Project Management Demo.xls 
Project management and evaluation    Project Evaluation Demo.xls 
QUANTILE function     Analysis of Simulation Results Demo.xls 
Quantile-Quantile (QQ) plot chart    Analysis of Simulation Results Demo.xls 
RANDSORT function application    Simulate Alternative Distributions Demo.xls 
RMSE       Forecast Errors Demo.xls 
RMSE -- Root mean square error    Measuring Forecast Errors Demo.xls 
Random sort of objects     Probability Distributions Demo.xls 
Random walk distribution     Probability Distributions Demo.xls 
Rank insurance strategies     Financial Risk Management Demo.xls 
Rank of a matrix      Matrix Operation Tools Demo.xls 
Rank of a matrix      Matrices Demo.xls 
Rank risky alternatives with SERF    SERF Analysis Demo.xls 
Rank risky alternatives with SERF    Simulate Scenarios Demo.xls 
Rank risky marketing strategies    Financial Risk Management Demo.xls 
Ranking alternative portfolios    Portfolio Analysis Demo.xls 
Ranking risky alternatives based on NPV   Net Present Value Demo.xls 
Ranking risky alternatives with several methods   SDRF and SERF Ranking Demo.xls 
Ranking risky alternatives with several methods   Analysis of Simulation Results Demo.xls 
Ranking risky marketing options    Futures and Options Demo.xls 
Ranking univariate distributions    Univariate Parameter Estimator Demo.xls 
Real rate of return to equity     Investment Management Demo.xls 
Regression forecasting     Probabilistic OLS Forecasts Demo.xls 
Replacement of machinery compliment by item   Machinery Demo.xls 
Residuals from regression to measure risk   Multiple Regression to Reduce Risk Demo.xls 
Restricted Multiple Regression estimations   Parameter Estimation Tools Demo.xls 
Revenue insurance (CRC)     Financial Risk Management Demo.xls 
Reverse the order of a vector     Matrix Operation Tools Demo.xls 
Reverse the order of data in a vector    Matrices Demo.xls 
Risk premiums for ranking risky alternatives   SDRF and SERF Ranking Demo.xls 
Risk premiums for ranking risky alternatives   Analysis of Simulation Results Demo.xls 
Risky cost of projects     Project Management Demo.xls 
Risky investment analysis     Project Evaluation Demo.xls 
Root mean square error -- RMSE    Measuring Forecast Errors Demo.xls 
Row echelon for of a matrix     Matrix Operation Tools Demo.xls 
Row echelon of a matrix     Matrices Demo.xls 
SCENARIO function     Scenario Analysis Demo.xls 
SDRF for ranking risky alternatives    Stochastic Dominance Demo.xls 
SDRF ranking of risky alternatives    Crop Insurance Demo.xls 
SERF and SDRF for ranking risky alternatives   Portfolio Analysis Demo.xls 
SERF application      SERF Analysis Demo.xls 
SERF ranking of risky alternatives    Crop Insurance Demo.xls 
Sampling without replacement    Probability Distributions Demo.xls 
Scatter matrix      Matrix Operation Tools Demo.xls 
Scenario analysis      Feedlot Demo.xls 
Scenario analysis      Analysis of Simulation Results Demo.xls 
Scenario analysis       Net Present Value Demo.xls 
Scenario analysis of a simple business    Simulate Scenarios Demo.xls 
Scenario application to simple profit model   Scenario Analysis Demo.xls 
Scenario simulation      Simulate All Probability Distributions Demo.xls 
Scenario simulation and ranking    Simulate Scenarios Demo.xls 
Schwarz criteria for number of lags    Time Series Forecasting Demo.xls 
Schwarz criteria for number of lags    Time Series Analysis Tools Demo.xls 
Schwarz criteria for number of lags    Time Series Demo.xls 
Schwarz test      Time Series Functions Demo.xls 
Seasonal decomposition of monthly & quarterly data  Seasonal Analysis Demo.xls 
Seasonal forecast of monthly & quarterly data   Seasonal Analysis Demo.xls 
Seasonal index      Seasonal Index Forecasts Demo.xls 
Seasonal index      Cyclical Analysis Tools Demo.xls 
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Seasonal index      Exponential Smoothing Demo.xls 
Seasonal index      Moving Average Demo.xls 
Seasonal index      Seasonal Analysis Demo.xls 
Second degree stochastic dominance    Stochastic Dominance Demo.xls 
Seed for pseudo random number generator   Pseudo Random Number Generator Demo.xls 
Semicircle distribution     Simulate All Probability Distributions Demo.xls 
Semicircle distribution     Probability Distributions Demo.xls 
Sensitivity analysis      Simulate All Probability Distributions Demo.xls 
Sensitivity analysis       Sensitivity Analysis Demo.xls 
Sensitivity analysis for an economic model   Simulate Sensitivity Elasticity Demo.xls 
Sensitivity elasticities for testing  models   Simulate Sensitivity Elasticity Demo.xls 
Sequence of numbers     Matrix Operation Tools Demo.xls 
Sequence of numbers     Matrices Demo.xls 
SimSolver application     Wheat Sim Solve Demo.xls 
SimSolver application     Demand Supply Model Sim Solve Demo.xls 
Simple average seasonal index    Seasonal Index Forecasts Demo.xls 
Simple regression for multiple variables   Parameter Estimation Tools Demo.xls 
Simple statistics for multiple variables    Parameter Estimation Tools Demo.xls 
Simulate a VAR model     Probabilistic Forecasting a VAR Model Demo.xls 
Simulate net returns model     Analysis of Simulation Results Demo.xls 
Simulate simultaneous equation econometric model  Sim Solve Demo.xls 
Simulating risky cost to complete a project   Project Management Demo.xls 
Simulation engine for Simetar demonstrated   Simulation Demo.xls 
Simulation engine for Simetar demonstrated   Test Simetar Demo.xls 
Simulation example for a simple model    Simulation Demo.xls 
Simultaneous equation model with stochastic errors  Sim Solve Demo.xls 
Simultaneous equation simulation    Simulate All Probability Distributions Demo.xls 
Simultaneous equation stochastic model   Wheat Sim Solve Demo.xls 
Simultaneous equation stochastic model   Demand Supply Model Sim Solve Demo.xls 
Sin Cos in Multiple Regression for cycle estimation              Probabilistic Cycle Forecasts Demo.xls 
Singular correlation matrix and MV distributions   Bad Correlation Matrix Demo.xls 
Slot machine      Games of Chance Demo.xls 
Sole proprietor federal income taxes    Income Tax Demo.xls 
Solve supply and demand model     Demand Supply Model Sim Solve Demo.xls 
Solver for optimal control     Deterministic Optimal Control Demo.xls 
Solver for simultaneous equations    Simulate All Probability Distributions Demo.xls 
Solver to simulate simultaneous equation models   Sim Solve Demo.xls 
Solver to solve for equilibrium prices    Wheat Model Demo.xls 
Sort a matrix by a column     Matrix Operation Tools Demo.xls 
Sort a matrix by a column     Matrices Demo.xls 
Sort a matrix by a row or column    Data Analysis Tools Demo.xls 
Sparse data distribution simulation    Sparse Data Demo.xls 
Sparse data distributions      GRKS Distribution Demo.xls 
Sparse data distributions using GRKS     Parameter Estimation Tools Demo.xls 
Sparse data kernel distribution    Probability Distribution Demo.xls 
Stationarity tests      Time Series Forecasting Demo.xls 
Stationarity tests      Time Series Analysis Tools Demo.xls 
Stationarity tests      Time Series Demo.xls 
Statistical tests for model validation    Hypothesis Tests Demo.xls 
Stochastic chart       Stochastic Production Function Demo.xls 
Stochastic dominance with respect to a function    Stochastic Dominance Demo.xls 
Stochastic dominance with respect to a function (SDRF)  SDRF and SERF Ranking Demo.xls 
Stochastic dominance with respect to a function (SDRF)  Analysis of Simulation Results Demo.xls 
Stochastic econometric model    Soybean Model Demo.xls 
Stochastic efficiency  with respect to a function application  SERF Analysis Demo.xls 
Stochastic efficiency with respect to a function (SERF)  SDRF and SERF Ranking Demo.xls 
Stochastic efficiency with respect to a function (SERF)  Analysis of Simulation Results Demo.xls 
Stochastic futures and options prices    Financial Risk Management Demo.xls 
Stochastic production function    Production Function Demo.xls 
Stochastic production function    Stochastic Production Function Demo.xls 
StopLight chart for ranking risky alternatives   Stochastic Dominance Demo.xls 
StopLight chart of risky alternatives    Analysis of Simulation Results Demo.xls 
Student t test of means     Data Analysis Tools Demo.xls 
Student's t distribution     Probability Distribution Demo.xls 
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Student's t distribution     Simulate All Probability Distributions Demo.xls 
Student's t distribution     Probability Distributions Demo.xls 
Summary statistics      Data Analysis Tools Demo.xls 
Summary statistics      Trend Regression to Reduce Risk Demo.xls 
Supply and demand model      Demand Supply Model Sim Solve Demo.xls 
Supply and utilization model -- cotton    Cotton Model Demo.xls 
Sweep a square matrix     Matrix Operation Tools Demo.xls 
Sweep a square matrix     Matrices Demo.xls 
Symmetric covariance matrix     Matrices Demo.xls 
TNORM function      Truncated Normal Distribution Demo.xls 
TNORM function      Simulate Alternative Distributions Demo.xls 
Test 12 distributions for empirical data    View Distributions Demo.xls 
Test alternative distributions for empirical data   View Distributions Demo.xls 
Test for presence of a trend     Trend Regression to Reduce Risk Demo.xls 
Test mean and standard deviation for a distribution  Hypothesis Tests Demo.xls 
Test parameters for simulated variable     Validation Tests Demo.xls 
Tests means for two distribution -- ANOVA   Validation Tests Demo.xls 
Thiel U2       Forecast Errors Demo.xls 
Thiel U2       Measuring Forecast Errors Demo.xls 
Time series decomposition     Cyclical Analysis Tools Demo.xls 
Time series model VAR     Probabilistic Forecasting a VAR Model Demo.xls 
Time to complete a project     Project Management Demo.xls 
Toeplitz matrix from an array     Matrix Operation Tools Demo.xls 
Toeplitz matrix from an array     Matrices Demo.xls 
Trace of a square matrix     Matrix Operation Tools Demo.xls 
Trace of a square matrix     Matrices Demo.xls 
Transpose a matrix      Matrix Operation Tools Demo.xls 
Transpose a matrix or vector of any size   Matrices Demo.xls 
Trend regression to reduce risk    Trend Regression to Reduce Risk Demo.xls 
Triangle distribution     Probability Distribution Demo.xls 
Triangle distribution     Probability Distributions Demo.xls 
Triangle distribution -- general and direct   Simulate All Probability Distributions Demo.xls 
Truncated Weibull distribution    Probability Distributions Demo.xls 
Truncated empirical distribution    Probability Distribution Demo.xls 
Truncated empirical distribution    Probability Distributions Demo.xls 
Truncated gamma distribution    Probability Distributions Demo.xls 
Truncated normal distribution    Probability Distribution Demo.xls 
Truncated normal distribution    Simulate Alternative Distributions Demo.xls 
Truncated normal distribution    Probability Distributions Demo.xls 
Truncated normal distribution -- general and direct  Simulate All Probability Distributions Demo.xls 
Truncated normal distribution application   Truncated Normal Distribution Demo.xls 
Two Sample Hotelling T-Squared test    Data Analysis Tools Demo.xls 
Two piece normal distribution    Probability Distributions Demo.xls 
UNBOXCOX function     Data Analysis Tools Demo.xls 
UNIFORM function     Uniform Random Number Generator Demo.xls 
UNIFORM function application    Simulate Alternative Distributions Demo.xls 
UNIFORM vs. Excel's RAND function    Uniform Random Number Generator Demo.xls 
Uniform distribution     Probability Distribution Demo.xls 
Uniform distribution     Probability Distributions Demo.xls 
Uniform distribution     Test Simetar Demo.xls 
Uniform distribution -- general and direct   Simulate All Probability Distributions Demo.xls 
Uniform distribution to simulate a Normal   Uniform Random Number Generator Demo.xls 
Uniform distribution using inverse transform method  Inverse Transform Demo.xls 
Univariate distribution parameter estimation   Univariate Parameter Estimator Demo.xls 
Univariate distribution parameter estimation   Trend Regression to Reduce Risk Demo.xls 
Univariate parameter estimation system    Parameter Estimation Demo.xls 
VAR model estimation     Time Series Functions Demo.xls 
VAR model estimation     Time Series Analysis Tools Demo.xls 
VAR model for two series     Probabilistic Forecasting a VAR Model Demo.xls 
Validate correlation of random variables in MV distribution Hypothesis Tests Demo.xls 
Validation for MV distributions correlation matrix  Validation Tests Demo.xls 
Validation test of MVE     Multivariate Empirical Distribution Demo.xls 
Validation test of MVN     Multivariate Normal Distribution Demo.xls 
Validation tests      Hypothesis Tests Demo.xls 
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Vector to a diagonal matrix     Matrix Operation Tools Demo.xls 
Vector to a diagonal matrix     Matrices Demo.xls 
View distributions as parameter change    Test Parameters Demo.xls 
WAPE       Forecast Errors Demo.xls 
WAPE -- Weighted absolute percent error   Measuring Forecast Errors Demo.xls 
Weibull distribution     Probability Distribution Demo.xls 
Weibull distribution     Simulate All Probability Distributions Demo.xls 
Weibull distribution     Probability Distributions Demo.xls 
Weighted absolute percent error -- WAPE   Measuring Forecast Errors Demo.xls 
Wilk's Lambda distribution     Probability Distributions Demo.xls 
Wilk's lambda distribution     Simulate All Probability Distributions Demo.xls 
Wishart distribution     Simulate All Probability Distributions Demo.xls 
Wishart distribution     Probability Distributions Demo.xls 
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Figure A.1.  Workbook Name and Worksheet Names. 

Appendix A: 
Getting Started in Microsoft Excel XP 

 
 An Excel Workbook consists of one or more Worksheets.  The name of the Workbook 
appears at the top of the screen after the phrase “Microsoft Excel”, see Figure A.1.  The tabs at 
the bottom of the screen are Worksheet names (Figure A.1).  The Worksheet names default to 
Sheet 1, Sheet 2, Sheet 3, ... when a new Workbook is opened. Each Worksheet has 255 columns 
(A through IV) and 65,536 rows.  A Workbook can have more than 250 Worksheets.  See Tools 
> Options > General to set the number of sheets to open for a new Workbook; 3 is plenty as you 
can add more later.  The option for setting the default number of sheets and the default file 
location for saving Workbooks are indicated later in this Appendix.  The primary purpose of 
Excel is to perform lots of simple mathematical calculations.  Each cell can contain an equation, 
a constant, or text.  The syntax for entering these three types of values in a cell are: 
 
 − Equations begin with an equal sign, = , 
 − Constants begin with any number. Constants can be real numbers or integers. 

− Text begins with an alphabetic character, without the need for a quote or other special 
character. 

− A cell that documents a formula should start with a single quote, such as, ‘= to tell Excel 
the cell is text and not a formula. 

 

Edit Workbooks and Worksheets 
 
 When Excel is opened it begins with a blank Workbook named “Book1.”  To organize your 
work the Workbook should be saved with a unique name.  This is done using the Save As Option 
which is accessed as follows:  File > Save As …  .  The Save As Menu appears so you can 
browse to the directory where the file is to be stored, type the new name in the “File name” 
window and be sure to click on the “Save” button.  Keep your Workbook names short, 8 to 12 
letters and numbers.  Do not use special characters in the name. 
 
 To edit the Worksheet name, right click on the Worksheet name and select the Rename 
option.  Next type the new name for the Worksheet.  Be sure to use short names for Worksheets, 
4 to 8 characters and numbers.  Do not use special characters in Worksheet names. 
 
 Other functions in the menu for editing Worksheets allow you to copy, delete, move, or 
insert an entire Worksheet.  The copy Worksheet function is particularly useful, as you can copy 
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Figure A.2.  Excel Help Screen. 

a SimData Worksheet output sheet for Simetar that has charts and tables and then use the 
original SimData Worksheet for the next simulated output and make use of the pre-programmed 
charts and tables.  Moving a Worksheet name within a Workbook can be done by clicking on the 
Worksheet name, holding down the left mouse button and dragging and dropping the name to its 
new location. 
 
 It is not recommended that you copy a Worksheet from one Workbook to another.  This 
action will create links that are hard to break. 
 
Insert and Delete Rows and Columns 
 
 Excel’s Worksheets are flexible so the user can add and delete rows and columns.  This 
feature is useful for model development when a new row must be inserted into the existing 
model or a new column needs to be inserted in a table. 
 
 To insert one column click on the main toolbar for Insert > Columns.  The new column 
appears to the left of the cursor.  To insert two or more columns, highlight the number of 
columns to insert and click on Insert > Columns.   
 
 To insert one row above the cursor, click on Insert > Rows.  To insert multiple rows, 
highlight the desired number of new rows and click on Insert > Rows. 
 
 Removing a row or rows is accomplished by highlighting the row or rows and clicking on 
Edit > Delete.  Follow the same steps to remove a column or columns. 
 
Getting Help 
 
 Select the word Help on the main Toolbar (Figure A.1) and then select “Microsoft Excel 
Help” in the subsequent drop down menu.  Help can also be accessed by pressing the F1 function 
key.  Help is provided in several different forms. 
  
 − Table of Contents -- tab lists the major areas where 

you can find detailed help.  Under each major topic 
area you will find numerous sub-topics with sub-levels 
of help under each topic.  For example, click on 
Printing to see the range of topics. 

 
− Search for:  -- window provides a keyword field so 

you can type in a word or phrase to gain help for a 
topic (Figure A.2).  Typing in a phrase such as “if” 
results in a list of different IF statements and how they 
are programmed.  Additional assistance is available by 
connecting to Microsoft Office Online (Figure A.2).  
Try using the help by typing “if” in the first line and 
then follow through with help on the topic of “Check 
if a number is greater than or less than another 
number.” 
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Figure A.3.  Help Screen for Inserting a Function. 

 
 
Figure A.4.  Example of a Function Argument Help Screen. 

 
 
Figure A.5.  Example of a Function Editing Screen for EMPIRICAL. 

Help with Functions 
 
 Select the “ƒx” icon or ‘=’ 
on the bottom toolbar to get a list 
of all functions in Excel and to 
get help in using them (Figure 
A.1).  The resulting “Insert 
Function” menu (Figure A.3) is 
split in three parts.  The top line 
provides space for you to type a 
description of what you want to 
calculate.  The second input line 
is a drop down list of categories 
of functions, such as 
mathematical, statistical, etc.  The 
Select a Function window is a 
scrollable list of functions in the 
category selected.  The Simetar 
functions are under Simetar in the 
list of Categories. 
 
 To test how the Insert 
Function works, click on a 
cell, then click on ƒx, select 
Statistical in the Select 
Category box.  In the 
Function screen, scroll down 
to CORREL and double click 
it.  The format for the 
function and an explanation 
appears in a dialog box 
(Figure A.4).  Tips on what to 
enter in each data entry box 
or field are provided as you 
move from one field to 
another.  Follow the 
instructions and Select OK.  
The correlation coefficient 
appears in the cell you selected 
prior to hitting ƒx. 
     
 The ƒx help/dialog box 
can be accessed to provide 
help with all types of 
functions.  It is useful for 
learning the syntax for new 
functions and to verify correct 
syntax for functions that are 
reporting an error.  To test this 
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Figure A.6.  Menu for Page Preview and Setup. 

 
 
Figure A.7.  Page Setup Dialog Box for Printing. 

Excel capability, select a cell and type a function name with the left parenthesis, e.g., 
=EMPIRICAL(  and hit the fx icon on the toolbar.  Excel responds by providing the help menu 
in Figure A.5, which indicates the parameters for the EMPIRICAL function.  Cell locations or 
numbers can be typed in the boxes provided in the help menu in Figure A.5.  Repeat this 
example for another function, such as:  =AVERAGE( ) or  =STDEVP( ). 
 
Printing Reports 
 
 Excel provides sufficient flexibility to both produce business reports and to completely 
frustrate the user. The good news is that Excel saves each Worksheet’s print format information 
so you only have to go through the print formatting steps once for each Worksheet.  The steps to 
follow for printing a file are: 
 
 − First highlight the section of the spreadsheet to print using the left mouse button and 

dragging the mouse.  Always specify what to print, if you ignore this step, Excel will 
dump the entire Worksheet to the printer. 

 − Set the Print Area by selecting:   File > Print Area > Set Print Area 
  This action places a colored box with a dashed line around the cells to print. 
 − Next format your print region by selecting:   File > Print Preview 
  This action opens a window with your selected region placed on a simulated sheet of 

paper.  This is how the report will look if you select the Print option in the menu at the 
top of the screen (Figure A.6).  To make the page look the way you want, use the menu 
options in Figure A.6. 

 The “Setup” button in Figure A.6 opens a four level dialogue/menu box for formatting your 

report (see Figure A.7).  
The four tabs (Page, 
Margins, Header/Footer and 
Sheet) are described briefly: 
 
 • Page -- tab allows 

you to set the 
orientation (Portrait 
or Landscape).  I 
prefer the Fit to “1” 
page wide by “N” 
pages tall option. 

 • Margins -- tab 
allows you to 
change the margins 
on the page.  The 
margin settings are in effect for all pages selected in the print region.  Margins can be set 
easier from the Main toolbar in Figure A.6, see below. 

 • Header/Footer -- tab provides text boxes for you to enter your own or select from 
numerous headers and footers.  Drop down menu boxes are provided with several pre-
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Figure A.8.  Dialog Box for Formatting Cells. 

set titles.  The titles include the page number, your name, the name of the file, and the 
name of your computer. 

 • Sheet -- tab is used to specify whether you want to print Grid Lines and/or Row and 
Column Headings. 

 
 The “Margins” button on the menu at the top of the screen (Figure A.6) causes Excel to 
show the margins on the print preview page.  To change a margin click on the dotted margin line 
and drag where you want. 
 
 The “Page Break Preview” button on the menu at the top of the screen (Figure A.6) changes 
the screen back to the Worksheet where you can change the page breaks manually.  To change a 
page break, click on the dashed line and drag it where you want the page break.  Once you are 
satisfied with the page break go back to the print preview screen by selecting File > Print 
Preview or clicking View > Normal from the Main Toolbar. 
 
 The “Print” button on the menu at the top of the screen (Figure A.6) will print what you see 
in the print preview.  
 

- The “Next” button on the Print Preview toolbar (Figure A.6) advances the screen 
preview through the remaining sheets in the print area. 

 
 Format each Worksheet you want to print by repeating the steps described above.  To print 
the Set Print Areas in multiple Worksheets, select the Worksheets names to print (click on a 
name, hold the Ctrl key and click on other Worksheet names) and click File > Print. 
 
Formatting Cells in a Worksheet 
 
 The format option on the Excel main 
Toolbar is used to format the cells in a 
Worksheet.  Highlight the cell or cells to 
format and then select the Format > Cells 
… option.   
 
 Selecting Format > Cells … opens a 
dialog box (Figure A.8) with six tabs to 
provide a great deal of flexibility in 
formatting your Worksheet.  The function 
of each tab is described as follows: 
 
 − Number -- tab in Figure A.8 

provides a list of categories that 
you can pick from, in a scrollable 
menu. Use the arrow keys to 
highlight the preferred category.  
Sample settings available for each 
category appear in the right side 
of the box. 

 
  • Number:  specify number of decimal points, use of a comma separator, and how to 
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display negative values. 
  • Currency:  specify decimals, use of $, and options for displaying negative values. 
  • Percentage:  specify number of decimal places. 
 
 − Alignment -- tab in Figure A.8 provides options to position numbers and text in 

individual cells, different from the default settings.  The primary option in this tab is 
Horizontal alignment of text and numbers, which allows you to center, left or right 
justify the contents of a cell.   

− Font -- tab in Figure A.8 provides several small windows for setting the font type, font 
style, font size, underlining, and color of the cell contents. 

 − Border -- tab in Figure A.8 provides options for specifying line borders around 
individual or blocks of cells.  The size and type of lines used for borders can be 
specified. 

 − Patterns -- tab provides tools for setting a color for individual cells or blocks of cells.  A 
palette of colors is provided to select from.   

− Protection -- tab in Figure A.8 provides a way to lock or hide a cell so it cannot be 
changed by the user.  Protection of an Excel Worksheet involves two steps that must be 
done in this order: 

 
• Highlight the cell(s) that the user can change; click Format > Cells > Protection > 

unclick the box for Locked. 
• Click on Tools > Protection > Protect sheet > click on “Select locked cells” and click 

on “Select unlocked cells.”  You must enter a password to protect the Worksheet.  
Caution is recommended because if you forget the password you can never edit the 
Worksheet. 

• Users will be able to change values in the cells that are selected in the first step and 
cannot change values in any other cells in the Worksheet. 

 
Writing Equations in Excel 
 
 The arithmetic operators are: 
 
 − Addition  + 
 − Subtraction  - 
 − Division  / 
 − Exponentiation ^ 
 − Multiplication * 
 
 An equation of constants could be typed into a cell as: 
 
 =  10 + (20.5 * 2.01) + (1.04 ^ 2) / 3.0 
  
 The power of Excel comes from using cell addresses in equations, rather than constants, as: 
 
 = C11 + (C12 * C13) + (A12 ^ 2) / A3 
 
The values in cells A3, C11, C12, and C13, are inserted by Excel into the equation for 
calculation.  Calculation can be done manually by pressing F9 or automatically by selecting 
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Figure A.9.  Example of Cell Locking with F4 in an Equation. 

Tools > Options > Calculations Automatic.  For most all forms of modeling in Excel it is best to 
have Calculations updated automatically. 
 
 Most users find it easiest to write a formula using a combination of typing and the mouse.  
Try the following to enter the equation of = A1 + A2 or = 4 + 3. 
 
 − Type 4.0 in A1 and 3.0 in A2. 
 − In cell A3 type = and left (mouse button) click on cell A1 then press the “+” key and left 

click cell A2. 
 − Press Enter and you will see the result of the calculation. 

− Type a new value, say 10, in A1 and watch the change in A3.  (If A3 did not change 
press F9 or set Calculation to automatic by selecting Tools > Options > Calculations > 
Automatic.)  

 
This feature of Excel is particularly useful in simulation because all input and control values can 
be easily changed for alternative scenarios if they are entered in cells rather than being hard 
coded in equations. 
 
Edit Equations 
 
 To edit the equation in A3, highlight the cell and press the F2 function key.  The formula 
will appear in the A3 cell and in the ƒx formula bar.  You can edit the formula in either place, 
using the mouse and the arrow key to position the cursor.  Backspace deletes characters to the 
left and Delete removes characters in the formula to the right of the cursor. 
 
 Equations can be edited more efficiently by using the F2 key and the mouse.  For example, 
enter the number 10.0 in cell B1, click on the formula in A3 and press the F2 key.  Now change 
the A3 equation to = A1 + B1 by positioning the cursor over cell A2 until the cursor becomes a 
cross with four arrows, hold down the left mouse button and drag the box to cell B1, and press 
Enter, using F4 to Lock Cells. 
 
 Excel allows the user to copy equations to speed up the process of developing a model.  
Because Excel is a “relational” program you must “lock” or “fix” the cell addresses prior to 
copying, if a cell address is to be constant in all locations.  Lock the column reference for a cell 
with a “$” sign before the column letter.  Lock the row reference for a cell with a “$” sign before 
the row number.  Lock both row and column for a cell by following these steps. 
 
 − Highlight the cell with the equation to be edited by placing the cursor on the cell, 
 − Press F2 to edit the cell, 
 − With the mouse or the arrow keys position the cursor on the cell name (e.g., A1) in the 

formula to be locked, and 
 − Press F4 to lock the cell reference.  Multiple clicks of F4 will cell reference only the 

column or only the row. 
 
 
 An example of locking (cell referencing) the cells in an equation is provided in Figure A.9.  
The example is a simple Centigrade to Fahrenheit calculator where the formula is Fah = 32 + 1.8 
* (Cent).  The slope for the line is calculated in C13 and the intercept is in C10.  The intercept 
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Figure A.10.  Example of Copy and Paste an Equation with  
Cells Locked Using F4. 

and slope constants are in the formulas in C12:C20 to convert nine different Centigrade 
temperatures.  The formula in C12 was entered as $B$10 + $C$10 * B12 and then the formula 
was copied to cells C13:C20.  
 
Copy and Paste Formulas 
 
 Highlight the cell or block 
of cells to copy using the mouse 
and press the Copy icon on the 
toolbar.  (The block will have 
moving dashed lines around it 
after it is copied into active 
memory.)  Move the cursor to 
the new location using the 
arrow keys or the mouse.  Press 
the Paste icon.  This can also be 
done using Ctrl C to copy and Ctrl V to paste. 
 
 An example of copy and paste equations is provided in Figure A.10.  The interest payment 
for a one year loan is calculated for three interest rates and a constant principal borrowed.  
Interest rates are entered in cells B23, D23, and F23.  The formula to calculate interest is entered 
in B25.  Because the principal in the formula in B25 is to be used for all three interest rates, the 
formula is edited to lock $B$24 using the F4 key.  The formula in B25 was copied and pasted in 
cells D25 and F25.  The calculated values in D25 and F25 use the interest rate in the same 
relative position on the Worksheet (2 cells above the formula) as the original formula in A25.  
As a result use caution when pasting formulas. 
 
Drag Formulas 
 
 Programming formulas in a Worksheet can be more efficient if you drag the original 
formula down (or across) from the original cell.  In Figure A.9 the original formula is in cell C12 
and it was dragged down for cells C13:C20 faster than the formula can be re-typed once.  To 
drag a formula to an adjacent cell follow these steps.   
 

• Highlight a cell (or range of cells) with a formula.   
• Place the cursor on the black square in the lower right hand corner so the cursor becomes 

a small black cross.   
• Next hold down the left mouse button and drag the formula to the next cell or cells.   

 
 The formula will now be in both places, the original and the new cell.  The cell references in 
the formula are adjusted to reflect the new location, unless the cell references were row and 
column locked.  Excel is a relational program, so if you filled a cell to the right all cell references 
in the formula have their original row numbers but all column references are advanced by one 
letter.  Likewise, if the filled cell was below the original, all row numbers would be incremented 
by one while the column references are unchanged.  This feature in Excel is particularly useful 
for developing equations in a model.  An example of dragging a formula to the right is provided 
in Figure A.11 where we calculate interest payments for five interest rates.  The original formula 
in B32 was dragged to the right to cells C32:F32.  The principal amount borrowed is constant for 
all formulas because of the F4 cell locking on cell B31, but the interest rates change from one 
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Figure A.11.  Example of Dragging a Formula to Populate the Equations  
in a Table. 

cell to the next.  
 

Moving a Formula or Block of Formulas 
 
 Formulas can be moved from one place to another on the Worksheet.  This feature is useful 
in that we can program a formula in one place and move it to where it goes later.   
 

• First highlight the cell or cells containing the formulas to move.  This is done by placing 
the cursor on the first cell and then holding the left mouse button down as you drag the 
mouse to highlight the cells to move. 

• Next move the cursor to an edge of the block, at this point the cursor turns into a white 
arrow.   

• Click and hold down the left mouse button as you move the mouse, and drag the block 
to its new location. 

 
 
 Using this procedure to move cells with equations automatically updates the cell addresses 
in the equations as well as all other equations that use the cells being moved.  This is not the case 
if you Copy and Paste equations. 
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Fill a Series 
 
 A column (or row) of numbers which contains a series such as 1, 2, 3, ..., N can be 
generated by Excel.  This is done by typing the first two numbers in the series and having Excel 
complete the series by following these steps: 
 
 − Type values 1.0 and 2.0 into cells A12, A13, respectively (see Figure A.9), 
 − Use the mouse to highlight the two cells A12:A13 and move the cursor to the bottom 

right corner where there is a small block box,   
 − When the cursor touches the small block box it changes to a black cross, hold the left 

mouse button down and drag the cursor to the end cell, say, A20.  (As you drag a series 
down, a small box to the right of the cursor informs you of the current number in the 
series.)  Release the left mouse button when you are finished. 

 
Frequently Used Excel Functions 
 
− Average   
 

 The average function calculates the values in a specified block of row(s) or column(s).  
The format is: 

 
 = average (first cell:  last cell)           or      = average (A6:A18) 
 

All Excel functions allow you to declare the cell addresses in the formulas by using the 
mouse. After typing the left parentheses, click and hold down the left mouse button on the 
first cell (A6) and drag to the last cell (A18) and then release the button.  Finish the formula 
by typing the right parentheses and pressing Enter. 
 

− Standard Deviation for a Population 
 
 = stdevp (first cell:  last cell) 
 
− Minimum Value 
 
 = min (first cell:  last cell) 
 
− Maximum Value 
 
 = max (first cell:  last cell) 
 
− Sum of a Series 
 
 = sum (first cell:  last cell) 
 
– IF Statements   

 
 Excel provides for conditional equations using a simple “IF, Then, Else” format which is 
essential for simulation models.  An IF statement follows a set format:  
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Figure A.12.  Example of Basic IF Functions in Excel. 

 
 = IF (condition to be tested, value if condition is true (then), value if condition is false (else)) 
 

The condition can be a comparison of one cell to a constant or one calculated value to 
another.  The “then” and “else” values can be constants or calculations or cell addresses, or 
text.  Examples of several common IF statements are demonstrated that compare two cells 
(A4 and A3) and make the “then” value 10 and the “else” equal to a 20.  An example is also 
provided in Figure A.12. 
 

 IF Greater than 
  = IF (A4 > A3, 10, 20) 
 IF Less than 
  = IF (A4 < A3, 10, 20) 
 IF Equal to 
  = IF (A4 = A3, 10, 20) 
 IF Less than or Equal to 
  = IF (A4 < = A3, 10, 20) 
 IF Greater than or Equal to 
  = IF (A4 > = A3, 10, 20) 
 Not Equal to 
  = IF (A4 <> A3, 10, 20) 
 
 Compound IF statements are available, for problems that involve two conditions, as: 
 
 IF And 
  For example, if A4 is less than A3 and A4 is positive: 
 
  = IF (and (A4 < A3, A4 > 0), 10, 20) 
 
 IF Or 
  For example, if A4 is less than A3 or A4 greater than two: 
 
  = IF (or (A4 < A3, A4 > 2), 10, 20) 
   
You can of course include IF statements inside other IF statements.  Use caution, and test 
thoroughly before using complex IF statements in your models. 
 
VLOOKUP and HLOOKUP Functions 
 
 Excel provides two functions for extracting information from a table.  The VLOOKUP 
function extracts information from tables arranged vertically and HLOOKUP extracts 
information from tables arranged horizontally. 
 
 
– HLOOKUP Function   

 
 The HLOOKUP operates on horizontal tables such as the one displayed in Figure A.13.  For 
this example, assume a horizontal table is defined by rows 46-49 in columns B-E, as depicted in 
Figure A.13.  The general format for the HLOOKUP function is:   
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Figure A.13.  HLOOKUP Function to Extract Information from a Column of a 
Table. 

 
 =HLOOKUP (Target Value in Row 1, Table Location, Row to Look in) 
 
To extract values from the third column of the table, program HLOOKUP as follows: 
 

• Information in row 2 is obtained by 
  =HLOOKUP (3, A2: G6,2) which returns 22.1 

• Information in row 3 is obtained by 
  =HLOOKUP (3,  A2: G6, 3) which returns 4.5 

• Information in row 4 is obtained by 
  =HLOOKUP (3, A2: G6, 4) which returns 128 
 
The way this function operates is that it looks at the values in row 1 and compares them to the 
Target Value in the HLOOKUP function to locate the column; the row to extract from is 
specified by the last parameter in HLOOKUP.  The function is quite general in that the Target 
Value in row 1 and the Rows can be specified by the value in a cell (Figure A.13). 
 
 A word of 
warning is that the 
columns must be 
arranged so the 
values in row 1 are 
unique and 
increase in value 
from left to right.  
If the values in row 
1 are not unique, 
Excel will extract 
information from 
the first column 
where it finds a 
match.  For 
example, if a 2 appeared in row 1 for both columns 2 and 4, then Excel only pulls in values for 
column 2 when a 2 is used as the first parameter. 
 
– VLOOKUP Function   

 
 The VLOOKUP function operates on a vertical table such as the one displayed in Figure 
A.14.  The VLOOKUP function pulls data from a row of a table.  The row to use is based on 
matching the Target Value to the values in the first column of the table.  The general format for 
the VLOOKUP function is: 
 
 = VLOOKUP (Target Value in Column 1, Table Location, Column to Look in) 
 
To extract information from the income tax schedule in Figure A.14, one would start with the 
taxable income, say 76000, in cell C69 and use the following specifications: 
 

• Information in column 2 is obtained by 
  VLOOKUP (B17, A60:D67, 1) which returns 75000.0 
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Figure A.14.  VLOOKUP Function to Extract Information from a Row 
of a Table. 

 
 
Figure A.15.  Example of Using Array Functions in Excel. 

• Information in column 3 is obtained by 
  =VLOOKUP (B17, A60:D67, 3) which returns 13.750.0 

• Information in column 4 is obtained by 
  =VLOOKUP (B17, A60:D67, 4) which returns 0.34. 
 
 The VLOOKUP function 
assumes the values in the first 
column are sorted from the lowest 
to the highest, and each value is 
unique.  If Excel does not find a 
perfect match for the values in 
column 1, it uses the row that has 
the largest value which is less 
than the target value.  In other 
words if the target value or 
taxable income is $51,000 then 
Excel uses the values found in 
row 2 of the A60:D67 table 
(Figure A.14).  If taxable income 
equals a value between $100,000 
and $334,999.99 the function will 
use values in row 4 of A60:D67, 
as specified by the column 
specifier. 
 
Array Function 
 
 Matrix operations in 
Excel are handled by using 
array functions.  The product 
of multiplying two matrices, 
Y = X * Z, is an array, not a 
cell.  To insure that the 
product, Y, is placed into an 
array rather than a cell one 
must highlight the correct size 
of an array to store the results, 
type the function correctly, 
and most importantly end the 
command by pressing 
“Control Shift Enter” all at 
once.  To multiply two 
matrices, X in A1:D4 and Z in 
E1:H4 we highlight a 4x4 location for the product in say A5:D8 and type the command 
=MMULT(A1:D4, E1:H4), and then press Control Shift Enter.  The Y matrix is now treated by 
Excel as an “array” so you cannot edit or delete an individual cell in the array.   
 The array function capability in Excel is used to speedup calculations and to insure that 
functions are solved as an array.  Examples of functions that benefit from the array function 
mode are:  matrix inversion, factoring a matrix, correlating random variables, and matrix 
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Figure A.16.  Location of Short Bars to Split Screen 
Horizontally and Vertically. 

multiplication, to name a few.  For an example of how array functions can be used in Excel to 
solve a practical problem see Figure A.15.  Array functions are demonstrated to calculate betas 
for a multiple regression using the formula: 
 
 ' -1 ' = (X X)  X Y.β  
 
Split Screen 
 
 To see two or even four different 
sections of a Worksheet at once you 
can split the screen with either 
horizontal or vertical segments.  
Splitting the screen into two horizontal 
segments, left click on the small bar 
segment at the top of the scroll bar on 
the right side of the screen (see Figure 
A.16).  While holding down the left 
mouse button drag the cursor halfway 
down the screen.  Now you have two 
screens and the rows are independent 
in each, in other words the top screen 
can show lines 1-15 and the bottom 
segment can show 105-120, for the 
same columns. 
 
 The screen can be split into two vertical segments by left clicking on the small vertical bar 
on the right hand side of the horizontal scroll bar (see Figure A.16) and dragging the cursor to 
the left.  The rows are constant but you can view different columns in each segment of the 
screen. 
 
 To see four parts of the Worksheet at once split the screen vertically and horizontally using 
the steps described above.  Another way to split the screen in four parts is to click on a cell in the 
center of the Worksheet and click Window > Split.  The horizontal and vertical lines can be 
moved so they are more convenient by left clicking on the thick line and dragging it to the 
desired place on the screen.  Remove a line by double clicking it. 
 
View Two Worksheets 
 
 Viewing two Worksheets in the same Workbook at once can be very useful.  To accomplish 
this follow these steps: 
 

- Only have one Workbook open. 
- Windows > New Window 
- Windows > Compare Side by Side with … the name of your open Worksheet, such as 

Model.  This gives you two active windows of the initial open Worksheet (Model). 
- Click the Worksheet name in the Worksheet tabs list that you want to compare as Stoch. 

 Now you have two screens, one has Worksheet Model and the other has Stoch. 
- Closing one of the Worksheets returns the screen to displaying only one Worksheet. 
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Figure A.17.  Example of Using Chart Wizard to Develop a Chart. 

View Two Workbooks 
 
  To view two Workbooks simultaneously in two screens do the following: 
 

- Open two Excel Workbooks, say Test A and Book 2. 
- Assuming Test A is open then click on Window > Compare Side by Side with Book 2. 

 
Both Workbooks will have their own scroll bars, grid names and you can navigate independently 
in the Workbooks. 
 
Preparing Charts 
 
 Excel provides the Chart Wizard menu for developing and refining charts.  The line, fan, 
and CDF chart functions in Simetar are provided to bypass the steps described here.  However, 
you should be aware of Excel’s capabilities so you can customize charts created with Simetar.  
The following section describes how you can develop a CDF chart with Excel. 
 
 − Put the X axis values in 

the left hand column, 
and put the Y values in 
the right hand column.  
The columns must be 
adjacent, as in Columns 
B and C.  For a CDF 
chart the Y axis has 
values from 0 to 1 in 
ascending order and the 
values in X are the 
sorted values for the 
random variable 
matching the 
probabilities in the Y 
data. 

 − Highlight the range of 
values in the two 
columns to be included 
in the graph and select: 

  Insert > Chart ... > XY 
Scatter (see Figure 
A.17). 

 − XY Scatter offers five types of graphs:  just points, smooth lines and points, smooth 
lines, straight lines with points, and straight lines.  Select the graph type with smooth 
lines and no point markers, then select Next. 

 − Excel then shifts to Step 2 of the Chart Options, showing you basically what you will 
get.  If necessary select the < Back button to make a different selection at this point. 

 
  • Select the Series tab at the top of the Chart Wizard menu.  This allows you to type in 

the name of the variable in the field to the right of Name. 
  • You may add a second or third line to the graph by clicking Add or you can remove 
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a line by clicking Remove. 
  • Select Next > when you are through with the Series options. 
 
 − Excel then moves to Step 3 of the Chart Options with a new menu. 
 
  • Titles tab provides a mechanism for typing in a name for the chart and for typing 

names for the X and Y axes. 
  • Axes tab allows you to specify whether the X and Y axes will have values printed. 
  • Grid Lines tab allows you to specify whether X and Y grid lines will be included or 

left out.   
  • Legend tab allows you to hide the legend or to position it around the graph (right, 

left, corner, top, bottom). 
  • Data Labels tab allows you to specify whether the actual values for the line appear 

on the line.  Show Value places the Y values on the line and Show Label places the 
X values on the line.  None hides all numbers.  

  • Select Next > when you are through with these selections. 
 
 − Excel then moves to Step 4 of the Chart Wizard.  Here you have two options, to either 

make the chart into a new sheet called Chart 1 or to add it as an object to your current 
Worksheet. 

 
  • As a new sheet the chart will appear on a full screen in a new Worksheet named 

Chart 1.  This is a big picture of the chart that can be viewed easily and edited 
further. 

  • As an object in the current sheet, the chart is smaller (but can be resized) and sits on 
the current Worksheet.  It can be positioned any place  on the Worksheet and printed 
along with the data.  The chart can be sent to a new Worksheet by right clicking the 
chart and clicking on the option to change location. 

 
 Editing a chart gets complicated so I will only describe the basic things you can do to edit a 
chart. 
 
 − Change the scale on the Y or X axes. 
 
  • Right click the Y or X axis and select Format Axis. 
  • Scale tab -- shows the minimum and maximum values (Figure A.18).  Type in the 

new maximum and minimums you want on the chart. You can also set the 
increments printed on the axes. 

  • Number tab -- (in Figure A.18) allows you the opportunity to fix the format of the 
numbers on the axis, including the number of decimal places. 

  • Font size and type are changeable using the Font tab in Figure A.18. 
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Figure A.18.  Example of Setting Scale for the Chart Axis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − Set the color for the chart. 
 
  • Right click in the interior of the chart without the arrow touching a grid line or the 

border.  Select Format Plot Area ... 
  • Click the new color for the chart and OK.  Fill effects can be added. 
 
 − Change the chart title. 
    
  • Right click the chart title and select the Font, Pattern or Alignment tabs. 
  • To change the words in the title, left click on the title, place the cursor where the 

insert is to be made and type or delete the title.  When you are finished click the 
mouse on any cell outside the chart. 

 
 − Change the names of the labels on the lines. 
  
  • Right click in the outer area of the Chart.  Select the Source Data ... option.  Select 

the Series tab in the resulting Source Data dialog box. 
  • Click on a series name, as Series 1 and then type a new name in the Name box on the 

right side of the dialog box.  Repeat this for every line on the chart.  Rather than 
typing in the name, a cell reference of the variable’s name can be assigned via the 
name cell. 

 • Select OK when you are finished. 
 

 − Add a line in a chart. 
 
  • Right click in the outer area of the chart.  Select the Source Data ... option. 
  • Click the Add button in the Source Data dialog box. 
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Figure A.19.  Dialog Box for Formatting Lines in Charts. 

  • Specify the X values to add by clicking on the miniature spreadsheet icon to the right 
of X values. 

  • Use the mouse to highlight the new column of X values to add to the graph and then 
press Enter. 

  • Repeat the last two steps to specify the Y values to add to the chart. 
  • Add a name for the new line by typing a name into the Name text window. 
  • Select OK when you are finished. 
 
 − Delete a line from a chart. 
 
  • Left click on a line in the chart and press the Delete key. 
 
 − Change Color, Size, and Markers for a line 
 
  • Right click on the line 

you want to change.  
Select the Format 
Data Series ... option. 
This results in the 
Format Data Series 
dialog box appearing 
on the screen (Figure 
A.19). 

  • Patterns tab allows 
you to customize the 
color, the size and the 
style of the line.  Also 
you can specify a 
marker, its size and 
color to add to the 
line. 

  • Series Order tab in 
Figure A.19 gives you 
a method for moving 
the line’s name up or 
down in the legend. 

  • Select OK when you 
are finished. 

 
Drawing Toolbar 
 
 Placing drawn objects on a Worksheet is easy with Excel’s Drawing Toolbar (Figure A.20). 
 A flowchart or a project management chart can be added to a Worksheet using the “Auto 
Shapes” icon on the Drawing Toolbar.  A list of shapes and connectors that Excel can put on the 
Worksheet is accessed by: 
 
 Auto Shapes > Connectors 
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Figure A.21.  Example of a Drawn Flowchart. 

 
 
Figure A.20.  Excel’s Drawing Toolbar. 

 Auto Shapes > Basic Shapes 

To construct a flowchart, select a shape using Auto Shapes > Basic Shapes > and then click 
one of the shapes desired, say a rectangle.  After clicking the desired shape, the menus disappear 
and the pointer (cursor) turns into a small black cross.  Place the black cross on the Worksheet, 
press the left mouse button and drag the mouse down and to the right to make the object the size 
you want.  After releasing the left mouse button, you may type text and it will appear in the 
object.  Clicking the object allows you to resize, edit the text and move the object.  If a particular 
object, say a rectangle is to be used 10 times, a shortcut is to draw the object, copy it with the 
copy icon on the main toolbar, and press the paste button nine times. 
 
 Drawing lines and 
arrows to connect the 
objects on the Worksheet, is 
demonstrated in Figure 
A.21, is done by first 
selecting a connector.  
Select a connector by 
selecting Auto Shapes > 
Connectors > and then click 
on the desired connector.  
The menus will disappear 
and a black cross appears 
on the screen.  Move the 
black cross to the object 
that the connector will go from and blue cubes will appear on each side of the object.  Place the 
black cross on the side you want the connector to appear on and press the left mouse button; 
while holding the left mouse button down drag the cursor to the receiving object.  In Figure A.21 
this would involve dragging the connector from object 1 to object 2.  Repeat the Steps to select 
the appropriate connector between objects 2 and 3.  As demonstrated in Figure A.21 an object 
can have multiple connectors coming into or out of an object.  
 
 Excel drawn objects actually are on the surface of the Worksheet and can be moved all 
around.  Select an object to move by placing the pointer on the object and pressing the left 
mouse button.  While holding the left mouse button down, drag the object where it should be 
placed.  Notice that when this is done, the connectors automatically adjust.  The connectors are 
also redrawn automatically when an object is re-sized. 
 
 If you decide to change the shape of a drawn object, say from a rectangle to a circle, select 
(click on it) the object and select:  Draw > Change Auto Shape > Basic Shapes > then select the 
new object.  This series of steps will change the shapes of the objects after the chart has been 
drawn and you know what you want.  Changing a drawn object’s shape automatically changes 
the objects connectors. 
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 Text can be added to an object by right clicking on the object and selecting Add Text. 
 
 Once the chart is completed, it needs to be grouped as a single object.  This is done by 
selecting the arrow icon on the Draw Toolbar (Figure A.21), use the left mouse button and click 
on the first object, then hold down the Shift key and click on each of the remaining objects, 
release the Shift key and press the right mouse button, select “Grouping”, and finally select 
“Group” in the menu.  Once a chart has been grouped as a single object, you can move and resize 
the whole chart as if it were one object.   
 
  I recommend that the completed chart or object be formatted so it does not move or size 
with the cells.  This is done by selecting the object, clicking the right mouse button, selecting 
“Format Object”, selecting “Properties”, and then selecting “Don’t move or size with cells.” 
 
 
Key Strokes to Save Time 
 

- Copy highlighted text, while holding down the Ctrl key press C.  This process holds for 
several different key strokes Ctrl C 
 

- Paste      Ctrl V 
 

- Bold highlighted text Ctrl B 
 
- Undo the last keystroke Ctrl Z 
 
- Save the Workbook  Ctrl S 
 
- Cut highlighted text  Ctrl X 
 
- Format highlighted cells Ctrl 1 
 
- Spell checker opened by pressing F7 
 
- Help opened by pressing F1 

 
 
 
 
 



Figure B.1.  Excel’s Options Setup Dialog Box. 

Appendix B: 
Setting Excel’s Options and Customizing the Tool Bar 

 
Setting Options for Excel 
 
 The options are set by 
selecting Tools > Options.  This 
brings up a menu with eight tabs, 
five of which are described in this 
section (Figure B.1) .   
 
− View Tab   
 

 By clicking on the buttons 
you should turn on the 
following options: 

 
• Formula bar 
• Status bar 
• Windows in taskbar  
• Comment indicator only 
• Show all objects 
• Page breaks off 
• Gridlines on 
• Row and column headers on 
• Outline symbols on 
• Zero values on 
• Horizontal scroll bar on 
• Vertical scroll bar on 
• Sheet tabs on 
• Color:  Automatic 

 
− Calculation Tab    
 
 Under the Calculation tab turn on the following options by clicking on the appropriate 
buttons. 
 

• Automatic calculation 
• Update remote references 
• Save external link values 

 
It is strongly recommended that calculation be set to automatic if you are using Simetar.  This 
setting prevents issues with certain functions and calculating statistics and names for simulation 
results in SimData. 

 
 

− Edit Tab    
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  In the Edit tab turn on all of the options except: 
 

• Fixed decimal places 
• Move selection after enter  
 

− General Tab   
 
 The folder you intend to use for your Excel programs can be indicated here so saving and 

retrieving Excel workbooks will be made easier. 
 

• Set the recently used file list to “9” entries. 
• Set the sheets in a new workbook to “3”. 
• Type in the default folder name you want to use for all of your Excel programs. 

 
− Transition Tab 
 

• Save Excel files as:  “Microsoft Excel Workbook.” 
• Set Microsoft Excel Menus to on. 
 

Customizing the Excel Tool Bar  

 You can create your own customized 
toolbar by following the steps described in 
this section. To change the toolbar click Tools 
> Customize > Commands, which generates 
Figure B.3.  Then select the Category you 
want to select from.  Next click on a 
command icon in the Commands menu and 
drop it to the Toolbar where you want it.  
Various command icons useful for simulation 
that are described below appear on the 
customized Toolbar in Figure B.2 and all were 
added to the basic Excel Toolbar using the 
steps described below. 
 
− Add Auditing Icons to Toolbar 
 

 The audit icons are under Tools (see 
Figure B.3) assist you in tracing which 
cells are used to calculate the value in a 
target cell, and where a particular cell’s 

Figure B.2.  Example of a Customized Excel Toolbar for Simulation. 

Figure B.3.  Example of Excel’s Dialog Box for 
Customizing the Toolbar. 
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values are used in subsequent calculations.  Add the audit icons to the Toolbar as follows: 
 
Tools > Customize ... 
Scroll down in the Categories menu and click on Tools (see Figure B.3).  Scroll down the 
Commands list until the icons in Figure B.3 appear.  Click on “Trace Precedents” and drag it 
to the Toolbar, next click on the eraser “Remove All Arrows” and drop it on the Toolbar, and 
finally drag the “Trace Dependents” to the Toolbar.   
 
After you close the Customize screen the three new icons remain on your Toolbar.  To 
remove an icon reverse the steps. 

 
− Add Cell Comment Icons to Toolbar 
 

 Icons to insert comments, show all comments and hide all comments can be added to the 
Toolbar by following these steps: 

 
Tools > Customize ... > Toolbars > Reviewing  
This action will place several icons on your Toolbar.  The new icons maybe more than you 
need, so you can shorten it by clicking on an unneeded icon and dropping it on the 
spreadsheet.   
 

− Print Icons 
 

 Printing in Excel is a multiple step process so creating a special menu for printing can 
save some time.  You can also create other special menus that can contain multiple 
icons/commands.  Develop and populate a special print menu as follows: 
 
Tools > Customize ... > Categories > New Menu 
Scroll the bottom of Categories and click on “New Menu.”  Drag the “New Menu” in the 
Commands menu to the Toolbar where you want it to stay.  Right click on the “New Menu” 
icon on your Toolbar and rename it by typing “Print Options” in the “Name:”  box. 
 
Left click on the “Print Options” menu and a small empty box appears.  File icons into this 
empty box as follows: 
 
Tools > Customize … > File > Set Print Area 
Drag the Set Print Area icon to the empty box under Print Options.  This is now the first 
command in your special menu.  Next drag File > Print Preview to the Print Options menu, 
followed by Print, Page Break Preview, Page Setup …, and Header and Footer. 

 
− Icons to Add and Delete Rows and Columns 
 

 Adding/deleting a row or a column in a spreadsheet should be a one click operation.  This 
can be done by adding four icons to the Toolbar. 
 
Tools > Customize ... > Commands > Insert 
Drag the Rows icon to the Toolbar and drop it.  Repeat this action for the Columns icon. 
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Tools > Customize … > Commands > Edit 
Scroll down until you find the Delete Rows and Delete Columns icons.  Drag these two icons 
to the Toolbar and drop them just before or just after their respective column icons. 
 

− Add Paste Special Icons 
 

 Pasting a cell to a new location can be done as a formula (the default) or as a value.  The 
Paste Special Values icon is useful to have on the Toolbar. 
 
Tools > Customize ... > Edit 
Scroll down to Paste Values and drag it to the Toolbar.  Add another edit icon “Clear 
Formatting” to the Toolbar.  This icon is the fastest way to remove lines and special formats 
for a single cell or a block of cells. 

 
− Add Validation Icon 
 

Tools > Customize ... > Commands > Data          
Scroll down to the word/icon Validation and drag it to the Toolbar.   
 
 From the Toolbar, clicking the Validation icon opens a menu screen that allows you to 
specify the type of input a cell can contain.  For example, the decimal > Between option 
allows you to restrict the data typed into the cell to be within a range, say 0.0 to 1.0.  As you 
see this feature can be added to a Worksheet cell to help users enter the input data in the 
correct format. 
 

− Take Junk Off the Toolbar 
 

 The basic Excel Toolbar comes with some icons that could be removed without hurting 
your productivity.  To remove these icons,  
 
Tools > Customize ... > Commands 
Next click on the offending icons and drag and drop them on the worksheet.  If you need 
them later they can be restored to the Toolbar.  Icons that are good candidates for elimination 
are: 

 
• Print (a little printer icon fourth from the left). 
• Format Painter (the paint brush) 
• Redo (a right hand arrow) 
• Insert Hyperlink (globe with a chain link) 
• Web Toolbar (globe with two arrows) 
• Map (globe on a stand) 
• Drawing 
 
 
 

− Save Your Custom Toolbar for Windows 2000 and XP 
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 After a custom Excel toolbar is created, Windows 2000 and XP saves it into a personal 
directory that loads up when you log on.  All custom settings are stored in this directory so if you 
log in as the Administrator your toolbar will not be in place.  The personalized directory for 
settings and toolbars is: 
 
 C:\Documents and Settings\your name\Application Data\Microsoft\Excel 
 
Toolbar changes are stored to this file and named Excel.xlb.  It is recommended that you keep a 
backup of your xlb file. 
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